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Abstract—The demand for a ubiquitous and accurate indoor
localization service is continuously growing. Cellular-based sys-
tems are a good candidate to provide such ubiquitous service
due to their wide availability worldwide. One of the main
barriers for accuracy is the large number of models of cell
phones, which results in variations of the measured received
signal strength (RSS), even at the same location and time. In
this paper, we propose OmniCells, a deep learning-based system
that leverages cellular measurements from one or more train-
ing devices to provide a consistent performance across unseen
tracking phones. Specifically, OmniCells uses a novel approach
to multi-task learning based on autoencoders that allows it to
learn a rich and device-invariant RSS representation without any
assumptions about the source or target devices. OmniCells also
incorporates different modules to boost the system’s accuracy
with RSS relative difference-based features and to improve the
deep model’s generalization and robustness.

Evaluation of OmniCells in two realistic testbeds using differ-
ent Android phones with different form factors and cellular radio
hardware shows that OmniCells can achieve a consistent median
localization accuracy when tested on different phones. This is
better than the state-of-the-art indoor cellular-based systems by
at least 101%.

I. INTRODUCTION

Recent years have witnessed an ever-growing demand for

accurate and ubiquitous indoor positioning systems in many

applications. Towards achieving this goal, WiFi-based indoor

localization is widely adopted. WiFi-based indoor localization

systems harness the Received Signal Strength (RSS) captured

by the user’s phone from WiFi access points as signature

for the location identification, building a WiFi fingerprint

database. Fingerprinting is a two-phase technique, consisting

of an offline and an online phase. During the offline phase,

cellular signals are captured at known points (i.e. fingerprints)

in the area of interest where their strengths are used to

characterize the corresponding locations. Subsequently, the

collected fingerprints are used to build a localization model for

estimating the user location in the online phase given a signal

scan. The major challenge for fingerprint-based approaches is

the extraction of robust and discriminative signatures across

space and across different devices.

On the other hand, cellular based techniques have a number

advantages that make them more attractive than their WiFi

counterparts. First, cellular coverage far exceeds the coverage

of WiFi networks as cell towers are dispersed with high density

across the inhabited world. Second, all cell phones including

low-end ones, by definition support cellular technology. Third,

a cellular-based localization system will still work even with

a failure in buildings’ electrical infrastructure as cellular

base stations are better equipped to tolerate power failures.

Finally, network configuration changes rarely occur due to the

consequent significant expense and complexity of this process

when performed frequently. This leads to a ubiquitous and

stable operating environment for localization systems, which

does not involve tedious re-calibration.

Current cellular-based localization techniques [1]–[3] are

designed to capture the fingerprint of the received signal

strength from the different cell towers detectable in the area

of interest. These fingerprints are then used to train a classifier

that differentiates between different reference points in the

area of interest. Different types of classifiers are proposed in

literature, e.g. Support Vector Machines [2] and K Nearest

Neighbors [3]. For better feature representation ability and

localization performance, deep learning was adopted in [1].

A common assumption made by these techniques is that the

distribution of the collected cell fingerprints is independent of

the phone, such that a localization model trained on one device

can be leveraged by other devices. In practice, however, dif-

ferent cellphones may in fact have different hardware/software

specifications, leading to different distributions even when the

user is stationary at the same location. As such, the quality of

the localization models drops significantly in scenarios where

the system is trained with a specific phone and tested with

different types of phones, which is the typical real world

use-case. To solve this problem without compromising on

accuracy, a localization model should be trained for every pos-

sible consumer phone. However, this solution is intrinsically

impractical due to the huge number of phones available on

the market and the requirement to collect sufficient amounts

of data using each individual phone to train a corresponding

model.

To tackle the above problems, we propose OmniCells: a

deep learning-based cellular localization system trained with

data collected from only a single or few phones. It is capable of

providing stable and accurate positioning even when used by
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(a) HTC One X9 phone. (b) Motorola Moto G5 phone.

Fig. 1. Heatmaps of the normalized RSS received by different phones from
an arbitrary cell tower in the area of interest.

other unseen phones without requiring any information about

the considered phones. This is made possible by extracting

device invariant features, i.e. relative features from the data

recorded by the calibration phone(s) during the offline phase.

Towards this, we leverage autoencoder networks to transform

the input distribution of the raw RSS space to a latent space
where different phones’ data are identically distributed. These

features are then harnessed to train a deep neural network to

map the transformed RSS data to the user’s location. In the

tracking phase, the transformed features will be extracted from

the cell measurements reported by an unseen phone and then

fed to the trained deep model to estimate the user location.

Evaluation is held in two different testbeds using different

Android phones. We obtained results confirming that Om-
niCells performs equally when trained and tested using
different phones with a consistent median location error of

1.67m and 2.05m in a small and a large testbed; respectively.

This accuracy surpasses the accuracy of the state-of-the-art

cellular-based techniques in the considered testbeds by more

than 111.9% and 100.98%; respectively.

The rest of this paper is structured as follows. In Section II,

we provide a brief description of the problem and an overview

of the proposed system. Section III presents in detail the

methodology proposed by OmniCells. In Section IV, we

present the detailed evaluation of OmniCells. Sections V and

VI discuss related work and conclude the paper respectively.

II. PROBLEM DEFINITION AND SYSTEM OVERVIEW

A. Problem Definition

The device heterogeneity problem can be observed from

the heatmaps in Fig. 1. Data was collected by two different

phones at the same locations from the same cell tower. The

figure shows that the two phones has different heatmaps over

the area of interest, which negatively affects the localization

performance if one of the phones is used to construct the

cellular fingerprint while the other is used for testing (as we

quantify in the evaluation section IV-C1).

The problem can then be formalized as follows. Consider

the training of a localization model with fingerprints collected

by a calibration device (denoted as Dc), which will be used

with a different tracking device (detonated as Dt). Each
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Fig. 2. OmniCells system architecture.

cellular scan from each device (xc and xt respectively) consists

of a RSS vector from surrounding cell towers in the area of

interest. The goal is to find a mapping function F that, when

applied to scans collected at the same location (l), ensures that

they have a similar distribution. More formally:

zt = F (xt), zc = F (xc) � P (zc|l) ≈ P (zt|l) (1)

B. System Overview

The overall OmniCells architecture is shown in Fig. 2.

OmniCells works in two stages: an offline training stage and

online tracking stage. The offline stage has four main modules.

It starts by recording cell information from the detectable cell

towers through the use of the Fingerprint Collector module.

The recorded data is then forwarded to the Pre-processor
module which produces a low-level1 vector of the received

signal strengths from the different detectable cell towers. The

RSS vectors are then further processed by the Feature Extrac-
tor module to extract relative features that are loosely-coupled

to the cell phone. In addition, this module trains a model (i.e.

encoder model) to encode the RSS vector and generate higher

level device-invariant features as we describe in Section III-B.

This helps the Localization Model Constructor module to

optimally construct and train a deep model (i.e. localization

model) that maps these discriminative features into fingerprint

locations in a device-transparent manner. The output of this

offline phase is two trained models (i.e. encoder model and

localization model) which are saved for later use during the

online phase.

During the online phase, the user carrying her phone at

unknown location scans for cell towers information, which

is then forwarded to the OmniCells server. This data is first

handled by the Pre-processor module. Thereafter, the Feature
Extractor module will extract the desired device-independent

features. Finally, the Location Predictor module feeds the

data to the localization model constructed in the offline phase

to estimate the likelihood of the user being at the different

reference points considered during the offline phase. The

1RSS vector is called low level vector due to its tight-coupling to the phone
that is used in data collection.
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system then fuses these different likelihoods to obtain the user

location in a continuous manner in the space of interest.

III. THE OmniCells SYSTEM

This section presents the details of the different modules of

OmniCells including the Pre-processor the Features Extractor

and Localization Model Constructor modules as well as the

processing done in online phase.

A. The Pre-processor Module

This module runs during both the calibration and tracking

phases. Given that q cell towers can be heard in the area

of interest through the different scans, this module produces

a vector x = (x1, x2, .., xq) of length q, where each entry

represents the RSS from a certain cell tower. As the number

of cell towers that can be detected per scan is limited to

seven per the cellular standard [4], non-heard cell towers in

an arbitrary scan are assigned a RSS of 0 Arbitrary Strength

Unit (ASU). Thereafter, the input RSS values ranges are

normalized to be in the range between [0,1] for each cell

tower. Cell towers with weak received signals, i.e. close to the

sensitivity of the receiving device antenna 2 may be detected

only by the calibration phone leading to unstable localization.

To handle this behaviour, the Pre-processor module switches

off (i.e sets to zero) cell towers whose reported RSS value

is below a certain threshold, mimicking that this cell tower

has not been heard. This can be considered as a filtering

operation, which is aimed at removing fluctuating readings

that could negatively affect the system performance. In order

to mitigate the high overhead of collecting massive amount

of data for training deep models, OmniCells employs the

data augmentation framework proposed in [5]. The framework

generates synthetic data from samples collected over a short-

term that reflect the typical RSS variation measurements. This

has an additional advantage of combating possible overfitting

which may occur due to training with a small amount of data.

B. The Features Extractor Module

OmniCells performs features extraction through two differ-

ent sub-modules: the Difference Extractor and the Encoder
Creator.

1) Difference Extractor: This module calculates the dif-

ference of RSSs between pairs of cell towers of each scan

to mitigate the effect of device heterogeneity. The intuition

behind this method is that different devices lead to a fixed

offset value to the readings of all heard towers depending on

the receiver sensitivity and gain. Thus, this added value can

be eliminated through the use of relative RSS values i.e. a

difference operation. This has been confirmed in literature,

e.g. [6].

Given a pre-processed cell scan x = (x1, x2, .., xq), Omni-
Cells calculates the difference �xij between the RSS values

of every pair of cell towers xi and xj such that �xij = xi−xj .

A total of
(
q
2

)
differences are calculated for each scan, which

2The receiver sensitivity refers to the minimum level of signal strength can
be detected by the receiver’s antenna.

zEncoder DecoderDenoising -

࢞ߠ߲ܮ߲ ~࢞ ࢟

Fig. 3. Architecture of deep autoencoder when only a single device
is available in the calibration phase.

represent a new feature vector which can be expressed as:

�x = (�x12, ...,�x(q−1)q).

2) Encoder Creator: This module is responsible for encod-

ing/mapping the pre-processed (i.e. fixed-length, normalized

and filtered) RSS vector to get a consistent representation

of the signals across different phones. This can be achieved

through the use of an autoencoder neural network (AE) [7].

This network consists of two main parts: an encoder and a

decoder. The encoder part is responsible for encoding the

input by mapping it into a lower-dimensional latent-space.

Formally speaking, the encoder can be considered as an

encoding function z = F (x) applied on the RSS input vector

x. Conversely, the decoder part is trained to reconstruct the

input from that latent representation. Training an autoencoder

to reconstruct the original input from such low dimensional

space forces the autoencoder to learn the main features of the

input.

In the canonical use case, autoencoders are used to re-

construct the original input data. In this work however, we

train the autoencoder using data collected by an arbitrary

phone to reconstruct data collected at the same time and

location by a different phone (or a noisy version of the

same phone). The intuition behind this method is that, in

the encoding step, the encoder maps the information from

the source phone to the latent representation. In the decoding

step, the decoder must reconstruct the second phone’s data

from the latent representation. This forces the network to learn

a latent representation which is generic (i.e. phone-invariant)

and captures the underlying latent factors common to both RSS

vectors. It is these phone-invariant factors which may then be

considered to enable device-transparent localization.

Modes of operation: The training process could operate in

two modes based on the number of phones available in the

offline phase.

Single-phone Mode: Here, a single phone is used for

data collection. The effect of phone diversity on the RSS

readings can be modeled as an additive random noise [5].

Therefore, OmniCells emulates this effect by adding noise (i.e.

White Gaussian noise) to the original signal, which leads to a

distorted version of the data as:

x̃ ∼ x+N (0, s2) (2)
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Fig. 4. Architecture of deep autoencoder when multiple devices are available
in the calibration phase.

Where x is the original RSS measurement for each cell tower

and s is the standard deviation of the added noise.

The distorted version is then used to train a model to

reconstruct the noise-free version. This can be done using a

deep denoising autoencoder model.

Specifically, the denoising autoencoder shown in Fig 3 is

trained by first corrupting the input RSS vector x to obtain

vector x̃. Learning is accomplished by compressing the noisy

input to a latent space z from which the the output (y) of

the autoencoder is reconstructed and ensured to match the

original uncorrupted vector x. By using a noisy version of

the input, the autoencoder is forced to learn and represent the

salient (i.e. device-invariant) features of the input data in the

latent space. Training is performed by selecting the weights

that minimize the mean square error (i.e. the loss function)

between the original input data x and the reconstructed data y.

L(x, y) = 1

n

n∑

i=1

(xi − yi)
2 (3)

Multiple-phones mode: In this case, a few phones are

used for training. Therefore, OmniCells employs multi-task

learning, which aims to optimize the encoder-decoder model

with respect to multiple objectives. More specifically, we have

multiple decoders stacked on top of a single encoder; where

each target training device has its own decoder as shown in

Fig 4. This ensures the network learns a more general encoder

(and by extension, a more general latent representation) to

accommodate diversity between different phones.

In this mode, we select the reconstruction error as the in-

verse correlation3 between the reconstructions of the different

phones and the original input vector as:

L(x, y) = 1−
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(4)

where x and y are the mean of the original RSS vector and

the mean of the reconstructed vector across different samples

belonging to the same fingerprint point. n is the number of

the fingerprint point in the area of interest.

3We use inverse correlation loss as we found empirically that it leads to
the best results.
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t

Fig. 5. Neural network structure for the autoencoders. Grey-shaded
neurons represent examples of neurons that have been temporary
dropped-off to increase the model robustness and avoid over-
training.

3) Feature Aggregator: The trained encoder is used to

extract latent features (z), which are concatenated with the

differences features (�) calculated in Section III-B1 to get a

combined feature vector (c). These features are then leveraged

by the Localization Model Constructor module to train a deep

learning-based localization model in the offline phase.

C. The Localization Model Constructor

This module is responsible for leveraging the aggregated

features (c) to train a deep localization model and find its

optimal parameters. The trained model is used during the

online phase by the Location Predictor module to provide an

estimate for the user location. A deep fully-connected neural

network is adopted here due to its representational ability,

which allows learning of complex patterns [1].

1) The network architecture: Fig. 5 shows our deep net-

work structure. We construct a deep fully connected neural

network consisting of cascaded hidden layers of nonlinear

processing neurons. Specifically, we use the hyperbolic tangent

function (tanh) as the activation function for the hidden

layers due to its non-linearity, differentiability (i.e. having

stronger gradients and avoiding bias in the gradients), and

consideration of negative and positive inputs [8]. The input

layer of the network is a vector of length k representing

the combination of the latent features and the inter-difference

values the cellular signal strength received from the q towers

in the area of interest. The output layer consists of a number of

neurons corresponding to the number of surveyed fingerprint

points at the data collection time. This network is trained to

operate as a multinomial (multi-class) classifier by leveraging a

softmax activation function in the output layer. This leads to a

probability distribution over the reference fingerprint locations

given an input scan.

More formally, each cell scan xi = (xi1, xi2, ..xiq) before

is mapped to a feature vector ci = (ci1, ci2, ..cik) of length

k. The corresponding discrete outputs (i.e logits) ci is ai =
(ai1, ai2, .., ain) capture the score for each reference points

from the possible n reference points to be the estimated point.

The softmax function converts the logit score aij (for sample

i to be at reference point j) into a probability as:
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p(aij) =
eaij

∑j=q
j=1 e

aij

(5)

During the offline phase, the ground-truth probability label

vector P (ai) = [p(ai1), p(ai2)...p(ain)] is formalized using

one-hot-encoding. This encoding has a probability of one for

the correct reference point and zeros for others.

The model is trained using the Adaptive Moment Estimation

(Adam optimizer [9]) to minimize the average cross-entropy

between the estimated output probability distribution P (ai)
and the one-hot-encoded vector gi. The loss function is defined

as follows:

L =
1

Ns

n∑

i=1

D(P (ai), gi) (6)

where P (ai) is obtained using the softmax function, gi is the

one-hot encoded vector of the ith sample, Ns is the number of

samples available for training, and D(P (ai), gi) is the cross-

entropy distance function defined as:

D(P (ai), gi) = −
n∑

j=1

gij log(P (aij)) (7)

2) Preventing over-fitting: To increase the model robustness

and further reduce over-fitting, OmniCells employs two reg-

ularization techniques: First, we use dropout regularization
[10] which has been shown to be useful for the training of

deep networks. During training, this method can be seen to

sample from a large number of neural networks with different

architectures in parallel. This is achieved by stochastically

excluding (i.e. dropping out) some neuronal units from each

layer in the network as well as their corresponding connections

(Fig. 5). In effect, each epoch in training, each layer is updated

with a different “view” of the configured layer. Dropout has

the effect of making the training process noisy, forcing units

within every layer to stochastically take on more or less

responsibility for the inputs. Therefore, it prevents the neuronal

units from co-relying on each other during training, in turn

making the model more robust to unseen data and less likely

to overfit the training data. We provide an experiment to show

the effect of dropout on the results in Section IV-B2.

OmniCells further adopts early stopping as a second regu-

larization method so that the training process would automat-

ically stop at the point when the performance improvements

are no longer gained [11].

D. Online Phase

The goal of this phase is to locate the user in real-time using

the received cell signals from the nearby towers in the area

of interest. This can be done by processing the scanned cells

information and extracting the corresponding feature vector

as described previously. Thereafter, this vector is then fed to

the trained localization model to get a location estimate as

one of the fingerprint points, defined at the calibration phase.

The point r∗ with the maximum probability given the feature

(a) Apartment layout. (b) Campus Building Floor layout.

Fig. 6. Layout of the considered testbeds.

TABLE I
SUMMARY OF THE TESTBEDS CONSIDERED IN EVALUATING OmniCells.

Criteria Apartment Floor
Area (m2) 11×12 17×37
Number of fingerprint points 55 310
Spacing of seed points (m) 1 1.5
Number of cell towers 15 37

vector (c) is selected as the estimated location. That is, we

want to find:

r∗ = argmax
r

[P (r|c)] (8)

However, the main challenge here is that the built model by

the Localization Model can predict the user locations and only

at few discrete locations. As such, the estimated locations, even

with a very accurate localization model, will be spaced out

leading to a bad user experience. Therefore, this phase aims

to track the user in the continuous spatial space (i.e. anywhere

even on locations different from the reference points). To do

so, OmniCells reports the center of mass of all reference

points, i.e. by applying a spatial weighted average over the

reference points, where the weights of each point are chosen

as their corresponding likelihood as output from the classifier

network [12]. More formally:

lx =

∑n
i=1 Pirix∑n
i=1 Pi

, ly =

∑n
i=1 Piriy∑n
i=1 Pi

(9)

where rix and riy are the spatial coordinates of reference

point i, and Pi is its corresponding softmax likelihood.

IV. EVALUATION

In this section, we evaluate the OmniCells system in two

real-world indoor testbeds as summarized in Table I. The first

one (denoted as Apartment) is an apartment of 132m2 area

(Fig. 6(a)). The second one (denoted as Campus), shown in

Fig. 6(b), is a floor in our university campus (in a different

city) with a 629m2 area containing several labs with different

sizes and furniture placements, meeting room, offices as well

as corridors.

We start by describing the data collection setup and software

used. Next, we show how the system performs by varying

the different system parameters. Finally, we compare the

performance of OmniCells to five state-of-the-art localization

systems.
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A. Collection Setup and Tools

Data is collected with an Android application. The appli-

cation continuously scans for the nearby cell towers in the

area of interest and records their different cell information

including cell tower identifier (CID), location area code (LAC)

and the corresponding timestamped signal strength. To facil-

itate ground-truth profiling, the same application runs syn-

chronously on all mobile devices with one device dedicated to

control ground-truth collection for all devices. The application

visual interface is designed to depict the testbed floorplan in

the foreground of the master device. The user tags her current

location on the displayed testbed as a ground-truth which is

triggered by a long tap on the map interface.

The data was collected using different Android phones, with

different form factors and cellular chip placement, including

HTC One X9, Google Pixel XL, Motorola Moto G5, Tecno

Phantom 6, and ZTE Blade 7.

Data was collected at different reference points uniformly

covering the area of interest. In the Apartment testbed, 55

different reference locations are annotated with 1m spacing.

For the Campus testbed, we considered 310 reference locations

with an inter-distance of 1.5m.

We implemented our deep learning based training using the

Google TensorFlow framework. Training was carried out on

the Google collaboratory cloud platform.

B. Effect of Different System Parameters

In this section, we study the effect of the deep models’

different hyper-parameters and system parameters on the sys-

TABLE II
DEFAULT PARAMETERS VALUES USED IN EVALUATION.

Parameter Range Default
Learning rate 0.0001 - 0.2 0.001
Dropout rate (%) 0 - 90 15
Early stopping patience 1-100 50
Number of hidden Neurons 20 - 1000 570
Number of layers 2 - 30 6
Number of samples per location 20 - 3000 3000
Training devices HTC X9, Moto G5 and Phantom 6
Testing devices Pixel XL and ZTE Blade 7

tem performance including the number of layers, the dropout

percentage, the effect of the feature extraction methods, and

the size of the latent space. These experiments are accom-

plished when the HTC One X9, Motorola Moto G5 and Tecno

Phantom 6 are used in the training for the multi-phone mode

(Mode 2 in Section III-B2) of feature extraction while the

remaining two cellphones (Google Pixel XL and ZTE Blade

7) are dedicated for testing. We obtained similar results when

we changed the sets of training and testing phones.

In the following subsections, we show the effect of vary-

ing these parameters only on the first testbed for clarity of

presentation. We report the optimal parameters obtained for

both testbeds in Table II. On the other hand, we present how

OmniCells performs in both testbeds in Subsection IV-D1.

1) Number of Layers: Figure 7 shows the effect of changing

the number of layers on OmniCells performance. The figure

shows that increasing the number of layers increases the

accuracy, due to increased model capacity, until it reaches six
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testbed.
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layers. After that, the model tends to overfit the training data,

leading to reduced accuracy. Therefore, we choose six layers

as the default number of layers in our model.

2) Dropout Percentage: Fig. 8 shows how the dropout

percentage affects OmniCells performance. The figure shows

that an optimal value is achieved at 15% dropout percentage

which enhances the system accuracy by 38% compared to the

case of no dropout (dropout percentage = 0). This is due to the

robustness against overfitting gained by the model when using

dropout as discussed in section III-C2. However, beyond 15%

dropout percentage, the model tends to under-fit the training

data.

3) Performance of the feature extraction module: As dis-

cussed in section III-B, the Feature Extractor module consists

of two sub-modules: Difference Extractor and Encoder. In

this section, we study the influence of each sub-module on

the overall system performance. Fig. 9 shows boxplots of

the localization error of OmniCells when using the raw RSS

vectors, latent space features, relative difference features, or

both. The figure shows that the combination of the two

proposed methods gives an improvement in median error of

120%, compared to the baseline case of using raw RSS. This

confirms the importance of the proposed features in capturing

device-independent signal characteristics.

4) Effect of latent dimension size: Fig. 10 further shows the

median localization accuracy when varying the dimensionality

(i.e. size) of the autoencoder’s latent space z. The figure shows

that a latent space of four dimentions gives the best perfornace.

Beyond that, the autoencoder tends to include undesirable (i.e

phone-specific) information in the encoding, which leads to a

drop in accuracy.

C. Robustness Experiments

1) Performance in diversity : In this section we evaluate the

performance of the OmniCells system when tested with two

different phones individually and compare the results to the

devices used in training. For training purposes we leverage

a HTC X9 cellphone as a source for the autoencoder while

the Motorola Moto G5 and Tecno Phantom 6 are leveraged

as the targets for the reconstruction process. We use a Google

Pixel XL cellphone and ZTE Blade 7 as unseen test devices

and compare the result of each to the result when using the

calibration phones seen during the training process as test.

Fig. 11 shows the performance when tested using all the

considered phones. As can be seen from the figure, OmniCells
provides a consistent median localization error for the different

phones: it obtains a median error of 1.61m and 1.74m when

tested with Pixel XL and ZTE Blade 7 (unseen phones)

respectively, while obtaining approximately the same accuracy

when tested with the calibration devices (1.54m, 1.62m, and

1.78m when tested with HTC One X9, Motorola Moto G5 and

Tecno Phantom 6, respectively). On the other hand, the unseen

phones show massive error in the baseline system, that uses the

raw, RSS as it is not designed to handle heterogeneity. These

results confirm the robustness of the system performance with

different unseen devices.

2) Performance in different modes of feature extraction:
In this section, we investigate the performance of OmniCells
in the two modes of the autoencoder: the single-phone and

multi-phone mode (Section III-B2). Fig.12 compares the two
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modes and shows, as expected, that the multiple devices mode

obtains better results due to the proposed technique of defining

multiple decoders for the same encoder. This leads to more

general and device-independent encoding at the bottleneck of

the network. Nonetheless, both modes of operation lead to

consistent tracking accuracy for unseen modes, with a slight

advantage to the mutli-phone mode, if available.

3) Different providers: Here, we quantify the performance

of OmniCells when tested with two different cellular service

providers at the same testbed (i.e Apartment). The providers

cover the area of interest with a density of 15 and 12 for

providers A and B, respectively. Fig. 13 shows that OmniCells
performance is correlated with the cell tower density of each

provider: the higher the density, the better the localization

accuracy.

D. Comparative Evaluation

In this section, we compare the performance of OmniCells
to localization systems in literature with respect to localization

accuracy and power consumption. Specifically, we compare

the performance of OmniCells to five state-of-the-art systems.

Three of them are cellular-based localization systems while

the remaining two are well-known device-invariant-based lo-

calization systems. All techniques are tested using the default

set of calibration and testing devices listed in Table II.

CellinDeep [1] adopts a multinomial deep classification

model to estimate the user’s location based on raw cell mea-

surements from the detectable towers in the area of interest.

Similarly, based on the raw RSSs from the different towers,

SkyLoc [3] uses a K-nearest neighbor (KNN) classifier while

[2] (denoted as SVM) harnesses a one-vs-all SVM classifier

for the signals to location mapping. Note that all techniques

are evaluated using cell readings received by two holdout

devices (i.e. Google Pixel XL and ZTE Blade 7), which

are not considered in the training phase. The technique in

[13], denoted as Corr, builds a transformation model between

the testing and the calibration devices with correlation-based

approximation of the user location. The second technique,

called hyperbolic location fingerprinting (HLF) [6] harnesses

signal strength ratios between pairs of RSSs as fingerprints for

the user location instead of absolute device-dependant values.

1) Localization accuracy: Figures 14 and 15 show the CDF

of localization error for the different techniques in the two

testbeds. Fig. 14 shows that OmniCells gives an improvement

in median error obtained in the Apartment testbed of 111.90%,

183.33% and 150.59% compared to the CellinDeep [1], Sky-

Loc [3] and SVM [2] systems, respectively. Similalrly, for

the second testbed, OmniCells outperforms CellinDeep [1],

SkyLoc [3] and SVM [2] systems by 100.98%, 164.39% and

166.41%, respectively. In summary OmniCells improves upon

the other techniques in both considered testbeds when tested

with unseen devices (real scenario) as it handles the device-

heterogeneity by the transformation of the raw RSS values into

a more general space in which device-specific components are

reduced.

we also compare the accuracy of OmniCells to Corr [13]

and HLF [6] which are originally designed to tackle the device

heterogeneity problem in WiFi. Figures 16 and 17 show the

CDF of distance error for the three techniques in the different

testbeds with same set of testing devices. The figures show

the superiority of OmniCells over the Corr [13] and HLF [6]

techniques with 50% and 33.33% in the Apartment testbed and

with 100% and 84.39% in the Campus testbed, respectively.

This can be explained by noting that these compared schemes

assume a linear mapping between measurements from different

phones, which is not generally justified. OmniCells on the

other hand, leverages deep learning techniques to learn general

device-independent latent features, leading to better accuracy.

2) Power consumption: In this section, we quantify the

power consumption of OmniCells as compared to other lo-

calization systems that use other sensors on the phone such as

WiFi and GPS. For this, we utilize the PowerTutor [14] ap-

plication. The measurements were taken over the course of an

hour using the X9 phone. Fig. 18 shows that OmniCells has a

remarkably lower power consumption profile with 93.45% and

236.4% savings in power compared to that of the WiFi- and

GPS-based solutions respectively. Note that unlike WiFi and

GPS, cellular service is running by default during the normal

phone operation. Therefore, OmniCells practically consumes

zero extra sensing power in addition to the standard phone

operation.

V. RELATED WORK

In this section, we discuss the most relevant literature to our

OmniCells system.

A. Cellular-based Techniques

Cellular-based localization systems have been adopted for

both outdoor and indoor use cases. This is due to the fact that

cellular technology has the most wide-spread infrastructure

around the world and is supported by the vast majority of

mobile devices. Cellular-based systems have two different

approaches in operation. The first approach, Cell-ID based
[15], considers the user location as the location of the strongest

heard cell tower. Despite its simplicity, this approach is

infeasible for indoor scenarios due to its relatively high error.

The most commonly used cellular-based approach is called

the signal strength-based approach. Its basic idea is to capture

the relationship between the cell signals received by the

user’s end-phones and their distance from the transmitting cell

towers [1]–[3], [7], [16]–[23]. Signal strength-based systems

can be classified based on the solution into probabilistic or

machine learning systems.

Probabilistic solutions [16], [17] are usually vary capable

in tackling the noise associated with the received signals.

For simplicity, these techniques estimate the location that

maximize the probability of the received signals from different

cell towers. However, this solution usually ignores dependency

between the received measurements from different cell towers,

i.e. doesn’t consider the rich and correlated relation between

the different towers, to avoid the curse of dimensionality [24].
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This leads to remarkable information loss. To address this

issue, different machine learning-based systems were pro-

posed [1]–[3], [7], [18], [19], [25] to learn such dependency.

These systems train models for estimating the user location

based on using raw received signals. More specifically, these

models can be designed to work as classifiers to discrim-

inate between different points or regressors to interpolate

or extrapolate the user location. This trained model can be

then queried to obtain user locations as desired. SkyLoc [3]

builds a K-nearest neighbor classifier, while the system in [2]

leverages a Bayesian filter on top of one-vs-all SVM classifier.

[1] learn such dependency through the efficient use of deep

neural networks to discriminate between different locations

and provide smoothed location estimates through the use of

different modules. The commonality between these systems is

their reliance on the raw features (i.e. received signal strength

of information from the towers) and ignorance of the fact

that different devices have different distributions over their

sensed signals. Therefore, location services offered by these

systems have severely degraded performance in real scenarios

involving phones unseen during the training of the localization

model (as we quantified in Section IV-D).

OmniCells, on the contrary, extracts general features that
represent inter-tower relative differences with an encoded la-
tent representation to train a localization model. Additionally,
the localization model is ensured to generalize and avoid over-
fitting through the use of different regularization methods.

B. Deep Learning-based Techniques

Recently, different deep-learning based fingerprinting tech-

niques have been proposed [12], [26]–[34] in indoor environ-

ments. Several systems were proposed based on channel state

information (CSI) received from WiFi transmitters. The CSI

amplitude values are leveraged to train a deep autoencoder in

DeepFi [28]. PhaseFi [35] harnesses the CSI phase to train

autoencoders. While in BiLoc [36] same network architecture

is considered with a bimodal tensor of amplitude and phase of

CSI. On the other hand, the received signal strength (RSS) data

from different access points is used to train WiDeep [26] that

improves the localization performance by combining stacked

denoising autoencoders (i.e. a model for each fingerprint point)

and a probabilistic framework. The above motioned systems

build a model for each reference point which affect the

system’s scalability in large environments and the performance

in real-time applications. AutLoc [26] proposed a system that

combines a autoencoder with ensemble learning of different

techniques including random forest regression, multi-layer per-

ceptron, regression and multi-layer perceptron classification.

In [12], a multi-label classifier is used with auto-encoder

to locate the user floor and location. Although autoencoders

have been frequently adopted in this domain, the commonality

between the different approaches is the fact that they use the

same input data (i.e. having same distribution) as a source

and destination for training the autoencoder models, without

making allowances for device heterogeneity.

Different from these techniques, OmniCells introduces a
encoder-decoder model that is designed to extract general
latent features along with relative differences to train a lo-
calization model.

C. Heterogeneity Handling Techniques

Several techniques have been proposed to handle the de-

vice heterogeneity problem in WiFi-based localization. They

can be classified into two main classes: transformation-based

methods [13], [37] and feature extraction methods [6], [17],

[38]. The transformation-based methods [13], [37] aim to

construct a transformation function between every possible

user device and the calibration device. This transformation

function can be precisely built offline, but this approach also

faces a scalability problem due to the enormous number of

consumer devices. Building this transformation online doesn’t

compete favorably neither in localization accuracy nor in time

per location estimate [39].

On the other hand, feature extraction methods aim to extract

some robust features instead of the absolute RSS features. For

instance, the method in [38] stores the inter-transmitter (e.g.

access point) difference as the fingerprint to train a traditional

machine learning model (e.g. KNN). Similarly in [17], the

method harnesses signal strength ratios as fingerprints for

probabilistic model. These methods are much more scalable

than transformation methods as they don’t require any samples

from the target unseen devices to function. However, they

generate high dimensional feature space with many misleading

features that may negatively impact the adopted model.

In contrast, the proposed method aims to encode the cellular
data to obtain a robust representation for the cellular data
in a lower dimensional space. This can be achieved without
jeopardizing the localization accuracy.

VI. CONCLUSIONS

We proposed OmniCells, a deep learning system for indoor

localization designed to be combat the hardware diversity

problem in the clients’ devices. We presented the details of

the system and its ability to extract the core features, in

different calibration scenarios (e.g. multiple phone and single

phone), to mitigate the device heterogeneity effect. To achieve

that, OmniCells leverages a combination of relative differences

and a learned, device-invariant representation using stacked

encoder-decoder layers. These features are further harnessed to

train a deep model for localizing the user device. Furthermore,

we showed how OmniCells includes provisions in the model

to avoid over-fitting and boost the model generalization ability.

Implementation of our system on different Android-based

phones showed that OmniCells can obtain a localization ac-

curacy, improving upon five different state-of-the-art indoor

positioning systems in two different testbeds. In addition,

OmniCells provided negligible power consumption compared

to the de facto standard technologies utilized in localization

(e.g. WiFi and GPS).
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