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Abstract—Schizophrenia is a severe psychiatric disorder. We
use the CrossCheck study dataset to develop methods to predict
whether or not a patient with schizophrenia is going to relapse
from mobile phone data. Out of 75 patients in the year long
randomized controlled trial only 27 relapse episodes occur. We
apply various techniques to address predicting rare events in a
longitudinal dataset. We apply resampling methods combining
oversampling relapse examples and undersampling non-relapse
examples and impute missing data. To avoid overfitting, we
apply feature selection and transformation (i.e., PCA) to reduce
the feature dimensionality. We find the best relapse prediction
result using the first 100 principal components from both
passive sensing and self-reports with 30-day prediction windows
(precision=26.8%, recall=28.4%). If we demand the recall to be
greater than 50%, we find the best result using 25 principle
components from both passive sensing and self-reports with 30-
day prediction windows (precision=15.4%, recall=51.6%).

Index Terms—mobile sensing, mental health

I. INTRODUCTION

Serious mental illness, such as schizophrenia, schizoaffec-
tive disorder and severe forms of bipolar disorder typically
involve psychosis, and as a result, require long-term clinical
care and hospitalization. Psychosis impacts a person’s ability
to think clearly and deal with reality because of delusional
behavior. As a result, the illness affects perception, cognition,
emotion and behavior. Schizophrenia is a severe psychiatric
disorder that develops in approximately 1% of the world’s
population [1]. Most people with schizophrenia move between
periods of relative remission and episodes of symptom exac-
erbation, relapse and hospitalization. Evidence suggests that
clinical intervention at an early enough stage is effective in the
prevention of transitions into a full relapse state. This reduces
the need for hospitalization and can also lead to faster returns
to remission [2]. Existing clinical practices are inefficient in
detecting early precursors of relapse. Standard methods are
typically based on face to face interactions and assessments
with clinicians, conducted at set times and locations.

In this paper, we advance the vision of data-driven psychi-
atry and predict relapse using mobile phone sensing data [3],
[4] from a year-long study for patients with schizophrenia.
Relapse is defined as one of the following events [5]: 1)
psychiatric hospitalization, 2) increased frequency or intensity

of services, 3) increased dosage / additional medication and
25% increase in BPRS (the brief psychiatric rating scale)
[6] from baseline/last assessment, 4) suicidal ideation, 5)
homicidal ideation, 6) self-injury, and 7) violent behavior
resulting in damage to property or person.

We use the complete CrossCheck dataset [3] to predict
relapse. The CrossCheck study is conducted at Zucker Hillside
Hospital, New York City, a large psychiatric hospital, with 150
outpatients with schizophrenia for 12 months using rolling en-
rollment. The participants are randomized to one of two arms:
CrossCheck smartphone arm (n=75) or treatment-as-usual arm
(n=75). The CrossCheck app [3] continuously records partici-
pants’ physical activities (e.g., stationary, in a vehicle, walking,
etc.), sleep (duration, bed time, and rise time), and sociability
(i.e., the number of independent conversations a participant
is around and their duration). The app also collects audio
amplitude, light sensor readings, location coordinates, app
usages and call logs. The app uses a built-in EMA (ecological
momentary assessment) component to administer self-reported
EMAs. Relapses are determined by clinical assessors. In this
paper, we focus on the relapse date and predict whether or
not a participant is going to relapse the next day. Of the
75 participants enrolled in the CrossCheck smartphone arm,
61 completed data collection. Clinical assessors identify 27
relapse cases from 20 of the 61 patients that completed the
study.

Previous work using the CrossCheck dataset identified sta-
tistically significant associations between sleep, mobility, con-
versations, phone usage features and self-reported indicators
in schizophrenia. Using these features the authors [3] devel-
oped inference models capable of predicting aggregated EMA
scores that relate to self-reported mental health indicators (e.g.,
seeing things, hearing voices, feeling depressed) with a mean
error of 7.6% of the score range. In a follow up paper [4],
the authors predict BPRS scores of patients using mobile
sensing and self-reports. BPRS is a survey administered by
clinicians to evaluate symptom severity in schizophrenia. In
this paper, we advance the prior work [3], [4] by developing
models to address the challenges of predicting whether or not
a patient in the CrossCheck study is going to relapse from
mobile sensing data. Most standard classification algorithms
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assume a relatively balanced class distribution and equal
misclassification costs. An imbalanced dataset violates such
an assumption, which leads to poor classification performance.
We apply various techniques to address these challenges.
First, we apply resampling methods combining oversampling
relapse examples and undersample non-relapse examples to
the training dataset such that the number of relapse and non-
relapse examples are the same. Second, we impute missing
sensing data to make sure we have enough data to train
the classifiers. Finally, we apply feature selection (e.g., L1
regularization) and feature transformation (i.e., PCA) to reduce
the feature dimensionality.

To the best of our knowledge, we are the first to present
results for predicting relapse in out-patients with schizophrenia
using sensing data from mobile phones. The contribution of
this paper is as follows:

• We study the efficacy of using passive sensing data and
self-report EMAs to predict relapse. We present classi-
fication performance from using only EMA or sensing
data, and a combination of EMA and sensing data.

• We discuss several data preprocessing techniques to over-
come problems with a real-world relapse dataset includ-
ing aggregating daily features in different prediction time
windows, data cleaning, missing data imputation, feature
space transformation and dimensionality reduction.

• We find the best relapse prediction result using the first
100 principal components (PCs) from both passive sens-
ing and EMA with 30-day windows (precision=26.8%,
recall=28.4%). Note, that a number of studies [7] find that
most patients with schizophrenia experience symptoms
30 days before relapse. Our time window derived from
sensing data confirms this known finding.

While the performance of our predictor shows how chal-
lenging the problem of relapse prediction is, a key contribution
of the paper is what we discover in developing the relapse
classifiers (e.g., per-participant standardization does not help
with prediction, finding that a 30-day window offers the
best prediction). Accurately predicting relapse is a difficult
problem because relapses are rare. However, we find certain
model design considerations help with the development of
better models. Specifically, we find the prediction performance
peaks with a 30-day prediction window. Transforming the
features using PCA reduces the feature dimensionality and
generates more useful features. The principal components
reveal different behavioral patterns that are associated with
relapses. Finally, self-reported EMAs are not good relapse
predictors by themselves, but combining EMA and passive
sensing data improves the performance.

II. METHOD

We aim to predict whether or not a participant relapses
during the year-long span of the CrossCheck study using the
smartphone passive sensing data and self-report EMAs. In
what follows, we discuss the relapse dataset, data preprocess-
ing, behavioral features computed from the passive sensing
data, and prediction models in detail.

A. Dataset

The CrossCheck dataset is a rich, unique psychiatric dataset;
it includes: mobile sensing data, pre-post surveys, weekly
EMAs by the participants associated with their symptoms,
BPRS scored clinically administered surveys across the year
on a weekly to monthly basis depending on patients’ condition
severity, and the details associated with relapse of patients.

In the dataset, 61 out of 75 participants in the CrossCheck
smartphone arm completed the full year-long study. One
interesting insight is that while there were many issues of
missing data, and lost and stolen phones during the study the
vast majority of participants completed the study with good
to high compliance. This strongly counters the occasionally
aired opinion that people with serious mental illness can not
adopt and use mobile technology. 26 of the 61 participants are
female and 35 male. There are 24 African American, 5 Asian,
2 Multiracial, 29 Caucasian and 1 Unknown in the study. The
average number of days a participant is in the study is 322 days
(SD = 93, median = 361). We identify 27 relapses from 20
participants, in which 16 participant relapse once, 1 participant
relapse twice, and 3 participants relapse three times each.

The CrossCheck app dataset includes a wide range of
behavioral passive sensing data from the phone. Specifically,
it includes physical activities, locations, ambient sound levels,
voice/noise labels, number of calls and text messages, appli-
cation usage, screen lock/unlock, and ambient light intensity.
We compute features from the passive sensing data on a daily
basis, which describe participant’s behaviors (e.g., duration of
different physical activities in a day, conversation duration and
frequency, different types of places visited, app usage).

The dataset includes a 10-item EMA self-reported every
Monday, Wednesday, and Friday. The EMA asks participants
to score themselves on been feeling calm, social, bothered by
voices, seeing things other people can’t see, feeling stressed,
worried about people trying to harm them, sleeping well, able
to think clearly, depressed and hopeful about the future.

B. Behavioral Features

We incorporate passive sensing features proposed in [3], [4].
These features are predictive of self-reported and clinician-
administered symptoms among schizophrenia patients. The
features are computed on a daily basis and also broken down
into four epochs of the day: morning (6am-12pm), afternoon
(12pm-6pm), evening (6pm-12am) and night (12am-6am).
These epoch features allow us to model people’s behaviors
during different parts of the day (e.g., walking in the morning,
sleeping in the afternoon, not socially engaged in the evening,
using the phone a lot during the night period). Specifically, we
compute the following features. To measure physical activities,
we compute duration for different activities (e.g., on foot, still,
in vehicle, and on bicycle), and in order to measure mobility,
we compute the number of locations visited and distance
traveled. To measure sleep patterns, we infer sleep duration,
sleep start, and end time from sensing data, and to measure
ambient environmental context, we compute the amplitude of

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

51



ambient sound and ambient light. We also compute face-
to-face conversations features which consist of conversation
frequency and duration, and phone-usage features including
the number of phone calls, SMS, and lock/unlock frequency
and duration. We also compute semantic location [8]. Specifi-
cally, we consider the following places: home, food, travel,
art&entertainment, nightlife, education, parks&outdoors, li-
brary, shop, gym, medical and residence. We compute the time
spent at these places every day. We first identify significant
locations where a participant dwells for a significant amount of
time of the day. We find significant locations by clustering the
GPS coordinates collected in a day using density-based spatial
clustering of applications with noise (DBSCAN) [9]. The
centroid of each cluster is considered a significant location.
We assume participants are usually at their homes sleeping
between 2 am to 6 am. Therefore, we label a significant
location as home where a participant spends most of the time
between this period of the night. We then use the Foursquare
API [10] to label the other significant locations.

C. Data preprocessing

In what follows, we describe our data preprocessing, which
include aggregating daily features in different relapse predic-
tion time windows, data cleaning, missing data imputation,
feature space transformation and dimensionality reduction.

Relapse prediction time window. We define the relapse pre-
diction window as the number of days before the day identified
as the start of a relapse. Studies find that most patients with
schizophrenia experience symptoms 30 days before relapse
[7], [11], [12]. Therefore, we evaluate relapse prediction using
four different time windows: 7 days, 14 days, 21 days, and 30
days. We summarize the daily features within the prediction
window as the average value of each of the features. The
prediction time window construction is illustrated in Fig. 1.
Specifically, suppose the prediction window size is 7 days, we
first identify the date of the first relapse, then we group the
7 days before the relapse day into a 7-day block and label
the block as 1 (relapse). We compute the average value of
every feature within the 7-day block. Then we group 7 days
before the first day of the relapse block into a 7-day block
and label the block as 0 (non-relapse). We repeat until the
method reaches the beginning of the study. If the last block is
shorter than 7 days, we discard the block. We discard 30 days
of data after each relapse because many of the participants
are hospitalized and can not have phones while on psychiatric
units at the hospital. We repeat the above steps to group and
label prediction windows for the rest of the data.

0 0 1 0 1

day of the first relapse day of the second relapse

shorter than the window, discard. shorter than the window, discard.30 day cooldown period.

Fig. 1: Prediction window construction. Each window is
labeled as 0 (non-relapse) or 1 (relapse in the following day).

Data cleaning and imputation. We compute behavioral
features on a daily basis. Poor daily data quality may skew
the behavioral features; we exclude the days with less than 19
hours of data. We use this threshold across this paper because
we find lowering the threshold (e.g., missing 10 hours of
data) does not include significantly more data whereas the data
quality is poorer. Specifically, we compute the number of hours
of data we have received for each passive sensing data. We
label the sensing data as missing if less than 19 hours of data
are collected in that day. We also control the data quality for
aggregated time window features. We label the average feature
values as missing if the feature misses over 70% of the days
in the time window. We exclude time windows with more than
70% of feature values that are missing from our analysis. We
heuristically pick the threshold to balance the data quality and
make sure we have enough data for our analysis. The number
of non-relapse and relapse cases are shown in Table I. We use a
Singular Value Decomposition based method SVDimpute [13]
to impute missing values. SVDimpute is a robust and sensitive
method for missing value estimation surpassing the commonly
used row average method.

Per-participant standardization. We use per-participant stan-
dardization to remove between-individual differences from the
behavioral features. We hypothesize that different people may
have different behavioral baselines. For example, a construc-
tion worker might be more physically active than an office
worker whereas they have the same mental health outcomes
(e.g., relapse). However, the within-individual differences in
behaviors might be more inductive of changes in mental
health. Per-participant standardization removes the between-
individual behavioral differences and keeps only within-
individual behavioral differences. We test our hypothesis in
Section III.

Per-participant standardization transforms a participant’s
passive sensing features and EMA responses according to their
first 30 days’ data. Specifically, we first compute the mean
µ30 and standard deviation σ30 for each of the features in
the first 30 days, then we transform the feature as follows:
vt = (v−µ30)/σ30, where v is the original feature vector and
vt is the transformed feature vector. We apply per-participant
standardization before aggregating features into prediction
windows. We evaluate relapse prediction performance with or
without per-participant standardization.

Feature space transformation and dimensionality reduc-
tion. We use principal components analysis (PCA) [14] to
transform the feature space and reduce the feature dimension-
ality. PCA transforms a set of observations of possibly corre-
lated variables into a set of values of linearly uncorrelated vari-
ables called principal components. The principal components
are defined in a way that the first principal component accounts
for as much of the variability in the data as possible, and each
succeeding component in turn accounts for as much of the
rest of the variability in the data as possible. The resulting
principal components are an uncorrelated orthogonal basis set.
The original observation (i.e., the feature values in a prediction
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window) can be reconstructed by a linear combination of the
principal components. We use the weights of each PC as
transformed features. We can use a smaller number of PCs to
reconstruct the original observation, which leads to a smaller
number of features (i.e., reduce the dimensionality). Each PC
can be interpreted as a behavioral pattern. For example, if
a PC has large positive weight in the component for phone
unlock duration and phone call duration features, and large
negative weight for still duration, we would interpret this PC
represents a high phone usage and high sedentary behavioral
pattern.

We evaluate relapse prediction for different PCA setups.
We first use the raw feature values to predict relapses. Then,
we experiment with using different number of PCs to predict
relapse. Specifically, we test using the first 1, 2, 5, 10, 25, 50,
and 100 PCs, which explain 28.9%, 45.1%, 69.5%, 80.1%,
90.2%, 96.9%, and 99.9% of the variance in sensing and EMA
data combined, to predict relapses.

D. Relapse Prediction as Binary Classification
Relapse prediction is a binary classification problem, i.e., we

classify a n-day time window as non-relapse or relapse. We
evaluate four popular classifiers: logistic regression, SVM with
linear kernel [15], SVM with radial basis function kernel (RBF
kernel) [16], and random forest [17]. The classifiers include
linear classifiers (i.e., logistic regression, linear SVM), non-
linear classifiers (i.e., RBF SVM, random forest), and non-
parametric classifier (i.e., random forest). We apply elastic net
regularization [18] on logistic regression and linear SVM to
avoid over-fitting. The elastic net linearly combines the L1
and L2 penalties of the lasso and ridge methods. We use a
grid search to find the best model hyper-parameters. We aim
to find how different types of classifier perform in predicting
relapses.

There are two major challenges in predicting relapses. First,
we do not have a large amount of data to train a classification
model. We have the most examples with 7-day prediction
window, in which 1641 windows are non-relapses and 16 are
relapses. Second and more importantly, the participants do not
relapse frequently, therefore, our dataset is imbalanced. In fact,
only 0.97% of the 7-day prediction windows are labeled as
relapse. Training the classifiers without augmenting the dataset
results in 0% of recall. Prediction in an imbalanced dataset
requires a large dataset. A future work could collect a much
larger dataset over many years to help build a reliable relapse
predictor. In what follows, we discuss our method to address
the challenges in detail.

Resample the training data. To reduce the data bias in the
dataset (i.e., more non-relapses than relapses), we apply data
resampling techniques to balance the dataset. Resampling tech-
niques are widely used to address the bias in an imbalanced
dataset (i.e., majority cases have higher weight than minority
cases). We use Synthetic Minority Over-sampling Technique
(SMOTE) [19] to balance the training set by over-sampling the
minority class (i.e., relapse) and under-sampling the majority
class (i.e., non-relapse). Instead of over-sampling the minority

classes by replication, SMOTE creates “synthetic” minority
examples. The synthetic minority examples are generated from
k-nearest neighbors of the existing minority examples [19].
We use 5-nearest neighbors to generate synthetic minority
examples. SMOTE has shown to be more effective than simple
under-sampling and over-sampling methods.

We utilize 2-level 3-fold stratified cross validation (CV)
to evaluate the relapse prediction performance. The top level
CV evaluates the prediction performance and the second
level CV selects model hyper-parameters. In order to avoid
selecting a random seed that leads to impractically high or low
prediction performance, we repeat the 2-level 3-fold stratified
cross validation 5 times and report the average prediction
performance metrics.

III. RESULTS

In what follows, we discuss our relapse prediction results in
detail. We first define our relapse prediction baseline, followed
by the best results from each of the four classifiers (i.e., logistic
regression, SVM with linear kernel, SVM with RBF kernel,
and random forest). We then discuss how different classifier
design considerations (i.e., using raw feature or standardized
features, different data types, prediction window length and
PCA) affect prediction performance. Finally, we present the
features that are important to predict relapse.

A. Relapse prediction baseline

Because there is no prior work on using passive sensing
to predict relapse in schizophrenia patients, we use random
guessing as our prediction baseline. Specifically, we randomly
label a case with either relapse or non-relapse with the same
probability. Other simple prediction baselines (e.g., assign the
same label to all examples) produce either 100% or 0% in
recall, which is not informative than random guessing in this
case because precision and recall are both important metrics in
predicting relapse. We then compute precision, recall and F1
score for the random labeled cases. The baseline performance
is presented in Table I.

TABLE I: Relapse prediction baseline according to random
guessing for a classification.

window len #non-relapse #relapse precision recall F1

7 1641 16 0.010 0.500 0.019
15 861 18 0.020 0.500 0.039
21 578 20 0.033 0.500 0.063
30 411 19 0.044 0.500 0.081

B. Results overview

Next, we present the best prediction results (i.e., highest
F1 score) from the four classifiers obtained using grid search.
Table II shows the corresponding prediction windows length,
the number of principal components (PCs), precision, recall
and F1 score that are associated with best performance from
each of the classifiers. Interestingly, all classifiers achieve
the best F1 score using non-standardized data with 30-day
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prediction time window. We suspect behavioral patterns over
a longer period (e.g., 30 days) are more indicative of future
relapse. SVM with RBF kernel achieves the best F1 score
among the four classifiers using the first 100 PCs obtained
from both sensing and EMA data. The precision is 26.8% and
the recall is 27.4%. To put these numbers into perspective,
there are 411 cases in the 30-day dataset, 19 of which are
relapses. The classifier predicts 19 cases that are relapses,
5 of which are correct and 14 are incorrectly identified as
relapse. 14 relapses are misclassified as non-relapse. Logistic
regression and SVM with linear kernel achieve slightly worse
F1 scores but higher recall. The logistic regression model
achieves 35.8% of recall and 21.4% of precision. The SVM
with linear kernel achieves 32.6% of recall and 23.3% of
precision. The random forest model achieves the worst F1
score, with 18.9% of recall and 28.1% of precision. All four
classifiers beat the baseline in terms of the F1 score and
precision. However, the recall is worse than the baseline.

TABLE II: Best prediction results according to the F1 score

data type classifier window len
/ # of PCs precision/recall/F1

sensing+ema svm rbf 30 / 100 0.268/ 0.284/ 0.274
sensing+ema logistic regression 30 / 50 0.214/ 0.358/ 0.265
sensing+ema svm linear 30 / 50 0.233/ 0.326/ 0.262
sensing random forest 30 / 25 0.281/ 0.189/ 0.223

In summary, SVM with RBF kernel, SVM with linear
kernel, and logistic regression achieve similar relapse predic-
tion performance, whereas random forest achieves the worst
performance. 30 days is the best time window to predict
relapse. Combining passive sensing data and self-report EMA
responses help predicting relapse. Standardizing every par-
ticipant’s data does not help improve performance. On the
contrary, we observe poorer performance with standardized
data. Using PCA to combine features and reduce the feature
dimensionality improve performance. We discuss how using
different data as predictors, prediction window, and PCA
affects prediction performance in the following sections.

C. Prioritizing the recall

In the previous section, we present the best prediction results
in term of the F1 score. The F1 score is the harmonic average
of the precision and recall, which gives the same weight
to precision and recall. However, misclassifying relapse as
non-relapse may have severe consequences compared with
misclassifying non-relapse as relapse. Misclassifying a relapse
as non-relapse may lead to non-action (e.g., fail to deliver
intervention) and miss the best opportunity to treat the patient,
whereas misclassifying a non-relapse as relapse may lead
to unnecessary intervention and clinical visits thus increased
cost. These are important considerations in building a real-
time relapse prediction and clinical intervention system as
envisioned in [20]. While this paper represents a first dive
into developing a predictor for relapse we believe that these
performance figures while good considering the challenge of

the problem would be significantly improved if we had more
relapse examples. The study power analysis underperformed
in the sample and the duration of the study - a larger N or
longer study duration is part of future work. In what follows,
we present prediction results with the constraint that recall
≥ 50%. The results are presents in Table III.

TABLE III: Best prediction results based on the F1 score with
recall ≥ 50%

data type classifier window len
/ # of PCs precision/recall/F1

sensing+ema svm linear 30 / 25 0.154/ 0.516/ 0.236
sensing+ema svm rbf 30 / 50 0.140/ 0.537/ 0.208
sensing+ema logistic regression 30 / 2 0.068/ 0.505/ 0.118
ema random forest 21 / 1 0.055/ 0.562/ 0.100

SVM with linear and RBF kernels, and logistic regression
achieve the best F1 scores when recall ≥ 50% using both
sensing and EMA data with 30-day time window whereas
random forest achieves the best result with 21-day window
EMA data. All models beat the baseline in term of precision,
recall and F1 score. The random forest model achieves the
best F1 score using only EMA data as predictors with 21-day
prediction window. However, the performance is only slightly
better than the 21-day window baseline. We discuss the result
from SVM with linear kernel in detail. The precision of the
model is 15.4% and the recall is 51.6%. The classifier predicts
64 cases that are relapses, 10 of which are correct and 54 are
incorrectly identified as relapse. 9 relapses are misclassified as
non-relapse. Compared with the result with the best F1 score,
the model correctly identifies more relapses with the cost of
more false positives. The result shows that in practice, we can
bias our models to be more sensitive to relapse with the cost
of more false positives. To do so, we could adapt our model
parameters by assigning different weights to precision and
recall thus obtain a more desirable relapse prediction model.

D. Prediction performance analysis

In what follows, we discuss how different model decisions
affect the relapse prediction performance. Specifically, we
focus on whether or not we standardize each participant’s
features, what types of data are included in the prediction
model (i.e., EMA, sensing, and both EMA and sensing), what
prediction window we use (i.e., 7-day, 14-day, 21-day, or 30-
day), and whether or not we apply PCA to transform the data
and how many PCs we should use if PCA is applied.

Per-participant standardization transforms a participant’s
passive sensing features and EMA responses according to their
first 30 days’ data. We first compute the mean µ30 and standard
deviation σ30 for each of the features in the first 30 days, then
we transform the feature as follows: vt = (v − µ30)/σ30,
where v is the original feature vector and vt is the trans-
formed feature vector. Figure 2(a) shows the best F1 scores
obtained from four classifiers with or without per-participant
standardization. Applying per-participant standardization leads
to poor F1 scores. Logistic regression and SVM models show
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Fig. 2: Predicting F1 score from different models.

overall similar F1 scores, where the F1 scores decrease from
0.256 to 0.169 after applying per-participant standardization.
The results show that per-participant standardization does not
improve the performance. We suspect the absolute behavioral
levels (e.g., sleep duration), which are eliminated by per-
participant standardization, are helpful in predicting relapse.

Data types. We inspect how EMA responses and passive
sensing data help predicting relapse. Figure 2(b) shows the
best F1 scores obtained from four classifiers with three set-
tings: 1) predict using only EMA responses, 2) predict using
only passive sensing data, and 3) predict using both EMA
responses. All classifiers perform poorly using only EMA
responses, where the F1 scores are around 0.1. However,
the F1 scores significantly improve when we use passive
sensing data for prediction, where SVM with RBF kernel
achieves the best performance with F1 = 0.222, precision =
22.2%, recall = 23.2%. Random forest achieves similar pre-
diction performance. Logistic regression and SVM with linear
kernel, however, perform poorer than RBF SVM and random
forest. We suspect the non-linearity of the RBF kernel and
random forest helps to reduce under-fitting. We achieve the
best prediction performance by combining both EMA and
passive sensing. SVM with RBF kernel achieves the best
performance with F1 = 0.274, precision = 26.8%, recall =
28.4%. Logistic regression and linear SVM achieve slightly
poorer performance whereas random forest achieves a poorer
F1 score compared with using only sensing data. In summary,
we predict relapse more accurately using passive sensing
data compared with only using self-report EMA. Combining
passive sensing data and EMA self-reports further improves
the prediction performance.

Prediction window length. Figure 2(c) shows the best F1
scores obtained from four classifiers with four different pre-
diction window settings: 7-day, 14-day, 21-day, and 30-day.
The F1 scores increase for all classifiers as we increase
the window length from 7 days to 30 days. We suspect
behavioral patterns over a longer period are more indicative of
future relapse. Therefore, we find better prediction results with
longer prediction windows. However, increasing the prediction
window length reduces the number of examples available for
training and testing prediction models. Take the RBF SVM
as an example, the classifier achieves F1 = 0.053 with 7-day
window, which is 0.034 higher than the baseline shown in

Table I, whereas it achieves F1 = 0.274 with 30-day window,
which is 0.193 higher than the baseline. We suspect summariz-
ing behavioral features in shorter windows leads to more noise
in the feature data because of the short-term behavior changes
whereas longer windows smooth the behavioral data so that
the features captures participants’ behaviors more accurately.

PCA. Figure 2(d) shows the best F1 scores obtained from four
classifiers with different PCA settings. As we include more
PCs in the predictions, the F1 scores increase for all classifiers.
Two linear classifiers, linear SVM and logistic regression,
achieve the best F1 scores when using 50 PCs, which is higher
than using the raw feature data without PCA transformation.
RBF SVM achieves the best F1 score when using 100 PCs,
which again is higher than using the raw feature data. Random
forest achieves the best F1 score when using 25 PCs, however,
the prediction performance of random forest is poorer than
the other three classifiers. The results show transforming the
features using PCA reduces the feature dimensionality and
generates more useful features by combining different features
together. We discuss particular PCs in later sections.

E. Useful Features
In what follows, we present features selected by L1 reg-

ularization in logistic regression training. We do not trans-
form the features using PCA so that we can interpret how
features are related to relapse. We choose to present logistic
regression coefficients instead of other classifiers because it is
easier to interpret parameters in logistic regression - positive
coefficients indicate positive correlations whereas negative
coefficients indicate negative correlations. We first present
features selected by the model using both sensing and EMA
data, then, we present features selected by the model using
only sensing data. The selected features and their regression
coefficients are presented in Table IV.

Sensing and EMA. The logistic regression model achieves
22.6% precision and 36.8% of recall using both sensing and
EMA data. The prediction window is 30 days. The L1 regular-
ization selects 81 out of 144 features in training. We present
the top 10 features with the largest absolute coefficients. We
find that participants who have more conversations in the
morning, walk more in the evening but visit fewer places
in the evening, visit fewer educational, travel, and residential
places, self-report a lower score in seeing things, but spend
more time responding to EMAs are more likely to relapse.
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TABLE IV: L1 selected features in logistic regression.

sensing+EMA (precision=22.6%,
recall=36.8%)

sensing (precision=12.5%,
recall=42.1%)

feature (coeff) feature (coeff)

convo duration morning (2.631) convo duration morning (0.659)
on foot duration evening (2.553) voice ratio night (-0.319)
voice ratio morning (2.540) number of calls made (-0.251)
visit education places (-2.139) on foot duration evening (0.193)
# of visited places evening (-1.952) visit outdoors places (0.084)
EMA response time (1.876) call duration morning (-0.008)
EMA (seeing things) (-1.650)
audio amplitude afternoon (-1.620)
visit travel places (-1.597)
visit residence places (-1.506)

Please note, the L1 regularization also selects 5 EMA items
(i.e., depressed, calm, voices, think, harm) and positive scores
to predict relapse. Specifically, participants who self-report
higher scores in depressed, voices, and harm items, and lower
scores in calm, and thinking are more likely to relapse.

Sensing only. The logistic regression model achieves 12.5%
of precision and 42.1% of recall using sensing data only. The
prediction window is 30 days. The L1 regularization selects 6
out of 130 features in training. Specifically, participants who
have more conversations in the morning, spend more time
walking in the evening, visit more parks and outdoor places,
makes fewer phone calls are more likely to relapse.

F. Behavioral Principal Components

In what follows, we present the top 5 PCs with the largest
absolute logistic regression coefficients as shown in Table V.
The top 5 PCs, their regression coefficients, and characteris-
tics. A positive coefficient indicates the PC is positively cor-
related with relapse (i.e., larger PC weight indicates a higher
probability of relapse). and a negative coefficient indicates a
PC is negatively correlated with relapse.

PC 1 describes a behavioral pattern in which participants
spend less time responding to EMAs, report lower scores in all
EMA items, and makes more phone calls. Participants whose
behaviors are similar to PC 1 are less likely to relapse.

PC 19 describes a behavioral pattern in which participants
visit more places, spend less time at nightlife, arts and enter-
tainment, parks and outdoor, and gym places, spend more time
at residence, medical and education places, receive more phone
calls but do not make many calls, have more conversation
during the evening, and spend more time responding to EMA
questions. Participants whose behaviors are similar to PC 19
are more likely to relapse.

PC 7 describes a behavioral pattern in which participants
make and receive more calls, have less conversation in the
morning but visit more places in the evening. Participants
whose behaviors are similar to PC 7 are less likely to relapse.

PC 36 describe a behavioral pattern in which participants
visit fewer places related to medical, gym, library but visit
more places relate to arts and entertainment, home, residence.
They report high scores in hearing voices, harm, and feel less

TABLE V: PCs with the largest absolute coefficients.

PC coefficient features

1 -437.7
low EMA item scores, respond EMAs fast, more
phone calls especially in the evening and night, ride
bikes

19 395.8

visit more places; visit fewer places relate to
nightlife, arts and entertainment, parks and outdoor,
and gym; visit fewer places relate to residence,
medical and education; respond EMAs slow; receive
more phone calls but make fewer phone calls in the
afternoon; have more conversations in the evening

7 -348.0
make and receive more calls, have less conversation
in the morning, visit more places in the evening,
ambient light is bright at night.

36 307.0

visit fewer places relate to medical, gym, and
library; visit more places relate to arts and
entertainment, home, and residence; report higher
EMA score in items including hearing voices, harm,
and feel less hopeful

8 305.7

visit more places relate to medical; more SMS use at
night; more conversation at night; fewer phone calls
in the morning; bright at night; more phone use at
night; wake up late.

hopeful. Participants whose behaviors are similar to PC 36
are more likely to relapse.

PC 8 describe a behavioral pattern in which participants
visit more places related to medical assistance, use SMS more,
phone use through the day, and conversations at night, fewer
calls in the morning, bright light conditions during at night,
and wake up late. Participants whose behaviors are similar to
PC 8 are more likely to relapse.

IV. DISCUSSION

In what follows, we discuss our results. Our results show
that per-participant standardization fails to improve prediction
performance. The standardized feature values indicate how
many standard deviations the true value is from the feature
mean value, which measures the within-individual behavior
differences. Applying per-participant standardization for re-
lapse prediction assumes similar deviations from a partici-
pant’s average behaviors across all participants account for re-
lapse. However, our results show that applying per-participant
standardization leads to poorer prediction performance, which
may indicate that the between-individual differences are more
predictive of relapse than within-individual differences.

We find the 30-day time window is the best time window
to predict relapse. Summarizing behavioral features in shorter
windows leads to more noise in the feature data because of the
short-term behavior changes, whereas longer windows smooth
the behavioral data. Also, the pre-relapse behavioral changes
might be gradual and the behavioral changes may start many
days before the relapse. A shorter time window may lead to
lower resolution of changes in behaviors (i.e., behaviors in
consecutive time windows are similar despite one is relapse the
other one is not), thus more challenging for the classifiers to
identify relapse signals. Note, that a number of studies [7] find
that most patients with schizophrenia experience symptoms 30
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days before relapse. Our time window derived from sensing
data confirms this known finding.

We show that using passive sensing data greatly improves
the prediction performance compared with using only self-
report EMA. Combining both passive sensing and EMA further
improves the prediction performance. Our results indicate that
passive sensing data has the potential to unobtrusively monitor
and predict relapse in the future.

Semantic location features, phone calls and conversational
features are good predictors of relapse. Transforming the
behavioral feature space using PCA provides more “inter-
pretable” behavioral patterns. Our findings show that behav-
ioral features that are more interpretable are more likely to be
indicative of relapse. Future work should focus on designing
features that are interpretable and capture people’s higher
level behaviors (e.g., go to work, socializing with friends,
exercising) by combining different sensor streams. Exploring
behavioral patterns (e.g., behavioral principle components)
would further give more insight into relapse episodes. It is very
important that the results from mobile sensing and machine
learning are interpretable by clinicians working in the field.

Misclassifying relapse as non-relapse may have severe
consequences compared with misclassifying non-relapse as
relapse. Misclassifying a relapse as non-relapse leads to non-
action (e.g., fail to deliver the intervention) and miss the
best timing to treat the patient, whereas misclassifying a non-
relapse as relapse may lead to unnecessary clinical visits thus
increased cost. We show that our models achieve 53.7% of
recall with the cost of lower precision, which is still better
than the baseline defined in Section III-A. For practical use,
we need to carefully evaluate the precision recall trade off
and select the best model that maximize recall (i.e., identify
as many patients at risk as possible) while minimizing the un-
necessary cost due to misclassifying non-relapses as relapses.

The relapse prediction model presented in this paper shows
great promise in using passive sensing to predict relapse. The
models show reasonable performance using passive sensing
and self-reports as well as just using passive sensing. A future
real-time relapse system based purely on passive sensing opens
the way for continuous assessment of relapse.

V. CONCLUSION

To the best of our knowledge, this is the first paper to present
results for predicting relapse in outpatients with schizophrenia
using passive sensing data from mobile phones. We presented
and evaluated different prediction model design considerations
and found that linear models (e.g., logistic regression and
linear SVM) using PCA-transformed passive sensing and self-
report EMA features best predict relapse with 30-day time
window. We discussed the features and behavioral patterns that
are predictive of relapse. Although our prediction performance
present challenges to be deployed today in clinical practices,
our results show promises in using passive sensing to help
clinicians better identify patients at risks of relapse. We
hope this paper leads to better designed studies, datasets and

predictive models for relapse and ultimately helps transition
psychiatry to be more data-driven.
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