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Abstract—Opportunistic crowdsensing empowers citizens car-
rying hand-held devices to sense physical phenomena of common
interest at a large and fine-grained scale without requiring the
citizens’ active involvement. However, the resulting uncontrolled
collection and upload of the massive amount of contributed
raw data incur significant resource consumption, from the end
device to the server, as well as challenge the quality of the
collected observations. This paper tackles both challenges raised
by opportunistic crowdsensing, that is, enabling the resource-
efficient gathering of relevant observations. To achieve so, we
introduce the BeTogether middleware fostering context-aware,
collaborative crowdsensing at the edge so that co-located crowd-
sensors operating in the same context, group together to share
the workload in a cost- and quality-effective way. We evaluate
the proposed solution using an implementation-driven evaluation
that leverages a dataset embedding nearly one million entries
contributed by 550 crowdsensors over a year. Results show that
BeTogether increases the quality of the collected data while
reducing the overall resource cost compared to the cloud-centric
approach.

Index Terms—Crowdsensing, Mobile Sensing, Context Aware-
ness, Environment Monitoring, Neighbor Discovery

I. INTRODUCTION

Mobile crowdsensing, also known as Mobile Phone Sensing
(MPS) or crowdsensing for short, holds the promise of moni-
toring physical phenomena at an unprecedented scale. Indeed,
people may now gather various observations about the physical
world using the sensors connected to their smartphones, along
their journeys. This creates the potential to provide fine-
grained observations that cover large areas over 24/7 time
periods, provided the engagement of a sufficiently large and
diverse crowd [1], [2]. Still, the expected engagement of
the crowd to sensing tasks differs depending on how the
smartphones’ owners contribute observations [3], [4], which
may be either: (i) pro-actively, aka participatory crowdsensing
[5], [6]; or (ii) passively in the background, aka opportunistic
crowdsensing [7], [8]. The pros and cons of each approach are
rather straightforward to infer.

Participatory crowdsensing has the potential to bring ob-
servations of higher quality since the end-user is conscious of
carrying out a sensing task. Furthermore, supporting incentive
mechanisms allow assigning the tasks to the most effective
crowd [9], and complementary path planning schemes allow
maximizing the number of tasks that each participant may
achieve [10]. However, the participatory approach challenges
the acquisition of fine grained knowledge across large areas

and over time, due to the practical problem of ”hiring” moti-
vated volunteers. In particular, the massive collection of data
often necessitates the participants’ long term commitments,
which is very hard to achieve in practice.

On the other hand, opportunistic crowdsensing makes it
easy to collect a massive amount of observations across time
and space. Indeed, there is no burden put on the end-users
who simply need to have the mobile application installed on
their smartphones. However, the challenge in this case is to
ensure that the crowdsensors will contribute with sufficiently
accurate knowledge. Since the participating users collect
observations passively and without having to be conscious
about it, the accuracy of the provided data with respect to
the physical phenomenon under observation is uncertain. For
instance, our analysis of the noise observations collected from
the opportunistic crowdsensing application Ambiciti (formerly
SoundCity) showed that less than 5% of the collected data
were of sufficient quality to be considered for use in the map-
ping of urban noise pollution [11], [12]. Hence, opportunistic
crowdsensing shifts the burden of quality sensing from the
end-user to the crowdsensing system. In addition, fostering
the engagement of large crowds –even if the engagement is
passive and thus not demanding– requires the crowdsensing
system to not deplete the smartphone resources. Supporting
opportunistic crowdsensing at scale while meeting these re-
quirements is the focus of this paper, which introduces the
BeTogether middleware for collaborative crowdsensing at the
edge (Figure 1).

Fig. 1. From cloud-centric to collaborative crowdsensing at the edge

The design rationale of BeTogether directly derives from the
location- and time-dependence of the crowdsensing of physical
phenomena: co-located crowdsensors contribute related obser-
vations [13], and may thus collaborate toward improving the
provided contributions and avoiding unnecessary duplication
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of work. More precisely, the crowdsensing tasks that need to
be performed at the edge encompass: environment sensing,
location provisioning, data processing, and uploading to the
cloud. Then, while the replication of physical sensing within
a group potentially allows for the gathering of more accurate
knowledge, any of the other tasks only need to be performed
by the most cost-effective group member(s). The fact that
people tend to group [14], [15] as part of their daily activity,
follow a daily/weekly routine [16], [17], and are most of the
time still [11] further supports such a edge-based collaborative
strategy to opportunistic crowdsensing. Still, a major challenge
for the BeTogether middleware is to cope with the dynamics
and heterogeneity of the crowdsensors [11]: the user activity,
the resources available on the device, and the position of
the sensors/smartphones are all criteria that characterize the
crowdsensor’s contribution to the upper layer application. We
qualify as ”context” the combination of these criteria. The
BeTogether middleware then creates dynamic context-aware
collaborative groups of crowdsensors, which are such that the
peers within any given group: (i) Stay together for a long-
enough time period so as to prevent constant changes and
unnecessary grouping reconfiguration; (ii) Operate within the
same physical environment (e.g., in-door vs out-door) and
hence sense related physical phenomena; and (iii) Perform the
same activity so that they behave alike –e.g., it is preferable
that all the crowdsensors that collaborate either move together
or are still. Then, upon the creation of a group, the middleware
distributes the crowdsensing tasks to the most adequate group
members according to the nodes’ abilities –e.g., a smartphone
located in the pocket cannot adequately sense the surrounding
sound level. Overall, the BeTogether middleware fosters oppor-
tunistic crowdsensing that puts minimum burden on the end-
users, while increasing the accuracy and resource-efficiency of
the crowdsensing system.

After positioning the BeTogether solution with respect to the
related work in the next section, the paper details the following
contributions to the field of crowdsensing middleware:

• Introducing opportunistic, context-aware crowdsensing
groups, so that groups deliver more accurate knowledge
and enhance –both local and global– resource-efficiency
compared to the gathering of the individual contributions
at the cloud (§ III). Such grouping relies upon: (i)
Node-specific context inference using online machine
learning that accounts for the specifics of the device
and user behavior; (ii) A set of utility functions that
drive the distribution of the crowdsensing tasks among
the group members so that any crowdsensing group does
meet the objectives of improved quality of information
and resource-efficiency; and (iii) An algorithm for the
context-aware discovery of co-located crowdsensors and
further task assignment.

• A prototype implementation of the BeTogether middle-
ware for the Android platform, which paves the way for
experimental evaluation but also the implementation of
crowdsensing applications by third parties (§ IV).

• Evaluation of the BeTogether solution, which leverages
a one-year data set of nearly one million entries from
the Ambiciti crowdsensing application for noise pollution
monitoring (http://ambiciti.io). Results show that collab-
orative crowdsensing at the edge would improve data
quality, while its behavior adapts according to the context
of the crowdsensors for the sake of resource-efficiency
(§ V).

II. BACKGROUND

The study of middleware supporting crowdsensing applica-
tions has been on the research agenda since the widespread
adoption of smartphones that keep embedding an increasing
number of sensors of increasing accuracy. Still, guaranteeing
a sufficient level of quality for the contributed observations
at a cost that both the producers and consumers of the data
deem adequate is a lasting research challenge. The challenge
is likely to last and the question is rather about a proper
trade-off from the perspective of the involved stakeholders.
Without being exhaustive, we review below the representative
background for our work regarding quality- and/or resource-
effective crowdsensing.

Participatory sensing: A large majority of the research on
crowdsensing focuses on participatory systems and attempts
to minimize the number of mobile devices that need to be
recruited (to sense). The sensing coverage usually constitutes
the main constraint used to formulate the related optimization
problem. The goal henceforth consists in finding (the minimal)
number of participants to cover a geographical area of interest
and dispatch the participants accordingly. Several coverage-
based recruitment strategies have been proposed, among which
enhancing the data quality by introducing an incentive mech-
anism for crowdsensors to provide highly accurate and re-
liable data [9]. Further, multi-objective optimization serves
maximizing (the weighted sum of): the average coverage, the
usefulness of the data (with regards to redundancy), and the
average number of active sensors, subject to the data quota
constraint [18]. Still, participatory crowdsensing relies on the
active engagement of users, which limits the achievable scale
as well as may incur significant labor cost.

Opportunistic crowdsensing: Opportunistic crowdsensing
comes with the promise of gathering observations at a massive
scale at a potentially low cost by not requiring the active user
participation beyond uploading the supporting app. Most solu-
tions in that space are cloud- or fog-centric: data flows directly
from each individual crowdsensor to a remote server/service
that optimizes the data collection [19], [20] and analyzes
the data [21]. Some approaches address resource-efficiency
by taking into account the entire path that a mobile user
is about to follow (e.g., leveraging data from the navigation
app) [22], [19] so that a probabilistic mobility model allows
estimating the redundancy of the provided observations. The
crowdsensing platform may then select the minimal number
of mobile crowdsensors that is necessary to cover a target
area with a great probability, thereby minimizing the overall
resource and energy consumption related to the sensing.
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Another approach to resource-efficiency consists in discov-
ering the nearby crowdsensors within the given Wi-Fi network
so that a single node is tasked with sending local observations
to the cloud after collecting them from its neighbors. In
practice, the crowdsensor with the highest remaining level
of energy, is periodically selected [23]. Unfortunately, such
a solution requires every crowdsensor to be connected to a
Wi-Fi network, which limits the applicability of the mobile
crowdsensing. An alternative is then to leverage transient and
D2D communication to discover the nearby devices. A proxy
that will upload the data collected may then be selected within
the D2D network [24]. In addition to the physical proximity
(based on the communication range), other parameters (i.e., the
number of neighbors, the remaining battery, the link quality,
the stability of the link) have also been used in [25], [26] to
determine which crowdsensor should operate as a proxy.

The aforementioned works mostly concentrate on selecting
a crowdsensor to act as the network sink with the cloud, while
solutions differ with respect to their selection criteria. In our
work, we go one step further by considering the context-aware
distribution of the various crowdsensing tasks among a set of
co-located nodes so as to enhance the resource-efficiency and
the data quality, both locally and globally. Indeed, by grouping
together co-located crowdsensors that behave alike and ob-
serve compatible physical phenomena, they may collaborate
at the edge so that there is no unnecessary duplication of
tasks and more accurate data is sent over to the cloud. Still,
the challenge is to guarantee that the group management is
achieved in a way that does enhance resource efficiency, from
the devices to the cloud, and the quality of the data gathered at
the cloud, despite the heterogeneity of the crowdsensors and
their inherent mobility. This is addressing such a requirement
that led to the development of the BeTogether solution detailed
in the next sections.

Opportunistic networking: The opportunistic networking
of crowdsensors within a group requires special care. The
opportunistic grouping of nodes has in particular been exten-
sively studied in the early 2000s as part of the emergence of
MANET (e.g., see [27]). However, the work was primarily
focused on establishing a network on the fly, while latest
networking technologies now directly support it. Indeed, D2D
(Device-to-Device) communication, which is growing in pop-
ularity, offers a convenient base ground to opportunistically
form a transient network, discover the nearby devices along
with the services they can offer, and exchange data through
the established D2D connections [28]. More recently, the
variety of low-level D2D technologies (including Bluetooth
Low Power, Wi-Fi Direct and the very recent Wi-Fi Aware)
have been integrated and used jointly to support multi-
technology networking [29], [30]. Building on this trend, we
leverage innovation in D2D networking for the creation of
the opportunistic crowdsensing groups. The BeTogether design
specifically builds upon Wi-Fi Direct [31], [32], although alter-
native D2D communication technologies could be considered.
Then, we customize the creation of opportunistic networks
according to the specifics of opportunistic crowdsensing, that

is, the networks are created according to the context, spanning:
user behavior, physical environment, device attributes and the
expected lifespan of the given context.

III. CONTEXT-AWARE COLLABORATION AT THE EDGE

Our strategy to collaborative crowdsensing revolves around
the opportunistic creation of groups of co-located crowdsen-
sors, such that any given group fills the mandatory crowdsens-
ing tasks: Location, Internet connection, Sensors for the target
observations, and Data processing (over observations). The
objective is further to ensure that the collaboration results in
reducing the resource consumption due to crowdsensing, both
locally and globally, compared to the cloud-centric solution.
In particular, we leverage the relatively cheap cost –especially
in terms of energy– of D2D communication compared to
the costs associated with location management and cellular
Internet connection to the cloud.

A. Context awareness

The context of a crowdsensor serves assessing the relevance
of its peering with nodes in the D2D communication range for
the sake of enhanced efficiency, that is, the ability to improve
the gathered knowledge prior to transferring it to the cloud in
a way that reduces resource-consumption.

1) Context metadata: The context characterizes the crowd-
sensor’s collaboration profile, which subdivides into:
• UA (User Activity) refers to the mobility (or non-mobi-

lity) of the end-user, which the activity recognition mod-
ule of the operating system implements. The module
leverages machine learning [33] and relies on the sensors
embedded in the smart device so as to determine if the
user is still, walking, cycling or in a vehicle, etc..

• PE (Physical Environment) defines the position of the
embedded sensors, which influences the given observa-
tions of physical phenomena. It detects if the crowdsensor
is: in/out-pocket, in/out-door and under/above-ground.
We leverage our previous work using online machine
learning for such a user-centric inference, which learns
the user behavior incrementally on the device [34], [35].

• DA (Device Attributes) characterizes the ability of the
device to contribute to the various crowdsensing tasks.
The attributes include the available networking and com-
puting capabilities (i.e., type of Internet access –e.g.,
Wi-Fi–, (upload) bandwidth, remaining battery, CPU fre-
quency, and memory size), the type of embedded sensors
(e.g., {”Temperature”, ”Light”, ”Pressure”, ”Humidity”,
”Sound level”}) together with the related power con-
sumption and accuracy.

2) Context duration: The effectiveness of the collaboration
strategy depends not solely on the ability of grouping together
crowdsensors that have compatible context [36], [37], but
also on creating groups that last long enough. Indeed, the
latter is critical to ensure that the benefit of the collaborative
crowdsensing at the edge outperforms the overhead due to the
group management/configuration.

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

254



We leverage online machine learning [34] in a way similar
to the inference of PE, to predict how long the current UA
and PE are going to last. That is, the predictor is continuously
updated on the end device so that it keeps evolving according
to the specifics of the user. Each time the user changes UA,
the following new data instance is provided as input to the
learning model: {tprev UA, UAprev, tcur UA − tprev UA},
where: tprev UA is the starting time of the previous UA,
UAprev is the previous value for UA, and tcur UA is the
time at which the current UA started. The current time is
defined as the tuple {day of week, hour of day, minute of
hour} because people tend to have repeated behavior at the
week level. The same applies to the update of PE duration,
with PE substituting to UA in the above instance definition.

Thanks to the online learning model, we predict the duration
of the current UA (resp. PE) according to the current time
and UA (resp. PE). The prediction of the UA/PE duration
is a regression problem, rather than a classification. Many
online learning algorithms may address the prediction model
but fewer deal with regression. We have investigated three
eligible algorithms: IBk (Instance Based k-nearest neighbor
algorithm), KStar (an instance-based learner), and LWL (Lo-
cally Weighted Learning) [38]. We selected LWL as training
algorithm because it provides the lowest RMSE and latency.

TABLE I
NEIGHBOR MATCHING RULES

Contexts Matching Rules (i, j)
PE (except pocket) Consistent for crowdsensors i and j
PE duration Greater than Dmin for both i and j
UA Consistent for crowdsensors i and j
UA duration Greater than Dmin for both i and j
RSSI value Greater than RSSImin for both i and j
Bearing (of moving) Consistent for crowdsensors i and j

3) Neighbors with matching context: In practice, the Re-
ceived Signal Strength Indicator (RSSI) is used to estimate
the distance between two crowdsensors (i.e., transmitter and
receiver) [39], [13] and determine whether the two crowdsen-
sors are close enough, i.e., RSSI > RSSImin, with respect
to the problem at hand [40]. We too consider the RSSI-based
distance for assessing the relevance of grouping crowdsensors,
which we enrich with the closeness of their respective context
that should last for long enough (as predicted using machine
learning). Bearing is also a parameter obtained from the
operating system. Table I lists the resulting rules that determine
the grouping of crowdsensors where the minimum duration is
set according to the specific application. Given the set of the
crowdsensors in the D2D communication range of smartphone
i, we define the neighbors Ni of i as the nearby crowdsensors
that matches all the rules. The grouping and the assignment
of crowdsensing tasks to a set of neighbors then depend on
their respective utilities to carry out the tasks.

B. Assessing the crowdsensor utilities

f(x, k, x0) =
1

1 + ek(x0−x)
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Fig. 2. Squashing function for normalization

We introduce a set of utility functions to evaluate the extent
to which crowdsensors are eligible to carry out the various
crowdsensing tasks. We rely on a classical squashing function
for the normalization of the values used in the computation
and comparison of the utilities. The squashing function f
corresponds to a shifted and scaled logistic function (see
Figure 2):
where: the range of f lays into (0, 1), k is the logistic growth
rate or steepness of the curve, and x0 is the x-value of the
midpoint of sigmoid, while x is the variable to be normalized.
The values of k and x0 are set according to the domain of
the specific x. In the following, we denote kf and xf the
values of k and x0 for a given function f , while we define the
actual values used in our prototype for the various parameters
in Section IV.

The following tasks must be implemented within any collab-
orative group: Coordinator (implementing the D2D network
access point for the group and assigning the crowdsensing
tasks to the connected crowdsensors, i.e., neighbors), Location
provider (supplying geographical coordinates), Internet proxy
(providing Internet access and thus transferring data to the
cloud), Data aggregator (analyzing together the collected data
locally before sending to the cloud so as to, e.g., calibrate the
sensors [41], analyze the data [12]), and, of course, Sensors.

1) Coordinator: The selection of the coordinator is based
on the following criteria:

• The number of neighbors has a significant impact on
the overall performance because increasing the number
of collaborators enables analyzing more data locally and
reducing the transfer of data to the cloud. In contrast,
there is no benefit in creating groups with too few
crowdsensors for which the minimum value δ depends
on the application. Given a crowdsensor i and the set Ni

of its neighbors, we define:

∆i = f(max{0, |Ni| − δ}, k∆, x∆)

• The occurrences of collaboration between a crowdsensor
i and its neighbors is another important parameter:

hi = f(

∑
j∈Ni

tcollab(i, j)

|Ni|
, kh, xh)
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where: tcollab(i, j) is a numeric parameter indicating the
number of times i and j have been collaborating, as
defined in the history of i.

• The UA and PE (except pocket) of the crowdsensor should
last sufficiently long. Given the predicted duration(UA)
(resp. duration(PE)) of the current UA (resp. PE) for i,
we define:

di = f(min{duration(UA), duration(PE)}, kd, xd)

• The remaining battery capacity of the crowdsensor
should obviously be taken into account. Its normalized
value is denoted as:

bi = f(bati, kb, xb)

Next, provided the weights w∆, wh, wd, wb, all ∈ [0, 1], set
for the above criteria, we define the utility uc(i) ∈ (0, w∆ +
wh +wd +wb) of the crowdsensor i associated with acting as
coordinator as the weighted sum of the above functions:

uc(i) = w∆.∆i + wh.hi + wd.di + wb.bi

2) Location provider: While the GPS location brings higher
accuracy out-door, it also comes with higher energy consump-
tion and latency, compared to the network-based location. This
leads us to introduce the following normalized value li to the
support of the positioning by i:

li =


f(accl, kl, xl)− f(powgps, klp, xlp) , GPS
f(accl, kl, xl)− f(pownet, klp, xlp) , Network
−∞ , Null

where: we assume that any i advertises a single location ser-
vice among (GPS, Network, Null), accl is the accuracy of the
advertised location service, and powgps (resp. pownet) is the
power consumed by the GPS (resp. network) location service.
The utility function for crowdsensor i of being a location
provider is thus defined as ul(i) ∈ (−∞, 1 +wd +wb), which
accounts for the location service source, location accuracy and
remaining battery capacity:

ul(i) = li + wd.di + wb.bi

3) Internet proxy: The Internet proxy transfers the (ana-
lyzed) data provided by the group of crowdsensors to the
cloud server. The service may be provided using either long
range cellular or short range Wi-Fi transmission, while we
assume that a node supporting both networks will offer the
Wi-Fi based transmission by default. We define:

ni =


f(bwup, kn, xn)− f(powwifi, knp, xnp) , Wi-Fi
f(bwup, kn, xn)− f(powcell, knp, xnp) , Cellular
−∞ , Null

where: bwup is the upstream bandwidth for the internet inter-
face; powwifi (resp. powcell) is the power consumption of Wi-
Fi (resp. cellular Internet) transmission. The utility function
for crowdsensor i acting as Internet proxy is then defined
as up(i) ∈ (−∞, 1 + wd + wb), and it accounts for the

Internet connection interface, up-link network bandwidth, and
remaining battery capacity:

up(i) = ni + wd.di + wb.bi

4) Data aggregator: The data aggregator takes in charge
the analysis of the sensing data collected locally. While
lightweight data processing can be performed by the coordi-
nator or by the proxy, complex data analysis may be delegated
to a dedicated device that holds the necessary processing
capabilities (spanning available memory, CPU frequency and
remaining battery capacity). This results in the following def-
inition for the supporting utility function ua(i) ∈ (−wc, wc +
wr + wd + wb):

ua(i) = wc.[f(cpui, kc, xc)− f(powc, kcp, xcp)]

+ wr.f(memi, kr, xr) + wd.di + wb.bi

where: cpui is the CPU frequency, powc is the power con-
sumption of the CPU, memi is the available memory, and
coefficients wc, wr are the weights set for the metrics.

5) Sensors: The utility of a crowdsensor to carry out
the sensing task depends on the accuracy of the contributed
observations and their power consumption. In particular, a
crowdsensor within a pocket/bag is ignored, which we filter
out using the duration of the crowdsensor being out of the
pocket (as defined by the PEout value of PE):

d′i = f(duration(PE out), kd, xd)

which leads to the following utility function, us(i) ∈ (−1, 1+
wd):

us(i) = d′i.[f(accsi , ka, xa)− f(pows
i , ksp, xsp) + wd.di]

where: accsi (resp. pows
i ) is the accuracy (resp. power con-

sumption) of the sensor of type s on crowdsensor i.
6) Group utility: Given the above set of utility functions,

the utility of a group with coordinator i is defined as:

UG(i) = uc(i) + ul(l) + up(p) + ua(a) +
∑
s∈S

∑
n∈NSi

us(n)

where:
• l ∈ Ni is the node with the highest utility to act as the

location provider among i’s neighbors.
• p ∈ Ni is the node with the highest utility to act as the

Internet proxy among i’s neighbors.
• a ∈ Ni is the node with the highest utility to act as the

data aggregator among i’s neighbors.
• S is the set of sensor types requested by the upper layer

crowdsensing application and the set n ∈ NS i defines the
nodes with the highest utility to act as sensors s within
Ni.

C. Grouping algorithm

Provided the utility functions, the grouping algorithm lever-
ages the communication and discovery protocols implemented
at the link layer by state of the art D2D communication tech-
nologies. Without loss of generality, our grouping algorithm
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builds upon the Wi-Fi Direct technology [31]. In a nutshell,
Wi-Fi Direct establishes a D2D opportunistic network through
the discovery of peer nodes followed by the election of the
node acting as the network’s access point according to the
criteria provided by the upper layer (i.e., in our case, the coor-
dinator utility value provided by the BeTogether middleware).

Following, the grouping algorithm runs on every node i,
either on-demand or on a periodic basis according to the
network’s dynamics. The algorithm decomposes into the fol-
lowing steps with the duration of each step being set by the
upper layer application (see Algorithms 1 and 2 for detail):

1) Advertise presence with context metadata (UAi, PEi,
DAi) and their respective duration, so as to discover
nearby peers and their context.

2) Compute and advertise provided utilities uc(i), ul(i),
up(i), ua(i), us1(i), ..., us|S|(i), together with receive
the utilities from neighbors following their advertise-
ment by peers.

3) Self-elect as coordinator if: ∀j ∈ Ni : uc(i) ≥ uc(j)
and ∀k ∈ Ni : (uc(i) = uc(k)) ∧ (ID(i) > ID(k))
with the node’s ID being unique and assigned by the
middleware.

4) Create the D2D network if self-elected as coordinator
and advertise the network to the neighbors that ulti-
mately join if they have not joined another D2D network
since the beginning of the period.

5) Assign the crowdsensing tasks to the best suited group
members, as defined by their respective utilities.

Algorithm 1 Group Configuration
Require: i: crowdsensor
Input: T : set of tasks that should be allocated
Input: ci: context of crowdsensors i
Input: ut(i): utility that crowdsensor i implements task t
Local variable: Ni: neighbors of i sharing the same context
Local variable: Ci: set of contexts provided by neighbors
Local variable: Ui: set of utilities provided by neighbors

1: Ni ← ∅, Ci ← ∅, Ui ← ∅
2: Register service (BeTogether, ci)
3: Nearby Services Discovery to get Ci and Ni

4: for each task t ∈ T do
5: Compute ut(i)
6: Register service (t, ut(i))
7: end for
8: Nearby Services Discovery to get Ui

9: if uc(i) is the highest value in Ui then
10: Create a Wi-Fi Direct group as group owner
11: for each task t ∈ T do
12: Find crowdsensor k with highest utility ut(k) ∈ Ui

13: Invite crowdsensor k to implement t
14: end for
15: else
16: Find crowdsensor k with highest utility uc(k) ∈ Ui

17: Accept invitation and join group of k
18: end if

Algorithm 2 Nearby Service Discovery
Require: i: crowdsensor
Input: T : set of tasks that should be implemented
Output: Ni: neighbors of i sharing same context
Output: Ci: set of contexts provided by the neighbors
Output: Ui: set of contexts provided by the neighbors

1: Discover Wi-Fi Direct Service

2: Upon reception of advertisement (BeTogether, cj) from j
3: if Rules matched (cj , ci) then
4: Ni ← Ni

⋃
{j}, Ci ← Ci

⋃
{cj}

5: end if
6: return Ci and Ni

7: Upon reception of advertisement (t, ut(j)) from j
8: if j ∈ Ni then
9: Ui ← Ui

⋃
{ut(j)},∀t ∈ T

10: end if
11: return Ui

Once a group is created, the arrival/departure of nodes is
detected at the link layer by the underlying D2D protocol.
This enables two approaches to the reconfiguration of the
group: (i) on a periodic basis, or (ii) on-demand upon the
detection of the departure/arrival of a group member. The latter
performs very well and induces almost no cost when very
few topology changes occur and when the context evolves
slowly. On the other hand, it may lead to a unnecessarily
high traffic and constant reassignment in a highly dynamic
environment. Keeping in mind that, in practice, users are most
of the time still (and hence evolving in the same context), we
adopt an on-demand approach (based on context change) by
default. Nevertheless, the middleware switches to periodic re-
assignment when the context gets highly dynamic.

IV. PROTOTYPE IMPLEMENTATION

Figure 3 depicts the architecture of the BeTogether middle-
ware prototype: the (mobile) crowdsensor components run on
Android 6.0+ smartphone or tablet; the server part in the cloud
archives the data that are collected using a no-SQL database
provided by Cloud Firestore.

The BeTogether prototype is available at https://github.com/
sensetogether/BeTogether. The middleware running on the
crowdsensors features the following components:
• Crowdsensing manager: It controls the workflow of the

collaborative crowdsensing according to Algorithm 1,
which includes the orchestration of the service discov-
ery, context inference, computation of the utility func-
tions, communication management, and the assignment of
tasks. When a task is assigned to the device, the manager
further instantiates the corresponding functionality/(ies)
and starts a separate thread to perform the related task.

• Context inference module: It extracts the crowdsensor
context (UA, PE and DE). It infers the UA value using
the Google Activity Recognition API (https://developers.
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google.com/location-context/activity-recognition). It also
infers the PE values using the user-centric inference
module available at https://github.com/sensetogether/
ContextSense. The inference is performed using Ho-
effding Tree which provides incremental decision tree
induction (included in the Weka library at https://www.
cs.waikato.ac.nz/ml/weka). It further predicts the time
during which the PE and UA remain unchanged, using
the LWL algorithm also supported by the Weka library.

• Utility-based estimator and task assignment: The inferred
context is further used to estimate/compute the utility that
assesses to which extent the crowdsensor should carry out
a given task, i.e., coordinator, location provider, Internet
proxy, data aggregator and environmental sensors.

• Service discovery: It uses Wi-Fi Direct [31], which pro-
vides both Device-to-Device communication and service
discovery, at the data-link layer. Note that Wi-Fi Direct
supports several service discovery protocols, such as
Bonjour or UPnP, while our prototype uses the default
Bonjour. A Wi-Fi Direct client plays the (logical) role of
Access Point (AP) while other Wi-Fi Direct clients join
the network that is governed by the AP. Such a network
is equivalent to a classical Wi-Fi network.

TABLE II
PARAMETERS CONFIGURATION AND SCENARIO VARIABLES

Normalization Parameters Values
k∆, x∆, kh, xh, kd, xd 1, 1, 1, 1, 0.1, 10mins
kl, xl, klp, xlp 0.1, 10m, 0.1, 30mA
kn, xn, knp, xnp 10−5, 105kbps, 0.01, 100mA
kb, xb, kcp, xcp 10−3, 103mAh, 0.01, 100mA
kc, xc, kr , xr 10−3, 103MHz, 10−3, 103MB
ka, xa, ksp, xsp 0.1, 10%, 1, 0.1mA

Collaboration Parameters Values
w∆, wh, wd, wb, wc, wr 1, 1, 1, 1, 1, 1

Finally, the BeTogether prototype implementation and test-
bed experiment detailed next, use the parameters defined in
Table II. These parameters are set to smooth the normalization
curve (Figure 2) considering nowadays’ device hardware as a
baseline. As for the weights wx of the utilities, we consider an

equality with no preference. The key parameters δ and Dmin

that determine the willingness to collaborate are application-
dependent: (i) the minimum size of the group, as defined by
δ, relates to the density of the contributing users, and (ii)
the required stability of the group depends on the frequency
of the measurements. We set both parameters according to
the behavior of the Ambiciti application that supports the
crowdsensing of urban noise measurements and from which
we obtained the dataset of measurements gathered in Paris
over the year 2017. Precisely, as the dataset is sparse, we set
δ to 4, i.e., handling groups starting at 5 members, and noise
measurements are by default taken every 5 minutes leading to
set Dmin to 5 minutes.

V. PERFORMANCE EVALUATION

We evaluate the performance of our approach, assessing: (i)
the impact on the power consumption of the device running
the BeTogether middleware in the background, and (ii) the
potential benefit of the collaborative crowdsensing at the
edge from the standpoint of data quality and communication
cost based on a one-year dataset obtained from the Ambiciti
application for urban pollution monitoring. We note that due
to privacy and commercial concerns, the Ambiciti company
shares the data with us in the framework of a collaboration
agreement while data cannot be released openly.

A. Power consumption

TABLE III
ACTIVE POWER OF COMPONENTS FOR NEXUS 5X

Wi-Fi TX Wi-Fi Scan Cellular TX Light Sensor GPS RX
173 mA 2 mA 186 mA 0.2 mA 60 mA

We estimate theoretically the power consumption on a single
crowdsensor; Table III shows the power of the main compo-
nents used in our crowdsensing middleware. The reference
values are for the Google Nexus 5X smartphone, as provided
by the Android OS (https://source.android.com/devices/tech/
power/values) according to the power profile provided by
the manufacturer. Herein, we select the light sensor, which
involves a power consumption comparable to that of most
sensors [34], [13]. Note that the power consumption associated
with the transmission depends on the transmission duration,
which increases linearly with the packet size. We assume
that cellular and Wi-Fi Direct communications have the same
transmission speed.

Figure 4 shows the power consumption of a crowdsensor
working individually at various sensing and upload frequen-
cies. The upload is the most energy-demanding and the energy
consumption can be reduced by lowering the upload frequency.
As a comparison, Figure 5 provides the power consumption of
the various nodes contributing to collaborative crowdsensing
with regards to a high sensing frequency (every 1 minute) and
upload frequency (every 10 minutes) for the individual case.
Results show that the proxy always consumes the most energy
due to the cellular transmission that takes place with the cloud,

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

258



0 200 400 600 800 1000 1200 1400
Time (mins)

0

200

400

600

800

1000
B
a
tt

e
ry

 c
o
n
su

m
p
ti
o
n
 (

m
A
h
)

Sense/1min, Upload/10mins
Sense/1min, Upload/20mins
Sense/1min, Upload/30mins
Sense/5mins, Upload/10mins
Sense/10mins, Upload/10mins

Fig. 4. Varying individual crowdsensing frequen-
cies & Power consumption

0 200 400 600 800 1000 1200 1400
Time (mins)

0

200

400

600

800

1000

B
a
tt

e
ry

 c
o
n
su

m
p
ti
o
n
 (

m
A
h
)

Coordinator (Discovery/10mins)
Proxy (+ Upload/10mins)
Locator (+ Sense/1min)
Sensor (+ Sense/1min)

Fig. 5. Collaborative crowdsensing & Power con-
sumption

10 20 30 40 50
Still duration (mins)

0

2

4

6

8

10

A
m

o
u
n
t 

o
f 
cr

o
w

d
se

n
so

rs
 (

%
)

Fig. 6. Distribution of the still duration

followed by the coordinator that communicates with the nearby
devices so as to distribute the tasks. Other group participants
consume much less energy compared to the individual case,
even-though this consumption includes the cost related to
discovery and D2D transmission to the coordinator.

B. Dataset-driven evaluation

Dataset: We leverage a dataset produced by the Ambiciti
(formerly called SoundCity) cloud-based crowdsensing appli-
cation available on Google Play since 2015 and on Apple App-
Store since 2016 (see http://ambiciti.io). Ambiciti monitors the
noise pollution using the smartphone’s microphone [42]. Our
dataset contains 946,573 observations gathered both in-door
and out-door in Paris over the year 2017 from 550 crowd-
sensors, where the average uploading duty cycle is around 5
minutes. Each observation provides: the uploading time-stamp,
the location and (anonymized) ID of the contributing device,
the noise level and its measurement bias, a description of the
user activity (still, on foot, on bicycle, in vehicle, unknown),
and whether the device is in/out-pocket (based on proximity).
With 550 crowdsensors for the whole Paris city, the dataset
is sparse. Hence, it does not provide the most suited case for
opportunistic collaboration at the edge. Still, this allows us
to assess the effectiveness of BeTogether even with a sparse
deployment.

Analyzing the crowdsensor behavior: We first analyze
the stability of the crowdsensors’ context, as used for the
configuration of groups, where we consider only the User
Activity (UA). Indeed, the Physical Environment (PE) value is
limited to the in-pocket case in the dataset, which influences
only the sensor utility us(i). The context is assessed per day.
Starting with the initial location l of any crowdsensor i within
the dataset, we consider that i changes group when it reaches
another location l′ that is more than the D2D range away from
l, and repeatedly so with l′ as the new reference location.

Figure 6 then shows the distribution of the duration of
the crowdsensor staying within the above estimated group for
all the crowdsensors of our dataset according to the device’s
location: it varies from 10 minutes to 60 minutes where we
recall that we set Dmin = 5 minutes as the minimum duration
of the group. Hence, many crowdsensors remain at the same
location long enough to group.

Figure 7 further compares the three following grouping
strategies in terms of the average number of messages sent per
crowdsensor per day so as to discover nearby crowdsensors:
periodic (after every upload) that is the approach found in
related work, on-demand (detected by Wi-Fi Direct), and
context-aware that accounts for the crowdsensors’ activities.
In average, the amount of traffic generated by the on-demand
strategy is 80.810% lower than the periodic approach, and the
one of our context-aware grouping is 21.844% lower than the
on-demand approach.

Analyzing the efficiency gain of grouping: In order to
find the clusters of crowdsensors that are within D2D range
(at 10m (re-scaled) away) from each other, we rely on the
DBSCAN algorithm [43], which handles clusters that are
arbitrarily shaped and that are of varying density. According
to our parameter δ = 4, that configures groups of size 5 and
more, Figure 8 shows the distribution of the resulting group
sizes in our dataset, with 79% of the groups being still.

Figure 9 further compares the average duration of the iden-
tified groups depending on whether the context is accounted
for or not. Interestingly, results show that even in real life
scenarios (including both still and mobile groups, not only
considering still grouping as in Figure 6), our context-aware
grouping finds groups of longer duration, which is up to
3.256 times of non context-aware grouping. As groups grow,
the difference between a context-aware and non-context-aware
approaches lowers because the likelihood of grouping co-
located nodes having the same context gets higher. A decrease
of lifetime is observed for groups of 12 members and more,
which is partly due to the sparsity of our dataset and also the
higher probability of members moving away from the group.

Although the crowdsensing data of our dataset is very sparse
in time and space, the context-aware collaborative crowdsens-
ing at the edge still brings benefit in terms of data quality and
global resource consumption. It is especially efficient as the
size of the group grows. Figure 10 shows that the context-
aware collaborative approach delivers the best data quality:
the collected measurement bias is reduced by up to 615%
(resp. 407%) compared to an individual (resp. non-context-
aware collaborative) crowdsensing approach. This is because
of the selective sensing of BeTogether within each group,
leading to the collection of the most accurate observations
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rather than a simple average of the observations (non-context-
aware collaborative crowdsensing) or than all the raw data
(individual crowdsensing).

As shown in Figure 11, the amount of data that a col-
laborative and context-aware approach uploads to the cloud
is reduced by up to 197% compared to both the individual
and (non-context-aware) collaborative crowdsensing approach.
There are two reasons for this: first, collaborative crowdsens-
ing uploads only the aggregated data (i.e., concatenated hash
tables) via the group proxy rather than uploading the raw
data supplied by each crowdsensor (individual crowdsensing).
Second, our context-aware collaboration also filters out the
data that are of low quality and that are collected in-pocket,
which reduces the amount of data aggregated and uploaded to
the cloud.

Finally, Figure 12 focuses on the power consumed per
hour, which is associated with both Wi-Fi Direct transmission
(assuming that all the tasks are distributed) and cellular
transmission: the power is reduced by up to 181% (resp. 183%)
compared to individual (resp. non-context-aware collaborative)
crowdsensing approach. Overall, these results show that the
collaboration achieves a better data quality at a lower sensing
and transmission cost when the group is larger because the
tasks can be assigned to more devices, resulting in less task
duplication and better context-aware filtering and aggregation.

VI. CONCLUSION

Opportunistic crowdsensing shows a great potential for
monitoring the physical environment in a cost-effective and
flexible way by empowering people to contribute as part of

their daily life. While the growing participation of people helps
covering urban-scale areas, it also necessitates to limit the
increasing operational cost of the cloud-assisted infrastructure
and to keep to a minimum the resource consumed by the hand-
held devices. In this paper, we have introduced the BeTogether
crowdsensing middleware, which implements a collaboration
strategy at the edge so as to enhance the quality of the data
transferred to the cloud while reducing the related communi-
cation cost and resource consumption. For this purpose, we
have introduced a set of utility functions that assess to which
extent a device should carry out a given crowdsensing task,
while achieving a trade-off between the benefit for all (for
the group) and the related cost for the device. We have also
presented the prototype implementation of BeTogether, which
builds upon the Wi-Fi Direct D2D communication technology
for the creation and management of communication within a
group. The evaluation of the BeTogether middleware solution
using a large dataset from an existing crowdsensing application
shows that our context-aware collaboration strategy improves
the quality of the sensing data transferred to the cloud as well
as reduce the resource consumption -both locally and globally.
Our ongoing work now focuses on a distributed interpolation
and aggregation approach running on the crowdsensors to
achieve both higher sensing quality and efficiency.
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