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Abstract—The broadcast nature of wireless medium makes
WLANs easily be attacked by rogue Access Points (APs). Rogue
AP attacks can potentially cause severe privacy leakage and
financial lost. Hardware fingerprinting is the state-of-the-art
technology to detect rogue APs, since an attacker would find it
difficult to set up a rogue AP with specific hardware fingerprints.
However, existing hardware fingerprints not only depend on the
AP, but also depend on the client, significantly limiting their
applicable scenarios. In this work, we investigate two novel client-
agnostic fingerprints, which can be extracted using commercial
off-the-shelf WiFi devices, to detect rogue APs. One is the power
amplifier non-linearity fingerprint and the other is the frame
interval distribution fingerprint. These two fingerprints remain
consistent over time and space for the same AP but vary across
different APs even with the same brand, model and firmware.
We use the fingerprint similarity between the candidate AP and
the authorized AP for device authentication. Our scheme can be
implemented without modifying the infrastructural APs and can
work well with new clients without rebuilding the fingerprint
database. We evaluate our scheme in both in-lab and field
scenarios, by analyzing 12 million WiFi packets. Results shows
that our scheme achieves an overall 96.55% positive detection
rate and a 4.31% false alarm rate.

I. INTRODUCTION

While WiFi has become highly prevalent, attacks using

rogue Access Points (APs) are posing a severer threat to user

privacy and finical safety [1], [2]. An adversary can set up

rogue APs having the same identifiers (MAC address, Basic

Service Set IDentifier (BSSID) and Service Set IDentifier

(SSID)) as the authorized AP, and fools a wireless client in

the WiFi network into accessing the internet through the rogue

AP. Then the adversary can launch various attacks such as

DoS, data theft, or Man-In-The-Middle attack [3]. It has been

estimated that almost 20% of corporations have rogue APs in

their networks [4]. Therefore, being able to detect rogue APs

is an essential technology for modern wireless networks.

Existing cryptography-based authentication techniques can

provide strong authentication above link layer, but cannot

address the rogue AP problem [5]. Specifically, as the current

AP selection mechanisms are based on the signal strength, the

attacker could place a rogue AP with a higher transmission

power and always lets clients pass the authentication. To make

it worse, in public places such as airports and shopping malls,

there is even no cryptography-based authentication due to its

key management and distribution overhead [6], [7]. Therefore,

location-based fingerprinting technique [8], [9], [10], [11] has

been proposed in the literature. The basic principle of location-

based fingerprinting is that some low layer features (e.g.,

Received Signal Strength, or Channel State Information [10]

(CSI)) of WiFi signals present spatial properties due to the

complex multipath effects. An adversary half-wavelength away

from the legitimate user will incur quite different features

of the signals [7]. However, when using location-based

fingerprinting, even the legitimate client and AP can only

be authenticated at a pair of specific locations, significantly

limiting its application scenarios. Several recent approaches try

to use hardware fingerprints to address the rogue AP detection

problem. State-of-the-art approaches [12], [13] extract phase-

related characteristics of off-the-shelf wireless devices from

CSI as their hardware fingerprints. While these phase features

are essential signatures of the NIC, however, they are related

to not only the AP, but also the client (e.g., oscillator

frequencies and compensation errors of the phase correctors

at the client). As a result, every time we use a new client to

authenticate the APs, it is inevitable to manually rebuild the

fingerprint database, which limits the applicability of phase-

based approaches.

In this paper, we aim to extract client-agnostic hardware

fingerprints which are only determined by the AP, to achieve

accurate and robust rogue AP detection. We investigate and

extract two novel wireless device fingerprints: Power Amplifier

(PA) non-linearity fingerprint and Frame Interval Distribution

(FID) fingerprint. 1) The PA non-linearity fingerprint is

attributed to the power amplifier imperfections and will

introduce a specific time-varying amplitude offset to the

CSI measurements. In order to obtain this fingerprint within

wireless signals, we propose a novel extraction approach based

on CSI amplitude vibration. Further, we also propose several

methods to mitigate the amplitude interference caused by other

factors like variable-gain amplifier resolution error. Details

about this fingerprint extraction are included in Section III.

2) The FID fingerprint is attributed to the imperfect working

stack to handle and response to the ICMP packets, and

reveals a unique time offset pattern when generating response

frames. We analyze the patterns of different APs and extract

the FID fingerprints in the form of histograms to preserve

the diversity of fingerprints. In the authentication process,

we calculate the fingerprint similarity between candidate and

authorized APs using absolute distance (for the PA non-

linearity fingerprint) and Earth Mover’s Distance (EMD) [14]
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(for the FID fingerprint).

These two fingerprints are fairly consistent over time and

space, and vary across devices even with the same brand,

model and firmware version. These two fingerprints can be

extracted from wireless signals using Commercial Off-The-

Shelf (COTS) WiFi devices, without using specialized devices.

More importantly, these fingerprints are caused by the AP

hardware imperfections and does not depend on the client.

Therefore, a new client can authenticate an AP using the

fingerprints extracted by another client, significantly reducing

the fingerprints collection overhead.

We implement and evaluate the proposed rogue AP detec-

tion method extensively, using 12 APs and 5 clients at four

different locations and five different times. In total, 6,000

samples are collected for performance evaluation, where each

sample includes the fingerprints of 2,000 WiFi packets. Results

show that our system achieves an overall 96.55% positive

detection rate and a 4.31% false alarm rate.

The contributions of our work are summarized as follows.

(1) We extract a novel AP-related fingerprint called PA non-

linearity, and explain the detailed sources of the fingerprint.

Experiments show that PA non-linearity fingerprint is consis-

tent over time, locations and clients.

(2) We propose another AP-related FID fingerprint and

represent it in the form of a frequency histogram. Combined

with the PA non-linearity fingerprint, our scheme can achieve

a better rogue AP detection rate.

(3) We implement our system on COTS wireless clients

and conduct experiments in different scenarios during normal

day hours. Results show that our system achieves a high

positive detection rate and low false alarm rate. Moreover, our

scheme can work well using new clients without rebuilding

the fingerprint database.

II. RELATED WORK

A. Cryptography-based Approaches

Existing cryptography-based authentication techniques such

as 802.11i [15] can provide strong mutual authentication

between wireless clients and the APs. However, an adversary

can still spoof the 802.11 Management Frames (MFs) since

they have not been protected by any security measures [5].

Further, security schemes such as WPA2 encryption and

802.1X authentication are susceptible to attacks launched

through a rogue AP. Specifically, the adversary just needs to

employ the same security measure as the authorized AP but

always lets clients pass the authentication. Therefore, existing

cryptography-based approaches mainly focus on providing a

secure channel among legitimate APs and clients, but fail to

defend rogue AP attacks.

B. Location-based Approaches

Location-based authentication schemes [16], [10], [9], [3],

[17], [18] are proposed to use the signal shape similarity

of either Received Signal Strength (RSS) or CSI to conduct

user authentication. The signal shape is naturally random and

location-dependent due to the complex multipath transmission

of wireless signals, and is hard to spoof unless the adversary

is within a distance of half-wavelength. Demirbas et al. [16]

use RSS to detect sybil attack in wireless sensor networks.

In [10] and [3], the proposed methods achieve accurate user

authentication based on the high CSI similarity of legitimate

users. However, these location-based fingerprints can only

work when AP and client are placed at a pair of fixed locations.

Although the APs could have been deployed in advance in

public places, it is difficult, if not impossible, to build the

fingerprint database for every possible client location. As

a result, the location-based authentication schemes are not

suitable for rogue AP detection in many application scenarios.

C. Hardware-based Fingerprinting Approaches

Hardware-based fingerprinting schemes [1], [19], [12] have

been proposed since the fundamental physical properties of

wireless devices cannot be manipulated easily and remain

fairly consistent over time but vary significantly across devices.

Kohno et al. [20] and Jana et al. [1] attempt to extract clock

skews from various system timestamps, which are tagged by

hardware, to detect rogue AP. However, clock screw is possible

to spoof by modifying the device driver of a rogue AP [3]. In

this work, the two proposed fingerprints are contributed to the

hardware imperfection of the working stacks in different APs,

and thus hard to spoof.

Recent works have tried to extract Radio Frequency (RF)-

based hardware fingerprints from wireless signals. Nguyen et

al. [21] extract radio-metrics such as amplitude, frequency

and phase to detect spoofing. Brik et al. [22] employ a

set of radiometric features, like frequency error, magnitude

error, sync correlation and I/Q offset, to conduct device

authentication. However, these works require specialized

wireless devices such as USRP2. There is also some work

using the CSI frames reported by COTS wireless devices to

extract RF fingerprints. Hua et al. [12] employ the Carrier

Frequency Offset (CFO) for device fingerprinting since CFO

is due to the carrier oscillator drift in the WiFi network

card. Liu et al. [13] propose a phase error fingerprint, which

is due to the I/Q imbalance and imperfect oscillator of the

NIC. However, both the extracted CFO and phase error are

client-related fingerprints, which can be affected by oscillator

frequencies of different client devices. Moreover, these phase-

based fingerprints can be further influenced by different

compensation errors of CFO correctors in these clients. When

authenticating the same AP with a new client, the fingerprint

database needs to be rebuilt. In this work, the two extracted

features are both independent to the clients, making our

method applicable for more rogue AP detection scenarios.

III. PA NON-LINEARITY FINGERPRINT

There are several requirements of an effective hardware

fingerprint for rogue AP detection.

(1) The fingerprint extraction should be lightweight without

introducing high computation overhead at AP and client sides.

(2) The fingerprint can be extracted with no hardware mod-

ifications using COTS devices. This requirement is essential
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Fig. 1: A block diagram of the 802.11n. The components in
blue circles are related to CSI estimation. The amplifiers
in red circles are designed for amplitude compensation.
since otherwise the proposed scheme is hard to apply in

current WiFi infrastructure.

(3) The fingerprint should be stable in different scenarios.

Whether collected at different times, locations, or clients, the

fingerprint should remain consistent with the same AP.

In this section, we first introduce the 802.11n framework

and the hardware components related to this fingerprint. We

then describe what the PA non-linearity fingerprint is and how

to extract it from CSI in detail.

A. The 802.11n Preliminaries

The block diagram of the 802.11n framework is shown in

Fig. 1. At the transmitter, the data bit stream is first modulated

and mapped onto a number of subcarriers. Next, pilot bits are

inserted into each subcarrier. These pilot bits will be used for

CSI estimation at the receiver side. Then after Inverse Fast

Fourier transform (IFFT) and adding Cyclic Prefix (CP), each

OFDM symbol is transmitted via multiple transmit antenna

chains. In each transmit antenna chain, the signal is converted

from digital to analog with a DAC, followed by an I/Q up-

converter to RF and a PA. These amplifiers, as well as those

at the receiver side, are designed to compensate the signal

amplitude attenuation and meet power requirements of the

devices. Note that the hardware imperfections of these PAs

are the source of the PA non-linearity fingerprint which we

will describe in the next sub-section in detail. Then the signal

travels across the channel that characterizes signal attenuation,

distortion and rotation and finally arrives at the receiver.

A Multiple Input Multiple Output (MIMO) receiver has

multiple receive antenna chains, and each antenna chain

includes an antenna, a Low-Noise Amplifier (LNA), an I/Q

down converter, an Automatic Gain Control (AGC), and an

ADC [23]. In this paper, we focus on the AGC and the LNA

which adjust the amplitude of the WiFi signals. The main

control module of AGC is also an amplifier, Variable-Gain

Amplifier (VGA), which is designed to maintain a desired

and stable signal power for the receiver. The signal will then

be synchronized in both time and frequency. At the same

time, a phase offset corrector will compensate the CFO. As

mentioned earlier, Hua et al. [12] use the fractional CFO as

a fingerprint. However, the fractional CFO is related to not

only the oscillator frequency but also the compensation error

of the CFO corrector. Therefore, the CFO-based fingerprint is

dependent to the client, limiting its application scenarios. After

CP removal and FFT, the CSI is estimated using the pilot bits

[24]. Finally, the transmitted data bit stream is received by the

receiver after demodulation.

B. Extracting PA Non-linearity Fingerprint
CSI and Measured CSI. CSI characterizes the Channel

Frequency Response (CFR) of the wireless channel at the gran-

ularity of subcarrier level. CFR H(f, t) = |H(f, t)|ejθ(f,t)
represents the time-varying wireless spatial channel on a

subcarrier index f at time t, where |H(f, t)| and ejθ(f,t)

represent the attenuation and the phase shift of the signal,

respectively. Let X(f, t) and Y (f, t) represent the transmitted

and received signal before and after the wireless transmission,

as shown in Fig. 1. H(f, t) can be expressed as:

Y (f, t) = H(f, t)×X(f, t). (1)

Here, H(f, t) is the actual CSI of the wireless channel.
However, as described in the previous sub-section, the

measured CSI is obtained at the receiver side using the

pilot bits in each packet. There is a clear difference between

the actual CSI and the measured CSI, i.e., the amplitude

adjustments by amplifiers. The measured CSI amplitude

|Ĥ(f, t)| are the sum of the gains of the amplifiers and the

propagation fading |H(f, t)|, which can be formulated as

follows in dB [25]:

|Ĥ(f, t)| = |H(f, t)|+GPA(t)+GLNA+GV GA(t)+n, (2)

where n is the noise term, GPA, GLNA, GV GA are the power

gain of PA, LNA and VGA, respectively. Since hardware

imperfections of the PA are the source of the PA non-linearity

fingerprint, our goal is to isolate GPA(t) from |Ĥ(f, t)|, i.e.,

removing the impact of GLNA, GV GA, and |H(f, t)|.
In Equation 2, GV GA is a known variable since it is reported

from WiFi NICs to upper layer, at a packet-level granularity.

Further, in order to average out the impact of noise n, we take

frequency-based weighted average [26] of the reported CSI at

30 subcarriers. Then Equation 2 becomes the following.

GPA(t) = |Ĥ(t)| − |H(t)| −GLNA −GV GA(t), (3)

where the over-line means weighted average at subcarriers.

The remaining items are GLNA and the actual channel

fading |H(t)|, i.e., the actual CSI amplitude. It is difficult,

if not impossible, to obtain these two values using the COTS

WiFi devices. Therefore, directly calculating GPA(t) as the

fingerprint is not feasible. In the following, we will first

describe more details about PA non-linearity, and then describe

how to calculate the PA non-linearity fingerprint.
PA Non-linearity. In a commodity WiFi NIC, the hardware

imperfections of a PA cause its non-linear behavior when

amplifying the input signal at saturation. This non-linearity

can be modeled via the Rapp PA model [27].

Aout =
Ain

(1 +A2δ
in)

1/2δ
, (4)

where Ain and Aout are the input and output signal ampli-

tudes, respectively. δ is the non-linear coefficient. This non-

linear coefficient δ captures the PA hardware imperfections
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and remains fairly consistent over time but varies significantly

across devices [27]. Although directly calculating GPA(t) as

the fingerprint is not feasible, we found that the vibration of

GPA(t) is closely related to the non-linear coefficient δ and

can be extracted as the PA non-linearity fingerprint.

Fig. 2 shows the PA distortion between the input amplitude

and output amplitude at the transmitter with different non-

linear coefficient δ’s. As seen, different non-linear distortions

are applied to the amplitude of the signal when the output

amplitude is at full saturation which is usually the case in

modern APs. The input power will adjust to make the output

amplitude reaches a specified value. However, due to hardware

imperfections, the input power will vibrate (e.g., between p1
and p2 in Fig. 2) to meet the desired output amplitude. As

shown in the figure, the same change of input amplitude can

cause very different output amplitude variations on different

APs. To the best of our knowledge, the vibration and the PA

non-linearity are both hard to be manipulated through software

with COTS APs. Therefore, the vibration of GPA is also a

good hardware fingerprint to characterize the PA non-linearity.

Extracting the PA Non-linearity Fingerprint. So far,

instead of directly using GPA(t) as the fingerprint, we use

its vibration, i.e., its standard deviation σ(GPA), as the

fingerprint. In order to calculate it, we take variance of both

two sides of Equation 3 as follows.

σ2(GPA) = σ2(|Ĥ|)− σ2(|H|)− σ2(GLNA)− σ2(GV GA).
(5)

Since GLNA is usually a constant and does not change

over time, σ2(GLNA) is zero. Therefore, given that GV GA

is a known variable and Ĥ is the measured CSI, the only

remaining item is σ2(|H|) which is the variance of the

actual CSI amplitude. Note that the actual CSI represents

the multipath wireless channel of the physical environment.

Existing technologies have proved that using WiFi signals is

sufficient to detect physical environment changes like moving

transceivers or adjacent human activities [28]. Therefore, we

extract the CSI measurements when there are no significant

changes of the adjacent physical environment for rogue

AP detection, where σ2(|H|) is also close to zero. The

required extraction time is fairly short (41ms shown in

Section VI-E) and can easily be satisfied in daily use. Detailed

fingerprint performance of different dynamic environments

will be evaluated in Section VI. In summary, the PA non-

linearity fingerprint proposed in this paper is given as:

σ2(GPA) = σ2(|Ĥ|)− σ2(GV GA). (6)

In modern wireless systems, MIMO is a typical con-

figuration in COTS APs. As shown in Fig. 1, there are

multiple antennas in the transmitter and each is connected

with a PA. MIMO can help further improve the robustness

of the PA non-linearity fingerprint. Specifically, we can get

CSI measurements of each TX/RX antenna pair1 and obtain

multiple PA non-linearity fingerprints. Supposing there are N
TX antennas and M RX antennas, we can obtain N×M
σ(GPA)’s in total. For each TX antenna, its M PA non-

linearity fingerprints (obtained at the M RX antennas) are

similar because they all correspond to a specific PA. Therefore,

for each TX antenna, we average the M fingerprints to

refine its fingerprint. Finally, N different PA non-linearity

fingerprints can be extracted for AP authentication.

C. Fingerprint Validation

To validate the effectiveness of this fingerprint, we conduct

experiments with five different APs (i.e. a NETGEAR JR6100,

a PHICOMM K2, a HUAWEI E5885Ls and two TP-LINK

WDR6300). We moved the client at 6 different locations

in both indoor and outdoor scenarios. The surrounding

environments (e.g., furniture, walls, etc.) are different among

these locations. Client and APs are placed 5m away and 1m

above the ground. We perform the same experiments 50 times

for each AP at each location. Fig. 3(a) plots the averaged PA

non-linearity fingerprints σ’s at different locations. To make

the figure clearer, we only show the fingerprints of the first

PA (embedded in the first antenna) for each AP. As seen, σ
of the same AP remains fairly consistent when client location

changes. However, σ varies across different APs even with the

same model and thus can be employed for AP authentication.

To further validate the time stability of the extracted

fingerprint, the experiments were also conducted at 5 different

times in one day. Fig. 3(b) plots the averaged σ’s of the five

APs at different times. The averaged σ’s are rather stable

across different times and their variations can be neglected

compared with the differences between APs.

To validate the extracted fingerprint is only related to AP,

we have conducted the same experiments with 4 more clients

(i.e. mini-PCs equipped with different Intel 5300 NICs). The

validation results are shown in Fig. 3(c). As can be seen,

the PA non-linearity fingerprints σ’s extracted from different

clients are approximate with the same AP. Take a closer look

at Fig. 3, the PA non-linearity fingerprint of an AP remains

stable over time, space and different clients.

IV. FID FINGERPRINT EXTRACTION

In this section, we extract another AP-related fingerprint

called Frame Interval Distribution (FID). Specifically, a client

sends ICMP packets to an AP with a fixed inter-packet interval

(e.g., 10ms), and records the timestamps of the response

1This is supported by commodity WiFi cards such as Intel 5300.
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Fig. 3: PA non-linearity fingerprints σ’s (with 95% confidence intervals) of three different APs. σ’s of the same AP are
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Fig. 4: Distributions and histograms of the time intervals Δt’s of different APs.
packets. Then FID is the distribution of the time interval of

every two consecutive response packets.

FID can be a hardware fingerprint for rogue AP detection

because it satisfies all the three requirements mentioned in

Section III, i.e., lightweight, stable, and supporting COTS

devices. Since obtaining FID only requires subtracting a

number of timestamps, it satisfies the lightweight requirement.

The timestamps of ICMP response packets can be obtained

from the CSI data of each packet. Each CSI frame contains

an MIMO control field, which reports its TSF timestamp

T [29]. To obtain the FID, we calculate the time interval

Δti = Ti+1 − Ti of each pair of consecutive packets, where

Ti is the TSF timestamp of the i-th packet. Therefore, the

third requirement is also satisfied. In the following, we focus

on the second requirement, i.e., the fingerprint should be

stable. Concretely, the fingerprint should only depend on AP

hardware, and be stable under changes of other aspects, e.g.,

different firmware, different clients, or different environments.

FID is AP dependent. We first show that FID is hardware

dependent and varies significantly across devices. Fig. 4(a-e)

plot the time interval distributions, as well as their standard

deviations, of five APs. As seen, although the distributions are

quite distinct, their standard deviations cannot capture these

differences. Therefore, in this paper, we use the histograms of

these distributions (shown in Fig. 4(f-j)) as the FID fingerprint.

Another advantage of using histograms as fingerprints is

that histogram values are independent of the absolute packet

rate. In current implementation, we set the time range of a

histogram as 1ms and the number of bins as 20. In order to

conduct AP authentication using this fingerprint, we need to

define the distance between two histograms. We adopt Earth

Mover’s Distance (EMD) [14], which is a cross-bin similarity

metric, to calculate the distance between two histograms. EMD

is analogous to the minimal effort to transform one histogram

into another one. For example, the EMD between Fig. 4(f)

and Fig. 4(g) is 0.783. Experimental results in Fig. 4 show

that FID is dependent on AP.

FID is stable under different clients, firmware and
environments. We use a NETGEAR JR6100 AP to validate

the stability of FID fingerprint under different firmware,

clients, and environments in Fig. 5. We first compare the

histograms extracted with different clients in Fig. 5(a) and

(b). The similar histograms (EMD is 0.094) indicate that

the FID fingerprint is independent of the client. Next, we

show the histogram extracted with the same AP using a

different firmware version in Fig. 5(c). As seen, different

firmware versions will also generate histograms with a similar

shape (EMD is 0.108). Therefore, the FID fingerprint is

independent of the firmware of wireless routers. We then

plot the histogram extracted in another environment in Fig.

5(d). Network conditions (including traffic, interference, etc.)

are different in Fig. 5(a) and (d). Fig. 5(a) is in a meeting

room with little wireless traffic and Fig. 5(d) is in a lab with

heavy traffic during daily life. We have found that network

conditions will introduce noisy points at a higher granularity

(i.e. tens of milliseconds shown in Fig. 6) due to wireless

back-off mechanisms. While FID is a sub-millisecond feature

(shown in Fig. 4), it is easy to filter out these noisy points

and extract the actual FID fingerprint. Other environmental

factors, such as temperature, humidity and light intensity, have

also been considered in the experiments since they may impact

the hardware (e.g., oscillator) [20] and further the FID. The

comparison result indicates that the FID fingerprint will not be

greatly influenced (EMD is 0.090) in different environments.

As a result, the FID fingerprint is attributed to the interior

hardware imperfection of the working stack for responding
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ICMP packets.

V. DEVICE AUTHENTICATION

In this section, we introduce how a client estimates the

similarity of the two fingerprints for AP authentication when

connecting to a candidate AP.

Suppose that there are K pre-stored fingerprint profiles

(should be extracted in various scenarios) for each authorized

AP in the fingerprint database. Each profile includes a PA

non-linearity fingerprint and an FID fingerprint. For rogue AP

detection, we only need to compare the fingerprint profile

extracted from the candidate AP with the K fingerprint

profiles of the corresponding authorized AP. Real-world

implementation in Section III and Section IV has empirically

shown that for a specific AP, the two fingerprints are closely

distributed around their means expect for some random error

even when they are extracted in different scenarios. To deal

with the slight randomness of the features and enhance the

robustness of rogue AP detection, we develop a two-step AP

authentication algorithm.

Before introducing the concrete algorithm, we introduce the

following notations:

• Paut = {P1,1, ..., P1,N , P2,1, ..., P2,N , ..., PK,1, ..., PK,N}
is the K pre-stored PA non-linearity fingerprints, where

N is AP’s antenna number. Each element Pk,n denotes

the k-th PA non-linearity fingerprint at the n-th antenna

in an MIMO system.

• Faut = {F1,1, ..., F1,B , F2,1, ..., F2,B , ..., FK,1, ..., FK,B}
is the K pre-stored FID fingerprints, where B is the

number of bins in the histogram. Fk,b denotes the

histogram value at the b-th bin in the k-th FID

fingerprint. For simplicity, we use Fk to denote the k-th

FID fingerprint (i.e., the k-th histogram).

• σmean denotes the mean value of the pre-stored PA non-

linearity fingerprints. σmean,n denotes the mean value at

the n-th antenna.

• FIDmean denotes the mean histogram of the pre-stored

FID fingerprints. FIDmean,b denotes the mean histogram

value at the b-th bin.

• TPA and TFID denote the threshold set for PA non-

linearity and FID fingerprints, respectively. TPA,n de-

notes the threshold at the n-th antenna.

• DPA denotes the absolute distance between the extracted

and pre-stored PA non-linearity fingerprints. DPA,n

denotes the absolute distance at the n-th antenna.

Algorithm 1 Device Authentication Algorithm

Input: Fingerprint profiles of the authorized AP: Paut and Faut,
Candidate fingerprints: Pcan and Fcan

Output: Rogue AP flag: True or False
1: for each antenna n ∈ [1, N ] do
2: σmean,n =

∑K
i=1 Pi,n/K

3: TPA,n = maxk∈[1,K](|Pk,n − σmean,n|)
4: DPA,n = |PAn − σmean,n|
5: if DPA,n > TPA,n then
6: return False
7: for each bin b ∈ [1, B] do
8: FIDmean,b =

∑K
i=1 Fi,b/K

9: Let FIDmean denote the constructed mean histogram;
10: TFID = maxk∈[1,K](EMD(Fk, F IDmean)), where EMD()

is the EMD calculation formula.
11: DFID = EMD(Fcan, F IDmean)
12: if DFID > TFID then
13: return False
14: return True

• DFID denotes the EMD between the extracted and pre-

stored FID fingerprints.

• Pcan = {PA1, ..., PAN} denotes the PA non-linearity

fingerprints extracted from the candidate AP at its N
antennas.

• Fcan = {FID1, ..., F IDB} denotes the extracted FID

fingerprint (i.e., a histogram with B bins).

Algorithm 1 shows the pseudocode of our algorithm. The

first step is PA non-linearity fingerprint matching. We first

compute the mean value σmean of K fingerprints in the

database. In order to cope with the increasing fingerprint

database in the future and eliminate the effect of random

error, we adaptively set the threshold TPA to the greatest

value difference between σmean and the K PA non-linearity

fingerprints. Next, we calculate the absolute distance DPA

between the extracted PA non-linearity fingerprint of the

candidate AP and σmean. We determine whether the candidate

AP is legitimate by comparing DPA to the threshold TPA.

When DPA ≤ TPA, the candidate AP can be considered as

an authorized device. As a COTS AP usually supports MIMO,

it can contain N PA non-linearity fingerprints. Each fingerprint

corresponds to a PA embedded in an TX antenna. Only when

all N PA non-linearity fingerprints match, the candidate AP

can be considered as an authorized device.
The second step is FID fingerprint matching. Similarly, we

first compute the mean value of each bin of K histograms

in the database and construct a new mean histogram. We

also adaptively set the threshold TFID to the greatest EMD

between the mean histogram and the K histograms. Next, we

calculate the EMD DFID between the extracted histogram of

the candidate AP and the mean histogram. When DFID ≤
TFID, the candidate AP can be considered as an authorized

device.
As a rogue AP detection scheme, the positive detection

rate is desired to be as high as possible since misidentify a

rogue AP as an authorized one can lead to serious problems.

To increase the positive detection rate, the candidate AP is

considered legitimate (i.e., not a rogue AP) only when both
fingerprints match the fingerprint profiles of the authorized AP.
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TABLE I: Detailed information of the experimental APs.
AP No. Brand & model Firmware Ver.
AP1 NETGEAR JR6100 V1.0.1.14
AP2 PHICOMM K2 V22.5.11.14
AP3 HUAWEI E5885Ls V21.187.61.00.233
AP4 XIAOMI R3 V2.26.11

AP5-AP6 TP-LINK WDR6300 V9.0
AP7-AP12 H3C MSR20-20 Unknown but identical

VI. EVALUATION

In this section, we first introduce the experimental settings

and then evaluate our scheme in both lab and field scenarios

under different conditions. We compare our method with a

state-of-the-art approach in [12]. Finally, we evaluate the

system overhead on both client and AP sides.

A. Experimental Setup

1) Implementation: The two fingerprints can be extracted

with COTS wireless devices such as laptops and desktops

equipped with wireless NICs. In our experiments, we employ

the HummingBoard (HMB) Pro mini-PC [30] (1.2GHz ARM

Cortex-A9 processor and 1GB RAM) equipped with an Intel

5300 NIC [31] to collect fingerprints of testing devices. We use

HMB for wireless signal collection because it is lightweight

and easy to be deployed in different environments. Our system

can be hosted on any Wi-Fi channel in the 2.4GHz and 5GHz

bands since the two fingerprints are independent of the carrier

frequency. We conduct our experiments in a commonly used

2.4GHz band with a 20MHz bandwidth. HMB works as the

client and sends ICMP packets to an AP at a frequency of

100Hz. The HMB client collects fingerprints for 20 seconds

in each experiment, in which there are in total 2,000 CSI

frames. From each experiment, we can extract a fingerprint

profile which consists of a PA non-linearity fingerprint and an

FID fingerprint.

2) Methodology: Table I shows the detail information of

APs used in our experiments. AP1 to AP6 are laboratory

routers and their firmware version are fixed. Note that AP5 and

AP6 share the same brand, model, and firmware version. We

manually deploy the first six APs in three different scenarios

including a laboratory (3m × 9m), a lobby (6m × 9m), and a

meeting room (5m × 8m). AP7 to AP12 are pre-deployed in

a five-floor teaching building (50m × 45m), which are part of

the wireless network service of the campus and also share the

same brand, model, and firmware version. We use the MAC

address to distinguish these pre-deployed APs. AP5 to AP12

are used to evaluate the performance of our rogue AP detection

scheme when the attacker set up a rogue AP with the same

model as the authorized AP. During the evaluation, AP1 to

AP6 are only connected with one client at a time while AP7

to AP12 are likely to be connected with other existing wireless

devices.

In each scenario, we collected the CSI frames at five

different times, i.e., 9 AM, 12 AM, 3 PM, 6 PM and 9 PM,

during normal day hours when people may walk around. To

validate that the extracted fingerprints are independent with

the client, we conducted the same experiments with five HMB

clients equipped with different Intel 5300 NICs. We repeated
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Fig. 7: Overall profile matching rate matrix of our rogue
AP detection scheme.
10 times in each case to mitigate random errors. As such,

each scenario contains 1,500 (=6 APs×5 times×5 clients×10

repeated experiments) fingerprint profiles. In total, we have

collected 6,000 fingerprint profiles in the four scenarios, where

each sample includes 2,000 CSI frames.

In our evaluation, we mainly focus on the rogue AP

detection accuracy including the Positive Detection Rate

(PDR, successfully detect a rogue AP) and the False Alarm

Rate (FAR, misidentify an authorized AP as a rogue AP) as

performance metrics for evaluation.

B. Overall Performance

To evaluate the performance of our rogue AP detection

scheme, we randomly select 30% profiles of each AP as the

whitelist (with a size of 1,800 profiles) and the other profiles

as the validation set (with a size of 4,200 profiles). Each

fingerprint profile in the validation set will be compared with

the profiles of all 12 APs in the whitelist. We have conducted

profile matching on 4, 200 × 12 pairs of profiles. A match

indicates that the compared two fingerprint profiles pass our

device authentication process and considered belonging to the

same AP.

Fig. 7 shows the overall profile matching rate matrix for

rogue AP detection. Each element of the i-th row and j-

th column in the matrix indicates the average matching rate

between the APi’s profiles in the validation set and the APj’s

profiles in the whitelist. It is better when the matching rates

on the diagonal are close to one and the others are close

to zero. Results show the following. (1) When comparing

the fingerprint profiles of the same AP, which simulate the

legitimate communication, the matching rates of the 12 APs

are close to 1. (2) When comparing between different APs,

which simulate the rogue AP attack, the matching rates are

all close to 0. Looking at the 3rd row and the 3rd column,

the matching results related to AP3 (i.e. HUAWEI E5885Ls,

a portable router without antenna) are relatively worse. It is

more likely to mismatch the profiles of AP3 with other APs.

This is because the CSI is relatively more changeable and thus

the two fingerprints of AP3 are more unstable. As AP5 and

AP6 are two identical APs, the matching results between AP5
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and AP6 indicate that our scheme can work well even with

the same brand, model, and firmware version.

Fig. 8 shows the authentication performance with individual

fingerprints and their combination. Results show that our

scheme achieves an overall PDR of 96.55% and an average

FAR of 4.31%. We see that with the PA non-linearity

fingerprint alone and the FID fingerprint alone, our scheme

can exceed 93% and 90%, respectively. Results show that

the probability for two APs to share the same PA and FID

fingerprints is very small even with the same model. Hence,

the attacker has to buy numerous APs and analyze their

fingerprints to deploy a rogue AP, which is time-consuming
and costly. Combining the two fingerprints, our scheme is

able to achieve an accurate rogue AP detection rate at the

cost of a slightly higher FAR. The raised false alarms are due

to the unexpected CSI variance, which is below the moving

threshold but will still affect the two fingerprints. Due to our

two-step device authentication scheme, interference of either

fingerprint can lead to a false rogue AP detection alarm. We

leave integrating a more robust static environment detection

technology as future work.

C. Impact of Clients

To evaluate whether our scheme works well for different

clients, i.e., client-agnostic, we evaluate the PDR and FAR

using different number (i.e., 1 to 5) of clients. In this part,

we also compare our rogue AP detection scheme with a state-

of-the-art approach [12], which employs CFO as its device

fingerprint. The CFO-based approach extracts a fractional CFO

fingerprint with a slope estimation process, and conducts a

threshold-based fingerprint matching for rogue AP detection.

To conduct the comparison experiments, we employ 30%

profiles of the first client as the common whitelist. We first

employ the remaining 70% profiles of the first client as the

validation set for performance comparison when only using
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Fig. 11: Spectrums of different wireless environments when
collecting the CSI frames. X-axis is the four experimental
scenarios and Y-axis is the two experimental times.
one client. Then we add the profiles of another client into the

validation set in each iteration.
Fig. 9 shows the comparison results between our scheme

and the CFO-based approach with different number of clients.

We can observe the following. (1) Compared to CFO-based

approach, our scheme improves the PDR by 5.5% and reduces

the FAR significantly by 91.9% on average. With only the

first client, our scheme still performs better than CFO-based

approach due to the effectiveness of our two fingerprints. (2)

For our scheme, PDR and FAR are well kept at a good level

with different number of clients since our fingerprints remain

consistent across clients. (3) For CFO-based approach, FAR

increases significantly when using more clients to authenticate

the AP. FARs reach up to around 1/2, 2/3, 3/4, 4/5 with 2, 3, 4,

5 clients, respectively. This is because CFOs of the authorized

AP can still vary across different clients. Fig. 10 shows that

a commercial AP can have significantly different CFOs (A

positive CFO means the estimated slope is less than 90◦ while

a negative CFO means the slope is greater than 90◦) with

different clients. These differences in CFO values lead to a

high FAR when conducting AP authentication. Moreover, the

extracted CFOs of rogue APs will also change with clients and

could coincidentally match the profiles of the authorized AP,

leading to a relatively lower PDR. As a result, our scheme

achieves a high rogue AP detection accuracy and low false

alarm rate with various clients while the CFO-based approach

can only achieve a good performance with a specific client.

D. Impact of Environments
Different Wireless Environments. Wireless environments

can influence both the two extracted fingerprints. We employ

a USRP N210 to conduct spectrum sensing during normal day

hours (at 9 AM and 9 PM) in the four experiment locations.

The spectrums are reported in the 2.4GHz frequency band.

Fig. 11 shows the frequency spectrums when collecting the

CSI frames at different times and locations. As can be seen,

the wireless environment patterns are pretty different across

different scenarios. For example, there is reasonable wireless

energy in the laboratory most of the time. The wireless

energy in lobby and meeting room are relatively lower and

stable. For the teaching building, the wireless energy is high

in the daytime and is relatively low in the night. Besides

the wireless condition, other environmental factors, such as

furniture location and crowd movement, have also changed in

these scenarios.
We show the rogue AP detection performance in the above

scenarios in Table II. Results show that the rogue AP detection
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TABLE II: Rogue AP detection performance in different
locations and times.

Scenario Time1 (9 am) Time2 (9 pm)
PDR FAR PDR FAR

Laboratory 96.28% 4.34% 96.20% 4.50%
Lobby 97.05% 3.19% 97.17% 3.03%

Meeting room 97.03% 3.23% 96.91% 3.65%
Teaching building 95.31% 5.31% 95.99% 5.23%

0 1 3 5
(a)

80

85

90

95

100

PD
R

 (%
)

PA non-linearity
FID

0 1 3 5
(b)

0

5

10

15

20

FA
R

(%
)

Number of People

PA non-linearity
FID

Fig. 12: Fingerprint performance in different dynamic
environments.
rates in all scenarios exceed 95.3% and the FARs are below

5.4%. The performance in lobby is relatively better because

the lobby is relatively less complicated than the other three

scenarios and its corresponding fingerprints are more stable.

The teaching building achieves the worst performance due to

its highest wireless noise. In addition, there are more people

walking around in the building during normal day hours, which

could impact the accuracy of the fingerprints. However, the

performance in the teaching building is still acceptable.
Different Dynamic Environments. To further evaluate the

impact of dynamic environments on the two fingerprints, we

asked different number (i.e., 1, 3, 5) of volunteers to walk

around the test AP in a lab to simulate different dynamic

environments. Fig. 12(a) and (b) show the PDR and FAR

of each fingerprint in these environments. Zero means the

lab is empty and in a static environment. Results show

that the PA non-linearity fingerprint has a relatively higher

PDR and lower FAR than the FID fingerprint when only a

few people walk around. However, even with the dynamic

environment detection approach and the adaptive fingerprint

thresholds, the performance of the PA non-linearity fingerprint

will decrease in a more dynamic environment. On the contrary,

the performance of the FID fingerprint is relatively stable

across different dynamic environments. As a result, to enhance

the robustness of authentication, we could manually increase

the threshold of the PA non-linearity fingerprint TPA when the

AP needs to be placed in more dynamic environments such as

airports and coffee shops.

E. System Overhead
Client Overhead. Each fingerprint profile consists of 21-

23 floats (including 1-3 σ’s and 20 bin values) and we pre-

store 10 fingerprint profiles for each authorized AP. For an

authorized AP, the memory cost is 0.82-0.90KB. Therefore, the

total memory cost of the frequency-used APs for an individual

user is usually acceptable. For example, since there are around

3,000 APs in the campus WLAN, the local fingerprint database

for a user takes less than 2.7MB. For large-scale rogue AP

detection, a global fingerprint database can be established on

a cloud server via crowdsourcing. One can upload/download

his/her local fingerprint database based on his/her location.

To evaluate the time cost of our system, we first randomly
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wired user and the others are wireless users. We collect
the CSI frames from 20 to 40 seconds.
generate 1,000 fingerprint profiles and store the profiles in

a client device. Then we conduct the proposed rogue AP

detection scheme, including fingerprint extraction and device

authentication. The overall processing time only takes 41

milliseconds on a laptop with an Intel Core i7-6500U CPU. As

a result, even if the mobile devices are moving, our system

requires users to hold the devices only for a short time to

complete the authentication and will not significantly affect

user experience.

AP Overhead. Since each ICMP packet is 64 bytes, the

overhead of CSI collection process (at a sampling rate of

100Hz) is around 50Kbps, which is negligible for an 802.11n

system. To evaluate the overhead at the AP side, we collect CSI

frames for 20 seconds using a lab AP which is also connected

by a wired user and three wireless users. All the four devices

were placed as normal use and transmitting a 10Gb file. We

measure the throughput of the four co-existing users for one

minute. The CSI collection starts at 20th second and stops at

40th second. Results in Fig. 13 show that the throughput is

relatively stable during CSI collection, which indicates that

CSI collection will not introduce a noticeable impact on the

throughput of these clients.

VII. CONCLUSION

In this paper, we propose two novel hardware fingerprints

of AP: PA non-linearity fingerprint and FID fingerprint. We

have first investigated the sources of these fingerprints in

detail. Next, we carefully extract the fingerprints from the

CSI frames, which are reported via the NIC drivers of COTS

wireless devices. We have conducted validation experiments

to show the consistency of these fingerprints over time, space,

and different clients. We then utilize the similarity of the

two fingerprints between the candidate AP and the authorized

AP for AP authentication. We have conducted experiments in

lab and field scenarios. Experimental results show that our

scheme achieves an accurate rogue AP detection rate without

introducing much overhead. Besides, our scheme is more

robust since it can work well with different clients without

rebuilding the fingerprint database.
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