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Abstract—Participant selection is a major research challenge
in Mobile Crowdsensing (MCS). Previous approaches commonly
assume that adequately long and fixed periods of candidate
participants’ historical mobility trajectories are available before
the selection process. This enables the frameworks to accurately
model mobility which enables the optimization of selection.
However, this assumption may not be realistic for newly-released
MCS applications or platforms because the candidates have
just boarded without previous mobility profiles. The sparsity or
even absence of mobility traces will incur inaccurate location
prediction of the individual participant, thus imposing negative
effects on the participant selection process and hindering the
practical deployment of new MCS applications. To this end, this
paper investigates a novel problem called “From-Scratch MCS”
(FS-MCS for short), in which we study how to intelligently select
participants to minimize such “cold-start” effect. Specifically, we
propose a novel framework based on reinforcement learning,
which we name RL-Recruiter. With the gradual accumulation
of mobility trajectories over time, RL-Recruiter can make a
good sequence of participant selection decisions for each sensing
slot by incrementally extracting and utilizing the collective
mobility patterns of all candidate participants, thus avoiding
the prediction of individual participant’s location that is very
inaccurate when the training data is sparse. We test our approach
experimentally based on two real-world mobility datasets. Our
experiment results demonstrate that RL-Recruiter outperforms
the baseline approaches under various settings.

Index Terms—mobile crowdsensing, participant selection, re-
inforcement learning

I. INTRODUCTION

Mobile Crowdsensing(MCS) [1] [2] has emerged as a

promising way of ubiquitous sensing and computing in recent

years. In an MCS application or system, dynamically-moving

users (called participants or workers) contribute location-

dependent urban sensing information through various types of

sensors embedded in their mobile devices. By collecting and

aggregating each piece of information, those who publish and

manage the sensing task (called organizers or requesters) can

get an overall sensing picture within a certain spatial-temporal

scale. Data quality and sensing cost are two main opposing

concerns in MCS [3] [8] [29]. To get high data quality (e.g.,

spatial-temporal coverage), a naive way is to recruit as many

participants as possible. However, it would incur excessive

sensing costs (e.g., energy consumption and communication

cost) [10], which translates to a high budget requirement

where the organizers have to pay very high incentive rewards

to compensate and attract participants. Therefore, optimized

participant selection becomes one of the most crucial research

problems in MCS, and many studies such as [4] [5] [6] [7]

[8] [9] [11] [12] [15] [17] [18] keep focusing on this topic

in recent years. They either aimed at minimizing the sensing

cost with a fixed sensing quality requirement or attempted to

maximize the sensing quality under sensing cost constraint.

There are several metrics to characterize the sensing cost and

quality [29], but to simplify the problem formulation, state-of-

the-art research such as [5] [8] [9] [14] generally regards the

sensing cost as being proportional to the number of selected

participants and measures the sensing quality with spatial-

temporal coverage.

With different optimization goals and constraints, most of

these state-of-the-art research follows a common workflow

consisting of two major steps. First, the candidate participants’

historical mobility trajectories are used as training data to

perform mobility pattern analysis so that their future locations

can be predicted. Second, as the selection problem is NP-

hard in nature, these approaches adopt various types of com-

bination optimization algorithms (e.g., greedy search, dynamic

programming, max flow, etc.) to select a near-optimal subset

of participants (for single-task scenarios) [4] [8] or task-and-

participant pairs (for multi-task scenarios) [10] [14].

Although these works differ from each other in either

the mobility prediction methods or combination optimization

algorithms, they hold a common assumption, that is, there

exists a fixed and adequately long period of candidate

participants’ historical mobility trajectories (usually more

than a one-week period) as the input to facilitate the

entire workflow [3]. However, this assumption may be broken

for newly-released MCS applications or platforms because

the candidates are just onboard without previous working

records and historical mobility traces. Regarding this issue,

some research works simply assume that the new applications

can obtain traces such as connected cell towers when call-

ing/sensing text message, taxi mobility trajectories, check-in

locations from other platforms (e.g. telecom operator, mobile

social apps, taxi management systems, etc.) [8] [9] [18]. Un-

fortunately, this assumption sometimes tends to be impractical

in real-world scenarios due to the following reasons. First,

the candidate participants are often not willing to expose

their historical mobility profiles in other mobile platforms to
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the MCS applications, as this is likely to incur the location

privacy leakage [21]. Second, even if the candidates are willing

to do so (e.g., motivated by attractive incentives), the MCS

applications usually do not have data access to these platforms

because these platforms do not have obligations to provide

open location data collection APIs and may also concern about

their own security risk [22]. Without the availability of those

external mobility data, a newly-released MCS application or

platform may inevitably face the challenge that, with sparse

historical mobility trajectories, how to gradually learn the

mobility patterns and intelligently select participants over time,

which is referred to as “From-the-Scratch MCS” (FS-MCS

for short) in this paper. A straightforward solution might be to

let new participants move for, say, 1 week without paying

them, or paying some fixed small amount, and then start

paying normally when there is enough historical trajectory

data. Although this solution might be feasible in some cases,

it will lead to the delay of the sensing task execution, so that

making it inappropriate for urgent MCS tasks.

In fact, for the participant selection in the first sensing

slot, the random selection method is the best if we do not

know any historical mobility trajectories or other relevant

prior knowledge. With the accumulation of mobility trajec-

tories over time, one straightforward method is to update the

database of historical mobility trajectories whenever we get

new mobility records in each sensing slot, and then directly

adopt the state-of-the-art approaches (e.g., the framework

named CrowdRecruiter [8]) based on the updated trajectory

database to perform the participant selection for the next slot.

However, this approach has a significant shortcoming before

it gets enough training data. When the historical mobility

trajectories are insufficient, the mobility prediction of each

participant will be very inaccurate. Then, the inaccuracy of

individual-level mobility prediction will have negative influ-

ences on the optimization of the whole participant selection

process, which leads to relatively poor performance. Although

no algorithms can eliminate the cold-start effect as no other

prior knowledge or information is introduced, we attempt to

answer the following research question: can we try to minimize

the cold-start effect for FS-MCS?

To address this issue, we have the following intuitions.

Though individual mobility is less predictable when the train-

ing data is sparse, the mobility of all crowd participants

still possesses some implicit patterns. For example, people

usually share some common commuting patterns (e.g., from

residential areas to CBD). Furthermore, people tend to occur

in the same locations due to their social ties (e.g., friends,

colleagues, family members, etc). [32]. In other words, despite

the mobility uncertainty at the individual level without enough

training data, there exist some useful collective patterns. Thus,

our basic idea is that, instead of predicting each participant’s

location, we leverage the latent collective mobility patterns

of all candidates in the participant selection process. In other

words, although we cannot eliminate the impact of cold-start

effects as nothing new information is introduced, we seek an

alternative to avoid the individual-level mobility prediction to

improve the selection performance.

The above intuition is easy to understand, but the collective

pattern of all candidate participants is implicit and subtle, so

it is not straightforward to model and utilize it in our focused

problem. To address this challenge, this paper exploits the

idea of reinforcement learning in the AI area and proposes

a novel framework, called RL-Recruiter. Specifically, RL-

Recruiter first models the key concepts in reinforcement learn-

ing (i.e., state, action, and reward) according to our formulated

problem. Then, based on this model, RL-Recruiter selects a

pre-defined number of participants in each sensing slot through

a reinforced self-learning way, which consists of three main

steps. First, in a certain sensing slot, RL-Recruiter explores and

exploits different actions of selection and trains the decision

model with returned reward based on the achieved spatial-

temporal coverage in previous sensing slots. Second, with

the designed updated decision model, RL-Recruiter iteratively

selects participants in the current sensing slot. In each iteration,

it takes an action (i.e., adding one participant to the selected

set) with the maximum action value. Third, at the end of the

sensing slot, RL-Recruiter observes the sensing task execution

outcome (i.e., the real trajectories and the finally achieved

spatial-temporal coverage within this slot). This observation

is used to improve the knowledge of RL-Recruiter, that is,

updating the dataset to train the decision model for future

sensing slots. Compared to existing approaches, the advantage

of RL-Recruiter is that it can remove the strict assumption

about the pre-existence of adequately long and fixed periods

of mobility profiles, thus improving the practical value of MCS

in real-world pervasive sensing and computing scenarios.

To illustrate our formulated problem and how RL-Recruiter

works, we present a running example as follows: The city

government launches an MCS application, called AirSense,

for collecting real-time air quality information in different

regions every two hours as a sensing slot in the city with a

budget constraint (e.g., 2000 GBP per sensing slot). The entire

sensing area can be divided into 20 subareas, and a total of

500 mobile users living in or near these areas have registered

as candidate participants in AirSense. Selected users will

use mobile phone embedded with air quality sensors [38] or

connected to portable sensing box [36] [37] to collect air

quality data and upload the data with the application installed.

As AirSense is just newly released, the application knows

nothing about the participants’ historical mobility traces at

the very beginning, but their mobility traces will be gradually

recorded over time and utilized by AirSense only for the

purpose of participant selection after proper anonymization.

As the budget is limited and assuming that each participant

is equally paid (e.g., 10 GBP per participant), the goal of

AirSense is to select a pre-defined number of participants

(2000/10=200 participants) in each two-hour sensing slot to

maximize the average spatial-temporal coverage over time.

To address this problem, AirSense adopts the RL-Recruiter

framework for participant selection, which makes a good

sequence of selection decisions for each sensing slot. For the

first sensing slot, as no information is known, RL-Recruiter
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will randomly select 200 participants. From the second sensing

slot, before the task execution of a given slot, RL-Recruiter

will explore different selection possibilities and determine

a selected participant set with experience. At end of the

slot, it will observe the actual outcome (i.e., real mobility

trace of the participants and the achieved spatial-temporal

coverage within this slot) and update its knowledge towards

the direction that benefits the selection of coming slots. The

above process will repeat for future slots (3rd, 4th, .....).

In summary, our work makes the following contributions.

First, through the analysis of existing frameworks of MCS

participant selection, we argue that the common assumption

about the pre-existence of mobility profiles may not be realistic

in cold-start situations. Then, we formulate a novel problem

called “From-Scratch MCS” (FS-MCS). FS-MCS aims to

study how to minimize the cold-start effect of mobility predic-

tion on the participant selection problem in MCS. That is, how

to make a good sequence of participant selection decisions

with the gradual accumulation of mobility trajectories over

time.

Second, we propose RL-Recruiter, a novel framework based

on reinforcement learning, to select a suitable set of partici-

pants in each of the sequential sensing slots. Before the task

execution step in each given slot (from the second sensing

slot), RL-Recruiter first explores and exploits different actions

of selection and trains the decision model with returned

reward based on the achieved spatial-temporal coverage in

previous sensing slots. Then, it explores the possible actions

of participant selection and uses the delayed outcome (i.e., the

achieved spatial-temporal coverage within this slot) to improve

its knowledge in future sensing slots.

Third, through extensive simulations utilizing two real-

world mobility datasets, we demonstrate that RL-Recruiter

outperforms the baseline approaches under various settings.

Compared to the baseline methods, RL-Recruiter achieves a

higher spatial-temporal coverage with the same number of

participants in terms of both overall and slot-level comparison.

II. RELATED WORKS

Participant Selection for MCS. The state-of-the-art research

of participant selection for MCS can be divided into two

categories. (1) Participatory MCS. This category of sensing

tasks requires the candidates to continuously report their real-

time locations, and then the system selects the participants

online. If a participant is selected and assigned to certain

task locations, he/she will change their original routes and

specifically move to the required places with certain incentive

models [15] [16] [17] [18] [19]. (2) Opportunistic MCS. In this

category, the participants do not need to report their locations

and change their original trajectories. Instead, based on the

modeling and prediction of the participants’ mobility, the sys-

tem selects the participants offline (i.e., before the execution of

sensing tasks), and the participants simply complete the tasks

during their daily routines. For example, the authors studied

participants selection or recruitment for a single task, and they

proposed different strategies to select a predefined number of

participants so as to maximize the task’s sensing quality [4]

[5] [6] [7], or select a minimum number of participants to

ensure a certain level of sensing quality [8] [11]. Other studies

attempted to optimize the overall utility of multiple concurrent

sensing tasks in a multi-task-oriented MCS platform where

tasks share the limited resources [12] [13] [14] [20] [30].

Actually, RL-Recruiter falls into the opportunistic category.

The above works of this category hold a common assumption,

that is, relatively adequate historical moving trajectories of the

candidate participants must be taken as the input to facilitate

mobility prediction and participant selection. On the contrary,

RL-Recruiter removes this assumption and investigates how to

make a good sequence of participant selection decisions with

the gradual accumulation of mobility trajectories over time.

Learning-Assisted Crowdsourcing/MCS. In recent years,

there has been a new trend to optimize the crowdsourcing

or MCS by integrating different types of machine learning

techniques [23]. In these works, multiple aspects of MCS

are self-learned from multiple trials over time. For example,

in the focused scenario of [24], the authors assume that the

participants decide whether to accept the task based on the

incentive reward and movement distance. They developed a

supervised learning method to model the relationship between

task acceptance rate and these two factors, and then utilize

it to design better incentive mechanisms, to reduce sensing

cost while ensuring task completion. Han et al. [25] proposed

an online learning approach to acquire statistical information

about the sensing values from participants throughout the

selection process. The authors in [26] presented an online

algorithm that leverages the historical performing records of

participants to learn the data upload time delay. The authors

in [27] addressed the online labeling problem in which the

ground truth is unknown, and they proposed an online al-

gorithm using majority voting over time. Zhang et al. [28]

considered expertise-aware task allocation and truth analysis

in MCS where user expertise is estimated via an online

learning framework. From the perspective of using learning

techniques to assist crowdsourcing/MCS tasks, the above-

mentioned studies share similar high-level ideas with our

work. However, both our formulated problem and proposed

RL-Recruiter framework are quite different from these works,

which are complementary to the above studies.

Cold-Start Problem in Recommender Systems. In the recom-

mender systems, a cold start happens when new users or new

items arrive in e-commerce platforms. Classic recommender

systems like collaborative filtering assumes that each user or

item has some ratings so that we can infer ratings of similar

users/items even if those ratings are unavailable. However,

for new users/items, this becomes hard because we have no

browse, click or purchase data for them. Therefore, researchers

have proposed various ways, which can be roughly divided

into the following categories [35]. (1) Representative-based-

approach: use subset of items and users that represents the

population; (2) Content-based approach: use side information

such as text, social networks, etc. However, these approaches

are not suitable for our from-scratch crowdsensing as we have
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Fig. 1. An example of coverage condition in one time slot for four
participants. The left grid illustrates the serial number of the cells, and the
middle one shows the trajectories of participants in one time slot. The girds
on the right display the covered cells given a specific participant combination.
We can find that the combination P = {p1, p4} covers seven cells and has
the highest coverage 7/16 = 0.44. Therefore, it is the optimal combination
while the goal is to maximize the coverage for two participants.

neither representative participants nor the side information.

III. RL-RECRUITER: METHOD OVERVIEW

A. Preliminary of Participant Selection

The participants will execute the sensing tasks in a sensing

area which can be described as a rectangle geographical

location. As the trajectories of participates associate with the

attached times, we denote the time range of the trajectories

into equal-length slots (t1, t2, t3, ...). When the participant pk
appears in the i-th cell ci in the j-th slot tj , the cell is reserved

by the participant.

Given a target area with a set of grid cells T and the

total set of available participants Z, we aim to select a set

of participants P (P ⊆ Z) respectively in each slot tj . If we

represent the set of covered cells for participant pk in tj slot

as C({pk},tj), the covered cells set of all selected participants

can then be denoted as CP,tj =
⋃
{C({p},tj)|p ∈ P}. The

goal of our model is to maximize its spatial-temporal coverage

(”coverage” for short):

maximize |C(P,tj)|/|T |

s.t. |P | = n j ∈ {1, 2, 3, ..., m}
(1)

where n is the predefined number of participants to select, and

m is the total number of slots.

In the Fig. 1, we show an example for participant se-

lection. We split the sensing area into smaller grid cells

T = {c1, c2, c3, ..., c16} with equal size, as shown in Fig.

1(a). The Fig. 1(b) shows the trajectories of participants in

the time slot tj , and Z = {p1, p2, p3, p4} is participant set.

If we considers all of possible covered area, then the covered

cells set CZ,tj is the upper range for possible covered cells

in the slot tj . The Fig. 1(c) shows trajectories of participant

combinations.

B. Overview of RL-Recruiter

To solve the problem with the reinforcement learning strat-

egy, we first need to introduce the three main concepts of our

strategy: state, action and reward. Under the different states,

an action may have different values determined by a decision

model Q, that maps states and actions to values indicating the

rewards after taking these actions. These concepts are shown

in detail in section IV-A.

The framework for RL-Recruiter is shown in Fig. 2. It splits

the process of the RL-Recruiter into three stages. The first two

stages have a stop criterion, to cease the selection when the

amount of selected participants reaches n. (i.e., the length of

participant set |P | = n).

(1) Decision Model Learning. Before the start of the j-th

slot (j = 2, 3, ...), RL-Recruiter explores and exploits different

actions of selection and trains the decision model with returned

reward. This reward is calculated based on the state and the

achieved coverage in (j − 1)-th slot. For each epoch of the

training, we choose the participant and get the reward one after

another to train the model until the stop criterion is met. The

selected participants will not be assigned tasks.

(2) Iterative Participant Selection. In this stage, the up-

dated decision model selects the participants iteratively to

execute the tasks on the current slot. The decision model

greedily takes the action with the highest value, until the

stop criterion is satisfied and outputs the combination of

participants.

(3) Sensing Task Execution. The selected participants

execute their tasks in the current slot. Their daily routines

cover some of the cells where participants finish their jobs.

The coverage result of the tasks is obtained after this slot, and

the trajectories of the participants are collected and used to

learn the decision model again for future sensing slots.

IV. CORE COMPONENTS OF RL-RECRUITER

This section firstly explains the state, action, reward and

decision model, then it introduces the details of the RL-

Recruiter algorithm, especially for decision model learning and

iterative participant selection.

A. Formulation of State, Action, Reward, and Decision Model

To illustrate the RL-Recruiter clearly, the three key con-

cepts, state, action and reward, need to be defined in details:

State represents the participant selection condition of FS-

MCS task. In RL-Recruiter, there are |Z| participants in the

target sensing area, and the state is a |Z|-dimension binary

vector s. The initial values in the state vector are all zeros.

When the k-th participant pk is selected, the value in k-th

dimension of the vector is set to one. The number of different

state vector is 2|Z|.

Action means all the possible decisions that we may

make in participant selection. The whole action set is A =
{a1, a2, ..., an}, with each ak attached to a value Q(s, ak)
under a certain state s. If the k-th dimension of s is not set to

one, then the action k, meaning selecting k-th participant, is

available. Q(s, ak) suggests the probable reward after selecting

the participant pk under the state s.

Reward is used to indicate how good an action is. In each

slot, RL-Recruiter takes actions one by one until selected

participants satisfy the stop criterion for the current slot.
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Fig. 2. Framework of the RL-Recruiter. Stage 1: the model learns the action values by selecting the participants and getting the rewards. Stage 2: the model
iteratively selects participants with the highest action values. Stage 3: the selected participants execute the sensing tasks, and the coverage result and new
trajectories are obtained to train the model again for future slots.

Maximizing coverage while meeting this criterion is the goal

of the RL-Recruiter and should be reflected in the reward

modeling. Hence, we set the reward, denoted by r, as the

amount of increase in covered cells after one action is taken.

Based on the reward and the highest action value that the

model predicts to get for all available actions Q(s
′

, a) under

the next state s
′

, RL-Recruiter refreshes the value Q(s, a) for

each action it takes during the training process.

Decision model Decision model contains two components.

One is a value function and the other is a policy. Value function

Q maps current state and actions to values which indicate the

gains of these actions. Under the current state vector s, the

function outputs the values Q(s, a) for all actions. The value

Q(s, ak) is set to zero if ak was taken before and the k-

th dimension of the s is set to one, to avoid selecting the

participant that has been already selected before. The optimal

value of an action that lets the value function to get the highest

performance is this:

Q(s, a) = r + γmaxQ(s
′

, a
′

) (2)

where r is the reward, and maxQ(s
′

, a
′

) denotes the highest

value of actions under the state of next turn s
′

. γ is the discount

rate of the future highest value which indicates the gain after

taking the probably best action under the new state s
′

. The

other component, policy π : s → a, makes the selection

decision based on the value function. The way how policy

utilizes the value function is changing when moving into

different stages of the framework of the RL-Recruiter. In the

decision model learning stage, the policy tends to try various

combinations of participants, while in the iterative selection

stage, the policy selects participants with the highest action

value.

B. Decision Model Learning

In each slot tj , the decision model goes through e epochs to

perform the learning tasks. In each epoch, the decision model

picks participants one after another until the stop criterion is

met, and it updates value function based on the rewards that

come from the process of selection. This process is set to let

the model explore the datasets in the tj−1 slot, and capture

the trajectory patterns of the participants.

We maintain a lookup table with l rows and |A| columns to

build the value function Q(s, a). Under the current state s, the

decision model needs to first calculate the corresponding index

d of the row in the table, and the value in the k-th column of

that row is just the value of the action ak. d is determined by

the equation:

d = ⌊

∑
sk
n
× l⌋ (3)

where sk is the value in k-th dimension of the state s,

initialized as zero and set to one when k-th participant is

selected.
∑

sk is the number of the selected participants, and

n is the number of total participants that we need to select

eventually. The intuition of the equation is that we assume

when the number of the selected participants changes, which

is suggested by the fraction
∑

sk/n, the rewards for the

rest of the actions change consequently. So, the index of the

row is related to the fraction
∑

sk/n. This method is called

State Aggregation, a kind of value-function approximation in

reinforcement learning. We have to approximate the value

because there are so many states in our problem, namely

2|Z|, as mentioned before. If we use tabular solutions, keeping

values of all state-action pairs, then the space complexity will

be O(2|Z| × |Z|). This complexity is unmanageable. Instead,

our approach gets the space complexity O(l×|Z|), while still

maintaining the reinforcement learning framework, mapping

the states and actions to the rewards. In this approach, l is a

predefined number. The actual value of the l depends on the

performance of the model in the runtime. The maximum value

of the l is n, which means after one participant is selected,

we need to change the row in the lookup table to check the

new values for the next state.

The ǫ−greedy method is designed in the policy π to select

participants during the training process. ǫ is a hyper-parameter

within (0, 1). It means the probability for the model to explore

the data is ǫ, and that to exploit the data is 1− ǫ. The model

picks up the participants randomly in the exploration method

and picks up the participants with the highest action value

in exploitation methods. The reason to apply the ǫ − greedy
method is that the model needs to explore the data and to find

the maximum result. If the model always takes actions with

the highest action value, then it will converge quickly while
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not fully understanding the data. Therefore, the result of it

is less likely to be the global optimal one. The ǫ − greedy
method helps the model better understand the patterns.

Algorithm 1: Decision Model Learning

participant set P ← ∅ ;

state vector s ;

while |P | < n do

Calculate the index of the row in lookup table d;

Get a random number x between 0 and 1;

if x > ǫ then
Select the participant pk with highest action

value;

else
Randomly choose one pk from all available

participants;

end

Get the state of next step s
′

← newState(pk, s) ;

Obtain the reward r ← Reward(pk, s) ;

Update the model Q(s, ak)← r+ γmaxQ(s
′

, a
′

) ;

Add pk into P ;

Update the state vector s ;

end

After selecting the participant pk, the model gets a reward

r based on trajectory in tj−1 slot and the current state. This

reward value is defined as:

r = |C({pk},tj) − C(P,tj)| (4)

where P represents the set with all the selected participants

previously. r is the number of increase in covered cells after

the participant is added. This new selected participant will be

added into P after the r is obtained.

The value of the taken action will be recalculated and this

refreshed value will be used to predict the reward of this action

in the future. Here the new value for action ak is denoted by

Q(s, ak)
′

, and it is calculated by:

Q(s, ak)
′

= Q(s, ak)+α(r+γmaxQ(s
′

, a
′

)−Q(s, ak)) (5)

where the Q(s, ak) is the current value for action ak under the

state s, and the r comes from the equation 4. α is the learning

rate to update the action value. The state vector of next turn

s
′

is obtained by setting the value of the k-th dimension in

the s to one, which means participant pk is selected.

The model is trained with e epochs. In each epoch, the

decision model may scan the whole participants to select one

iteratively until there are n participants selected. Therefore, the

time complexity of decision model learning is O(e×|Z|×n).
The pseudo-code of decision model learning in one epoch is

shown in algorithm 1.

C. Iterative Participant Selection

As the decision model is updated, by using equation 5, the

decision model selects a new participant set to do the FS-MCS

task for current slot tj . Iteratively, the policy π greedily picks

up the participant with the highest action value. There are

two differences between decision model learning and iterative

participant selection. Firstly, iterative participant selection does

not have the ǫ − greedy method. We assume that the model

has already understood the trajectory pattern of the previous

slot in the decision model learning process, so we take every

action with the highest action value to gain the possibly highest

final result. Secondly, the model has no rewards for all actions

because there is no trajectory for current yet. The trajectory

is only gained after the sensing tasks are finished at the end

of the current slot when the rewards can be inferred by the

newly gathered data. For iterative participant selection, the

model picks the participants with the highest values one after

another until there are n participants selected. Thus the time

complexity is O(n× |Z|).

V. EVALUATION

A. Metrics and Comparison Methods

In this experiment, we use relative coverage instead of

absolute coverage to measure the performance of different

methods. In each slot tj , the relative coverage for participant

set P is defined as |CP,tj |/|CZ,tj |, where |CP,tj | represents

the number of covered cells by the selected participant set

P , and |CZ,tj | represents the number of covered cells by

all participants. Take the scenario in Fig. 1 as an example.

If selected participant set P = {p1, p4}, then the relative

coverage of the P is |CP,tj |/|CZ,tj | = 7/9 = 0.78, where

the Z = {p1, p2, p3, p4}. The reason is that absolute coverage

may be disturbed by a lot of factors (e.g., the choice of dataset,

experimental settings such as sensing areas and time). The

relative sensing coverage can better reflect performances of

different models, and it is more independent from other factors.

In our evaluation, we apply two methods as baselines, and

all of them share the same iteration process and stopping

criterion, and they all use the data from previous slots to

update the selection model at the beginning of the j-th slot.

The first is CrowdRecuiter, one of the state-of-art methods

the do the participant selection task in MCS. The second is

DQN-Recruiter, the variant of our methods, which also uses

reinforcement learning to train the decision model, except that

it uses a neural network to build the decision model.

CrowdRecruiter. The original CrowdRecruiter [8] has two

steps. Firstly it predicts the probability for every participant to

cover each cell in the next slot respectively by referring to the

Poisson intensity, based on the historical mobility trajectories.

Secondly, the model iteratively adds the participant to the

participant set to find the participant combination with the

highest probability to cover the maximum cells. To apply this

method in the FS-MCS problem, when we get new mobility

records in each sensing slot, we update the database for

training, and then directly adopt the CrowdRecruiter.

DQN-Recruiter. This method uses a neural network to do

the reinforcement learning [31]. It is also an approximate

solution designed to solve problems with large state space and

imperfect information and it has delayed credit assignment

requiring long-term strategies over thousands of steps. To
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a: GeoLife b: Shenzhen Truck

Fig. 3. Target sensing area

apply it to the FS-MCS, we propose the DQN-Recruiter. It has

a fully connected neural network just like the value function

Q in the RL-Recruiter that maps states and actions to values.

The input of the neural network is the same state vector s used

by RL-Recruiter, and the outputs of the neural network are the

values of all actions. Moreover, the neural network also uses

a weighted sum of the reward and future value to update its

output. The future value is the highest action value output by

the neural network when it takes a state vector of the next turn

as the input. When the model gets new rewards, it will update

the neural network parameters to let its output fit the reward.

The new state vector is updated from the current state just like

the way in RL-Recruiter. Practically, we use tricks mentioned

in [31] to train the network. For example, to avoid fluctuation

in model parameters and break the dependency among the

training data, we use two networks in the training process,

one for decision making and the other for updating parameters.

Also, we randomly pick up training data from the training set.

B. Datasets and Experiment Settings

In this section, we firstly introduce the two datasets to be

used in evaluation, and then explain the setups we apply in

the datasets. Besides, we give crucial parameter settings for the

three models. Finally, we show our experiment environment

settings, including hardware and software.

Datasets and Pre-processing. There are two data set

used to evaluate models, GeoLife GPS Trajectories(named

as GeoLife) [33] and Truck GPS data of the Chinese City

Shenzhen(named as Shenzhen Truck). [34]

The GeoLife was collected in the (Microsoft Research Asia)

Geolife project by 182 users in a period of over three years

(from April 2007 to August 2012). A GPS trajectory of this

dataset is represented by time-stamped points, each of which

contains the information of latitude, longitude. This dataset

contains 17,621 trajectories with a total distance of about 1.2

million kilometers and a total duration of 48,000+ hours.

The Shenzhen Truck contains 1000 participants. Each line

in this data has 4 columns of information: Truck ID, Date-

Time, Longitude, and latitude. It is a truck trajectory covering

Shenzhen and the surrounding areas. This dataset is organized

regularly. It contains about 10 weeks of trajectories and the

observations in the same week are arranged together, all of

which have column Truck ID, with values from 000 to 999.

For each truck, its trajectories in the same week are listed

together ordered by the date-time.

As the trajectories of two datasets cover various areas, we

select one specific square area for each dataset respectively, to

measure the participants’ coverage and in this area and com-

pare the performance of the different models. This is because

the distribution of the participant trajectories is uneven, so

we choose one area with the most concentrated trajectories

to obtain denser covered cells of participants in this area.

Additionally, a square area can simplify the problem because

we can easily divide the square into equal-size cells.

For the first dataset GeoLife, we select the area in Haidian,

Beijing, as is shown in Fig. 3(a). This square is in the

northern latitude from 39.975 to 40.025, and eastern longitude

from 116.31 to 116.35. We divide the square into 100 × 100
cells with equal size. As the date of the trajectories are

not successive, we concatenate trajectories on discrete days

for each participant, so long as the trajectories are in the

same year, until there are trajectories in 10 days for one

participant. Particularly, we select workdays and take out

weekends because the pattern of the human movement in the

weekdays differs from that in weekends. If a participant does

not have enough days, we just copy the trajectories on the

last day to be the new day’s data until this participant has

sufficient trajectories. This is because the data is sparse and

the days of the trajectories are dispersing. We use trajectories

from 01/01/2008 to 12/30/2011 and get 4 test periods. One

test period has 10 days, and one day has 2 time slots. The

first slot is from 0:00 to 8:00 and the second slot is from

8:00 to 20:00. These two slots have the relatively dense user

trajectories. There are 20 slots in one test period. We use the

average performance of 4 test periods to evaluate models.

The second dataset Shenzhen Truck is a larger one with

1000 participants, and the area we select is shown in Fig.

3(b). It is in the northern latitude from 22.2 to 22.7, and

east longitude from 113.75 to 114.25. Some of the area that

the dataset covers is in Hongkong, for these trucks always

travel between Shenzhen and Hongkong. We divide the square

into 100 × 100 cells with equal size. The square area is

larger because the trucks can move to distant places, thus

their trajectories cover a wider area than that of human. The

trajectories in this dataset are combined weekly. Since the

change in workdays to weekends has very little impact on the

trajectory of trucks, we do not filter out the weekends. We set

10 days to be one test period and use the average performance

of 5 test periods to evaluate models. In each day, there are 4

time slots, the first from 0:00 to 6:00, the second from 6:00 to

12:00, the third from 12:00 to 18:00, the forth from 18:00 to

24:00. Therefore, there are 10 days with 40 slots in one test

period. The Shenzhen data have more time slots for its denser

trajectories than GeoLife data.

As mentioned above, RL-Recruiter and baseline models

are trained based on data in the previous slot, and then

select participants to do the tasks in the current slot. In the

experiments, each dataset has its unique settings for models

to use. For example, in GeoLife, there are two slots in each

day. To ensure a better evaluation process, we train two sets of

models to do the test, one for the first period, and the others
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for the second period. The DQN-Recruiter and RL-Recruiter

are trained based on data in (j− 2)-th slot (j = 3, 4, 5, ...), to

capture pattern from the same period in a day, and then select

participants to do the tasks in j-th slot. The CrowdRecruiter

uses data from all slots in the same period in a day to do the

tasks in j-th slot (from j − 2, j − 4, j − 6, ... slots). Similarly,

we train four sets of models in Shenzhen Truck experiment

because there are 4 slots in a day. The DQN-Recruiter and RL-

Recruiter are trained based on data in (j−4)-th slot, and then

select participants to do the tasks in j-th slot (j = 5, 6, 7, 8, ...).
The CrowdRecruiter uses data from all slots in the same period

in a day to do the tasks in j-th slot (from j−4, j−8, ... slots).

Parameter Selection. For RL-Recruiter, we set the parame-

ters in their values of best performance, which are obtained by

altering one parameter with others fixed, to check the change in

model performances. We test these parameters in two datasets

under various settings. The ǫ in the ǫ− greedy method is set

to be 0.8, which means the model tends to explore the data

in the training process. And the epochs for decision model

learning e is set to be 900, which is shown to be enough

for the model to converge. The l in equation 3 is set to 100.

The model can get higher performance when the l rises to

approach the value of n, the number of participants we need

to select. However, the rise of this parameter can result in

a higher demand in time and space, while the gain in the

performance is insignificant, and we find 100 is a proper value.

The γ in equation 4 is set as 0.8 and the α in equation 5 is set

as 0.1. There are no crucial parameters need to be illustrated

in CrowdRecruiter. The neural network in DQN-Recruiter is a

fully connected network with an input layer, 2 hidden layers,

and an output layer. The number of nodes in the input and

output layer are equal to |Z|, the total number of participants

in datasets. Structure is set like this because the neural network

acts like value function Q(s, a) that map states and actions to

values. When we put state vector s to the neural network,

it outputs the value vector, whose value in the k dimension

stands for the value of action ak for the state s. The settings for

hidden layers differ among various datasets and they are fine-

tuned based on the performance of real datasets. We consider

both model performance and time efficiency to determine the

relevant parameters. The nodes in hidden layers are set to be

64 for GeoLife, and 256 for Shenzhen Truck.

Experiment Environment. To evaluate three methods, we

use a single server to do all the running jobs. The CPU is Intel

Xeon(R) E5-2560, and GPU is GeForce 1080Ti, with the 31G

memory. All the coding is on the Python language. The neural

network in DQN-Recruiter is built and trained using the open-

source package Keras.

C. Experiment Results

In this section, we first evaluate the overall performance of

three models. Then we give the slot-level performance to look

deeply into the relative coverage of the models in each slot

and analyze these information. Finally we show the running

time of the three models.

a: GeoLife b: Shenzhen Truck

Fig. 4. Relative coverage comparison with various number of selected
participants

a: GeoLife n = 20 b: GeoLife n = 40

c: Shenzhen Truck n = 100 d: Shenzhen Truck n = 200
Fig. 5. Relative coverage comparison in each slot

Overall Performance Comparison. The overall perfor-

mance indicates how good the models concerning two datasets.

Fig. 4 illustrates the overall relative coverage of three models

with the various number of selected participants n. Fig. 4(a)

demonstrates model performance in GeoLife, and Fig. 4(b)

showcases performance in Shenzhen Truck. We set various

n, and the values of n are shown on the x-axis. The height

of each bar in the Fig. 4(a) and the Fig. 4(b) represents the

average of relative coverage of all slots for the specific model

when selecting a fixed number of selected participants. For

example, in Fig. 4(a), the purple bar with x-coordinate 30 and

y-coordinate 0.64 suggests that when we use DQN-Recruiter to

select 30 participants in the FS-MCS tasks based on GeoLife,

and the average of relative coverage for all 20 slots is 0.64.

As is shown in Fig. 4(a), the RL-Recruiter outperforms the

DQN-Recruiter by achieving 14% higher relative coverage on

average, and the CrowdRecruiter by achieving 62% higher

relative coverage on average; in Fig. 4(b), it outperforms the

DQN-Recruiter by achieving 16% higher relative coverage on

average, and the CrowdRecruiter by achieving 21% higher

relative coverage on average. These results suggest that RL-

Recruiter achieves higher overall performance on two datasets.

Slot-level Performance Comparison. The slot-level per-

formance gives detailed information of the output from the
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models in each slot. In the Fig. 5(a/b), we display the relative

coverage of three models in Geolife with the n set as 20 and

40. In the Fig. 5(c/d), we display the relative coverage of three

models in Shenzhen Truck with the n set as 100 and 200. In

Fig. 5(a/b/c/d), the x-coordinate is the order of time slots, and

the y-coordinate is the relative coverage. Each point in the lines

of Fig. 5(a/b/c/d) indicates that under the corresponding slot

and participant number n, how good the models are behaving.

As there is no data to do the decision model learning on the

first day, all models iteratively select participants randomly

in the first two slots of GeoLife and the first four slots of

Shenzhen Truck. So, the relative coverage of the first two slots

in Fig. 5(a/b) and first four slots in Fig. 5(c/d) are similar. We

can draw the following two conclusions from Fig. 5. First,

RL-Recruiter can achieve higher relative coverage than the

baseline methods in most of the slots. Second, RL-Recruiter

can achieve a more stable performance than baselines.

We now give intuitive reasons that RL-Recruiter achieves

higher performance than two baselines. For CrowdRecuiter,

the model consists of two sequential phases. one is mobility

prediction, the other is participant selection. Mobility pre-

diction outputs the mobility for each participant respectively,

based on the trajectories of the participants in history. Partici-

pant selection outputs the optimal participant set according to

the mobility of the participants given by the first phase. Under

the circumstance of the FS-MCS tasks, the mobile users’

mobility profiles are collected from scratch so that it is sparse

and irregular in each slot. Therefore the mobility prediction

may not be accurate, and this misprediction is further amplified

in the second phase when the model tries to select a set of

participants based on the mobility prediction, leading to the

undesirable result. On the other hand, RL-Recruiter extracts

the implicit intelligence by using reinforcement learning, to

select participants and avoids explicit prediction on the par-

ticipants’ mobility. Therefore the outcome of the model is

improved. For DQN-Recruiter, the neural network maps states

and actions to rewards. Our target is to maximize the coverage

of the selected participants, so it is reasonable to make the

increase of the coverage as the component of the rewards.

However, this kind of rewards get a high variance, leading an

unstable training process for the DQN which fits the data by

tuning the parameters based on the loss. Besides, with the large

state space, it is hard to design a neural network to capture the

complex relationship between the states, actions, and rewards

and a small change in state vectors can lead to huge differences

in rewards. And we find that neural network overfits some data

during evaluation and impacts its performance. In contrast,

RL-Recruiter uses equation 5 to update the value function,

and this incremental method achieves a stable performance of

the RL-Recruiter. Both of them are approximate solutions, but

we find state aggregation more suitable in this problem.

Running Time. We estimate the running time to know the

time-efficiency of three models. We use Shenzhen Truck to

do the test and calculate the average of time under various

settings. The DQN-Recruiter needs about 20 hours to finish

10 slots under the framework of reinforcement learning with

the neural network. The CrowdRecruiter spends 4.3 minutes

on average. The RL-Recruiter needs 10.8 minutes on average.

These models in FS-MCS problem are designed to run offline,

thus there is enough time to complete the work, and the

running time of three models are all acceptable.

VI. DISCUSSION AND LIMITATION

Various formulations for participant selection problem.

In this paper, we first leverage reinforcement learning to

address the challenges in the problem of MCS participant

selection. With the gradual accumulation of mobility trajec-

tories over time, RL-Recruiter can make a good sequence of

participant selection decisions for each sensing slot. In fact,

there can be more constraints and goals for the optimization

(e.g. energy consumption, participants’ bandwidth, various

incentive mechanisms, and so on). Moreover, there could be

more types of tasks (either homogeneous or heterogeneous)

and the selection can be done on either offline or online. In

future work, we need to investigate whether the basic idea

of RL-Recruiter can be applied to other variants of problem

formulations with certain modifications and adjustments.

Joint learning with other factors. As we mentioned in

the related work section, there is a new trend to optimize

the MCS or general crowdsourcing by exploiting different

types of machine learning techniques [23]. In these works,

multiple factors of MCS are self-learned from multiple trials

over time, such as the participants’ expertise [28], required

incentives [24], and so forth, which are complementary to

RL-Recruiter. In some complex situations, they need to be

effectively integrated to jointly optimize the process of MCS.

For example, if sensing tasks require a certain expertise to

execute and incentives are quoted by participants, we need

to establish a joint learning framework by considering these

factors with the mobility pattern in RL-Recruiter. Thus, the

research on a joint learning framework or a system for MCS

participant selection are promising directions in the future.

Besides, the proposed lookup table will be large when there

is a huge number of participants, which may make it hard to

learn good parameters due to the sparsity problem. Thus, we

plan to further evaluate and improve our methods with more

datasets containing a larger set of participants in future work.

VII. CONCLUSION

This paper investigated making a good sequence of par-

ticipant selection decisions in the MCS with the gradual

accumulation of mobility trajectories. Specifically, we pro-

posed a novel framework, named RL-Recruiter, to select a

suitable set of participants in each sensing slot based on

reinforcement learning. The simulations on two real-world

mobility datasets demonstrated that RL-Recruiter outperforms

the baseline methods in both overall and slot-level coverage.

Besides, our approach is not only superior on average perfor-

mance but also outperforms in a more stable way.
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