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Abstract—Screen lock is a critical security feature for smart-
phones to prevent unauthorized access. Although various screen
unlocking technologies including fingerprint and facial recogni-
tion have been widely adopted, they still have some limitations.
For example, fingerprints can be stolen by special material
stickers and facial recognition systems can be cheated by 3D-
printed head models. In this paper, we propose EmgAuth,
a novel electromyography(EMG)-based smartphone unlocking
system based on the Siamese network. EmgAuth leverages the
Myo armband to collect the EMG data of smartphone users
and enables users to unlock their smartphones when picking up
and watching their smartphones. In particular, when training
the Siamese network, we design a special data augmentation
technique to make the system resilient to the rotation of the
armband. We conduct experiments including 40 participants
and the evaluation results show that EmgAuth can effectively
authenticate users with an average true acceptance rate of
91.81% while keeping the average false acceptance rate of 7.43%.
In addition, we also demonstrate that EmgAuth can work well for
smartphones with different sizes and at different locations, and
is applicable for users with different postures. EmgAuth bears
great promise to serve as a good supplement for existing screen
unlocking systems to improve the safety of smartphones.

Index Terms—Electromyography, authentication, Siamese Net-
work, unlocking, smartphone

I. INTRODUCTION

Screen lock is a critical security feature for smartphones to
prevent unauthorized access. Various unlocking technologies
have been developed to protect the safety of smartphones [1].
In particular, biometric-based technologies, including finger-
print, face recognition, and iris [2], have gradually replaced the
traditional password-based methods [3] in recent years. These
methods enable safe and convenient authentication compared
with the password method. However, there are still some
limitations on these methods. For example, fingerprints can
be obtained with packing tapes to unlock the smartphone [4].
Face can also be deceived, and studies have shown that 3D
printed head models plus taped glasses can easily fool Apple’s
Face ID authentication system [5].

Different from the above biometric features, the EMG
signal, collected by placing electrodes on one’s skin to detect
the electrical activity of the muscle, shows unique features

for individuals and therefore has a great potential for au-
thentication [6]. In particular, we observe that when different
people pick up their smartphones, the speed, wrist movement,
fingers movement and the positions they grab smartphones
are generally different for different persons. In contrast, for a
certain person, the movement when picking up a smartphone
is generally similar, which can be attributed to the memory of
one’s muscles accumulated for a long period of time.

Based on above mentioned observations, we use EMG to
achieve smartphone unlocking. The uniqueness of the EMG
signal and the consistency of picking up movements are
crucial for EMG-based authentication. Although there are
some existing works which utilize EMG signal to unlock
smartphones [7] [8], they require users to make a series of
pre-defined gestures. In addition, the systems to collect EMG
signal, like the Myo armbands, need to be placed in the same
position on the arm for both training and testing stages. These
limitations greatly limit the applicability of the EMG-based
unlocking system as well as other EMG-based applications
[9] [10].

In this paper, we propose EmgAuth, a new EMG-based
smartphone unlocking system based on the Siamese network.
EmgAuth utilizes data collected from the Myo armband and
allows users to unlock their smartphones when picking up
and watching their smartphones without making any pre-
defined gestures. More importantly, when training the Siamese
network, we design a special data augmentation technique
to make the system resilient to the rotation of the armband.
These two improvements greatly enhance the usability of
the unlocking system. We implement EmgAuth on Android
smartphones and recruit 40 participants to collect training and
testing data for EmgAuth.

We conduct a series of experiments to choose the proper
parameters of EmgAuth, including the hyperparameters of the
Siamese network and the threshold of the classifier. The results
of cross validation demonstrate that EmgAuth can achieve
good authentication accuracy in a real-time manner. It can
authenticate users with an average true acceptance rate of
91.81% while keeping the average false acceptance rate of
7.43%, and the overall accuracy reaches 92.06%. We also
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discuss some influencing factors in real scenarios to verify the
feasibility of EmgAuth. In addition, the authentication latency
of EmgAuth that run in an Android smartphone is about 0.16s,
which fulfills the requirement of real-time unlocking.

The contributions of this paper are summarized as follows:

1) EmgAuth, a system that unlocks smartphones by usual
motions based on EMG signal and Siamese network.
This is one of the first research effort that combines
EMG signal with deep learning to unlock smartphones.

2) A novel method based on the structure of Myo armband
to make EmgAuth resilient to rotation of armband. With
this method, users do not need to calibrate or remember
the position of armband.

3) Extensive experiments to verify the feasibility and reli-
ability in different conditions.

The remainder of this paper is organized as follows. In
Section II, we discuss some related work about common
biometric authentication methods, EMG-based applications
and the siamese network. Section III details our EmgAuth
system architecture and each module. We then describe our
dataset and provide the experimental results of our system
in Section IV. In Section V, we discuss some influencing
factors in real scenarios. The conclusion, limitation and future
research directions are given in the last section.

II. RELATED WORK

This section reviews the related research in biometric
authentication methods, EMG-based applications and the
Siamese neural network.

A. Biometric Authentication

Biometric authentication is widely used in daily life, such as
transaction, login, etc. Among various kinds of authentication
methods, fingerprint is one of the most common technology.
Anil Jain et al. [11] first describes the design and imple-
mentation of an online fingerprint authentication system. An
alignment-based elastic matching algorithm is developed to
find the correspondences between minutiae in the input image
and the stored template. Facial recognition is another popular
technology for identity authentication. Sun [12] combines deep
learning techniques with face identification, they use deep
convolutional neural networks to learn features to reduce intra-
personal variations while enlarging inter-personal differences.
The face verification accuracy can achieve 99.15%.

In addition to physiological characteristics related methods,
behavioral characteristics also interest researchers. Keystroke
dynamics is used as a kind of biometrics for authentication
[13]. Monrose et al. [14] innovatively propose a new authen-
tication method based on analyzing habitual rhythm patterns
when users type. They present data extraction methods, as
well as classification strategies to achieve user authentication
and the accuracy can reach 92.14%. Gait, hand-waving and
signature are also used to achieve authentication [15] [16] [17].

B. EMG-based applications

EMG records the movement of muscles. It is based on
the simple fact that whenever a muscle contracts, a burst
of electric activity is generated which propagates through
adjacent tissue and bone and can be recorded from neighboring
skin areas. Therefore, EMG signal is widely used in the area
of medicine [18], control [19], human-computer interaction
[20] and games [21]. Kiguchi et al. [22] use EMG signal to
control an upper-limb power-assist exoskeleton robot, which
is easy, humanlike and adaptable to any users. EMG-based
hand gesture identification can help to develop a better human-
computer interaction interface. In [23], Ahsan described the
process of detecting different hand gestures using artificial
neural network (ANN). They use a series of statistical methods
to extract features and then feed these feature vectors to ANN
to get a classification result. EMG signal is also combined
with other sensors to achieve complicated control. Yoo et
al. [24] propose an input device for a virtual reality game,
which is based on EMG and accelerometers. The results show
the device can offer good experience for players. In addition,
Myo armband is one of the most popular devices for EMG-
related research because of the portability and efficient data
transmitting mechanism [25] [26] [27]. Comparing with the
existing work [28] [29], EmgAuth does not need extra training
set and is resilient to the positions of EMG sensors, and does
not need users to do extra actions.

C. Siamese Network

Deep neural networks have excellent performance in the
fields of image classification, speech recognition and natural
language processing. They can automatically extract features
from large-scale data rather than conducting feature engineer-
ing manually. Many structures of network are proposed to deal
with different kinds of tasks [30] [31] [32]. Siamese network
was first introduced by Bromley et al. to solve the problem
of signature verification [33]. They design two identical sub-
networks to extract features and combine them with a layer
that computes the distance between the two outputs. Inspired
by them, many researchers leverage the Siamese network
structure in various kinds of fields. Bertinetto et al. [34] design
a novel fully-convolutional Siamese network trained end-to-
end on the ILSVRC15 dataset for object detection in video.
In [35], the authors train a Siamese network to achieve human
identification based on gait recognition. Siamese network is
also the main technique in one-shot learning, Koch et al. [36]
use a Siamese neural network for one-shot image recognition,
which does not need a very large dataset.

III. SYSTEM DESCRIPTION

In this section, we introduce the hardware and architecture
of our EmgAuth system and three main components, including
data segmentation, the Siamese network and the unlocking
simulation system. We also detail the novel method to make
EmgAuth resilient to the rotation of the Myo armband.
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A. System Architecture

EmgAuth consists of components deployed on a Myo arm-
band and an Android smartphone. Myo armband is a device
collecting EMG signal. It has eight channels, corresponding to
eight sensors in different positions. Each channel has a sample
rate of 200Hz and the data can be transferred by Bluetooth.
Users could get the EMG signal easily by wearing it on the
arm. We design two Android applications, one of them is for
collecting and labelling data, the other one is an unlocking
simulation application. The deep learning model trained in
a GPU server is transplanted to an Android smartphone by
TensorFlow Mobile [37].

Figure 1 presents the architecture of the system. The left
side presents the offline model training. The data are collected
by Myo armband and transferred to smartphone by Bluetooth
in real-time. We label the different motions by clicking the
corresponding buttons. After we get the labeled data, we
conduct data segmentation to extract the valid EMG signal
and make pairs to prepare training data. Data augmentation
is also conducted to expand the dataset. Next, in the model
training step, all pairs are fed into the neural network to train
a Siamese convolution neural network.

The right side presents the online authentication. We trans-
plant the trained Siamese neural network to an Android smart-
phone so we can evaluate the performance in real scenarios.
Similar to most authentication systems, the first step that
the user needs to do is enrollment. The enrollment phase
needs users to do four sets of motions with only one time
for each type. The system saves the EMG signal of these
motions to the database and names it by the user’s name and
corresponding motion as identifiers. Next, when the user picks
up the smartphone, the new EMG signal produced from the
process will be compared with the previously stored signal
and put into the model that we train in the offline phase.
The Siamese neural network computes the distance of the
input EMG pairs. If the output is less than the pre-defined
threshold, the user will be successfully authorized and unlock
the smartphone, otherwise the user will be rejected.

B. Data Segmentation

In most cases, data collected by sensors should be denoised.
Various filters are applied to make the signal smoother and
more stable. In the popular applications of EMG like gesture
recognition, the signal should be roughly the same when
different people do the same actions. While in the area of user
authentication, the tiny difference is crucial. EMG is the ex-
ternal expression of the bioelectrical signal, which represents
the structure of muscle and amount of muscle contraction.
Figure 2 presents the raw EMG signal from Myo, showing
five similar partial waves which present five times of picking
up and putting down the smartphone. Those parts contained
in five red dotted line boxes are valid data and we need to
extract them as the EMG matrixes which will be described
later. Here, we keep the raw signal without any filtering to
maintain the uniqueness and use the convolution network to
extract features.

Fig. 1. System Architecture of EmgAuth.

Fig. 2. Examples of the raw data from Myo armband.

We observe that the time from picking up the smartphone to
watching the screen is generally no longer than two seconds.
Hence, we set the valid action time to two seconds. As the
sample rate is 200Hz and the number of channels is eight, we
take an 8 by 400 signal matrix as one piece of basic training
data. It is comparable to a picture with its resolution is 8 by
400 rather than 32 by 32 or 1024 by 1024. We divide these
matrixes into different groups according to the corresponding
people and make pairs as the following rules: the label of a
pair that comes from different people is set to 0 while the
same person is set to 1. The making pair algorithm is shown
as Algorithm 1. The data after pairing are fed into the neural
network for training.

C. Armband Rotation-Independence Method

One significant challenge that we need to address is the
rotation problem of Myo armband. There are eight EMG
sensors in the armband and each sensor corresponds to a
specific skin area. We can not rotate the armband freely
because the EMG signal is unique among different skin areas.
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Algorithm 1 Making Training Pairs
1: Input Data
2: len = length(Data)
3: for each person ∈ data do
4: for i ∈ length(person) do
5: pair1 = Data[person][i] +Data[person][i+ 1]
6: y(pair1) = 1
7: index = Random(0, len)
8: dif person = (person+ index) % len
9: pair2 = Data[person][i] +Data[dif person][i]

10: y(pair2) = 0
11: FinalData.append(pair1, pair2, y)
12: end for
13: end for
14: return FinalData

However, fixing the position means we have to mark the
position every time we wear it, which is inconvenient. To
address this challenge, we propose a novel method based on
the structure of Myo armband to make it rotation-independent.
The Myo armband consists of eight rectangular sensors and
they have unified sizes. Due to the fixed relative positions
among these eight sensors, i.e. if the first sensor rotates to the
position of the second, all the rest seven sensors will move
in order and the last sensor will replace the position of the
first sensor, we leverage the data augmentation technique from
image classification tasks to expand our dataset. In our dataset,
the eight channels correspond to eight sensors. Every time we
roll the channels, a new dataset is created. The first picture of
Figure 3 shows the result of rolling one channel. We get an
eight times dataset until we roll a circle.

Fig. 3. Myo rotation sketch map.

From the second picture of Figure 3, we can see there is a
gap between two sensors. When the user wears the armband,
we can not guarantee the position is just one of the eight
positions that we expanded and the sensor may cover the gap
area when the rotation is less than one channel. However,
the distance of this gap is much less than the width of a
sensor, the impact of the gap on EmgAuth is in turn limited.
From a mathematical point of view, rotation leads to infinite
possibilities and we can only choose some representative

positions to train the model. There is a trade-off between the
accuracy and the computation complexity.

In the task of image classification, flipping, cropping and
scaling are the common data augmentation technique. After
these operations, the label of an image does not change.
Our labeling process is similar, after channel exchange, the
expanded dataset still belongs to one person. In this way,
the deep neural network can learn enough features and make
reliable decisions, no matter how the user wears the Myo
armband and whether the user rotates it or not.

D. Siamese Network

Siamese neural network is widely used in the tasks of
verification and recognition. A standard CNN typically re-
quires a large number of data to train a robust model. While
we use our own dataset, the amount is limited. Besides, the
users of authentication are dynamic as there are always new
users joining and some users are leaving, we do not want
to retrain the model when user group changes. Considering
those requirements, we select the Siamese network as our deep
learning model.

The Siamese network has two inputs and one output which
value corresponds to the similarity between the two inputs.
This network consists of two identical sub-networks with the
same layers and weights. In addition, we add a layer to
calculate the distance of the outputs of these two sub-networks.
Here, we design a Convolutional Siamese Network and the
architecture is shown in Figure 4. Our network architecture
consists of three convolutional layers with different numbers
of filters and one fully connected layer with 128 units.

Considering the Myo armband returns eight channels’ signal
at the same time, we need to mix them or find the relationship
among them. A straightforward solution is using convolution.
In the first convolutional layer, we set the kernel size to 8 by
1 to learn features among eight channels. We set the stride to
one so that the first convolutional layer can focus on finding
features among different channels. Since our input is 8 by 400
matrix, the output size of the first layer is 1 by 400, which
achieves the combination of eight channels. Next, we set the
kernel size to 1 by 3 to extract features during the process of
picking up a smartphone and we get a size of 1 by 398 in
this layer. To reduce the number of feature maps, we add a
convolutional layer with 1 by 1 filters. These take all features
from the previous layers into the next fully-connected layer.
Besides, we add dropout layers after each convolutional layer
to prevent overfitting. The dropout rate is increasing with the
depth of the network from 0.1 to 0.2. As for activation, we
use Rectified Linear Unit (Relu) for nonlinear transformation.
Relu can reduce the likelihood of vanishing gradient, which
results in faster learning.

In the last two layers of the network, we use a flatten layer
and a fully-connected layer. The flatten layer is used to flat
the output of previous convolutional layers so the features
can be fed into a fully-connected layer. The fully connected
layer takes every combination of features from the output of
previous layers into account. Here we do not have a softmax

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

92



Euclidean
Distance

Feature maps
16 @ 1×400

Input EMG matrix Feature maps
32 @ 1×398

Feature maps
32 @ 1×398

Feature vector
128

Convolution+ReLu
Kernel_size:8×1

Convolution+ReLu
Kernel_size:1×3
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Kernel_size:1×1

Fully connect

Fig. 4. Structure of our Convolution Siamese Network.

layer as usual since we prefer a vector that represents the
original EMG input rather than a classification possibility. We
define the number of units to 128, so we could get a 128-length
vector as the map of the input EMG signal.

After defining the sub-network of our Siamese network, we
need an extra layer to combine the outputs of them. We use
the Euclidean distance to measure the difference between two
output vectors from the last two fully connected layers. Loss
function is used in supervised machine learning to minimize
the differences between the predicted output of the model and
the ground truth labels. In our task, we use the contrastive loss
to train our model.

We train the network to make the distances of data from
different participants are as far as possible, while from the
same participant are as close as possible. In the long run, the
network will learn to extract meaningful features and has the
ability to distinguish different people. The input shape is (8,
400, 1), 8 means the data have eight different channels, 400
is the valid signal length, and 1 means each cell of the signal
matrix has only one value.

Fig. 5. Data collection App. Fig. 6. Siamulation App.

E. Unlock Prototype System

We transfer the fine-tuned model into smartphones. The user
interface of the unlocking simulation application is shown in
Figure 6. In the first step, the user needs to input his or
her name as the index of later EMG signal. In the second
step, the user does four different actions to save their unique
EMG signal in the database. We name these two steps as the
enrollment stage. In the stage of authentication, the users open
the simulation interface and take their smartphones as usual.
The App saves the EMG signal from the Myo armband in real-
time and implements segmentation in the time window of two
seconds, so the processed signal can be fed into our model. The
signal after segmentation is then paired with the previously
stored four different types of EMG matrixes, respectively.
These pairs are fed into the model, if one of the output is
less than the threshold, the system considers the authentication
successful; otherwise, the newcomer is rejected.

IV. EXPERIMENT AND EVALUATION

This section presents the experiments and implementation
details of our EmgAuth system. We collect data from 40
participants and use this dataset to train a neural network. We
then present the training progress and show the influence of
related parameters. The performance of EmgAuth is tested in
several experiments as well as the impact of different factors.

A. Dataset

In order to collect data to train a deep learning model, we
invite 40 participants to help us build an EMG signal dataset.
Participants include 28 males and 12 females, with the mean
age of 24.6 and the range of 18 to 45, which considered to be
typical user groups of smartphones.

The participants are required to wear the Myo armband in
the forearm. The position of Myo armband is shown in Figure
7. This process is conducted in an academic environment
and all participants are free from disturbing. An Android
smartphone runs our data collection App and the EMG signal
is recorded into csv files. We design a questionnaire to record
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smartphone positions when people are studying or working,
the results are presented in Figure 11. As we can see, people
usually put their smartphones on the left, forward and right,
this helps us to design the data collect motions.

Fig. 7. The wearing position of Myo armband.

We require the participants to sit in front of a desk and
put their smartphones on the desk. As shown in Figure 8, the
motion they need to do is just picking up their smartphones
and watching the screens as usual. Here, we design four
scenes and the only difference among them is the location
of the smartphone and hand. There are two initial positions,
which are shown in the top two sub-figures. There is just
one smartphone position corresponding to the former initial
action while three positions for the latter initial action. The
four smartphone positions are shown in Figure 11.

In position P1, P2, and P3, participants are required to repeat
the motion for twenty times while position P4 for ten times.
We decrease the times of the last scene because most people
do not put the smartphone in such a position, as a result of
our survey. The valid time starts from the user begins to move
his or her hand to look at the screen and this time is normally
less than two seconds. Therefore, we set the valid time to two
seconds. To be specific, the sample rate is 200Hz and Myo
armband has eight channels, so one piece of valid data is an
8×400 matrix. With 40 participants, we collect a dataset with
2800 valid data.

Fig. 8. Data collection steps.

Fig. 9. DET curve with different thresholds

B. Model Training and System Evaluation

We implement our model using Keras, a Python-based deep
learning platform. We train our model on a server machine
equipped with an NVIDIA Tesla V100 GPU, 128GB memory,
and an Intel Xeon E5 2560 processor. We use an Adam
optimizer with a learning rate of 0.002 and a batch size
of 32. For loss function, we choose contrastive loss rather
than cross entropy loss. Contrastive loss runs over pairs of
samples. During training, an EMG signal matrix pair is fed
into the model with their ground truth relationship Y. If the
two matrixes are similar, Y equals 0; otherwise, Y equals 1.
The loss function is defined as (1), where d is the Euclidean
distance between the two EMG feature vectors. The margin
term is used to keep the loss within a valid range. For example,
if two EMG signal matrixes in a pair are dissimilar, then their
distance should be at least the value of margin, otherwise the
loss will be 0.

Loss = (1− Y )d2 + Y {max(0,margin− d)}2 (1)

We evaluate the performance of EmgAuth using metrics
that are commonly used in evaluating authentication systems.
These metrics include accuracy, true acceptance rate (TAR),
false acceptance rate (FAR) and false rejection rate (FRR).
Equal error rate (EER) is also leveraged to find an appropriate
classification threshold. With the threshold increases, FAR
drops while FRR increases. EER is the point that FAR equals
with FRR. Classifier has the best performance when the
threshold corresponds to EER. Hence, we plot the Detection
Error Tradeoff (DET) curve and the result is presented in
Figure 9. The corresponding threshold of this EER point is
0.55, so we use it as the final threshold of our system.

We then study the effect of the different hyperparameters on
the system performance, including the number of CNN layers,
filter shape, learning rate, dropout rate, batch size, and the
number of epochs. Table I shows the initial hyperparameters
used in the evaluation section. We use the hold-out validation
to check the performance and the ratio of train set and test
set is 4:1. Also, we use accuracy as the only metrics of this
evaluation.
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TABLE I
TRAINING PARAMETERS

Paremeter Range Inital value
Number of CNN layers 2 - 6 2
Filter number 16 - 64 16
Learning rate 0.001 - 0.005 0.001
Dropout rate 0.1 - 0.3 0.1
Batch size 16 - 256 16
Number of epochs 10 - 50 10

(a) CNN layers (b) Number of convolution filter

(c) Learning rate (d) Dropout rate

(e) Batch size (f) Number of epochs

Fig. 10. Effect of different hyperparameters on authentication accuracy.

1) Effect of the number of CNN layers: Figure 10(a)
presents the effect of changing the number of layers. The
system reaches the highest accuracy when the number of layers
is 3. Then with the number increases, the accuracy drops.
Because the EMG signal is not as complicated as the images,
too many layers may lead to overfitting, but only two layers
cannot learn enough features.

10 188

4

P2P1

P4

P3

Fig. 11. Smartphone positions and corresponding frequencies.

2) Effect of different filter shapes: Figure 10(b) shows the
effect of the number of convolution filters in each layer.
A suitable number of convolution kernels can fully extract
the features of the signal. We try five different number of
filter combinations because there are three convolution layers.
The A, B, C, D and E correspond to [16,16,16], [16,32,32],
[16,32,64], [32,32,32] and [32,32,64], respectively. Combina-
tion B performs best, so we choose [16,32,32] as the filter
number in the three convolution layers.

3) Effect of different learning rates: The learning rate is a
hyperparameter that controls how much to change the model
in response to the estimated error each time the model weights
are updated. Too big or too small learning rates can both have
negative affect on the learning result. Therefore, we use a
series of values to choose the best one. Figure 10(c) shows
that 0.002 is the most appropriate learning rate.

4) Effect of different dropout rates: Dropout is the simplest
way to prevent neural network from overfitting. Considering
that each convolution layer has a dropout layer, we try different
dropout rate combinations and name them like Figure 10(b).
Here, the A, B, C, D, and E correspond to [0.1,0.1,0.1],
[0.1,0.2,0.2], [0.1,0.2,0.3], [0.2,0.2,0.2] and [0.2,0.2,0.3]. Fig-
ure 10(d) shows that there is an optimal combination for
dropout rate at [0.1,0.2,0.2].

5) Effect of different batch sizes: Figure 10(e) shows how
the batch size affects our system. The batch size is a hyperpa-
rameter that defines the number of samples to work through
before updating the internal model parameters. Considering
that the size of our dataset is not very large, a big batch size
is not a good choice. From the figure, we can see that the
accuracy reaches the highest when the batch size is 32.

6) Effect of the number of epochs: Figure 10(f) presents the
effect of training epochs. The number of epochs is the number
of complete passes through the training dataset. If the number
of epochs is too high, the model is easily becoming overfitting
as we have a small dataset. From the experiment, the model
gets the best accuracy when we set the the number of epochs
to 20.

7) Effect of different distance functions: As we mentioned
above, we add a distance layer to combine the outputs of
two identical sub-networks for measuring the similarity of
them. Here, we evaluate three different functions including
Manhattan distance [38], Euclidean distance and Cosine dis-
tance [39] to find a best option. To take a closer look at
the system performance under different distance functions, we
leverage the Receiver Operating Characteristic (ROC) curve
in the study. ROC curve is an effective method to graphically
reflect and compare the performance of different classifiers.
Each point on an ROC curve corresponds to a certain detection
threshold. Figure 12 presents the ROC curves of different
distance functions, the Area Under the ROC Curve (AUC)
of Euclidean distance is the biggest while Cosine distance
performs worst. The AUC of Manhattan distance is between
the other two distance functions. Therefore, we use Euclidean
distance to measure the similarity of two feature vectors of
the EMG signal.
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TABLE II
HYPERPARAMETERS

Parameter Value Paremeter Value
Number of CNN layers 3 Filter number [16, 32, 32]
Learning rate 0.002 Dropout rate [0.1, 0.2, 0.2]
Batch size 32 Number of epoch 20

TABLE III
CROSS-VALIDATION RESULT

Train set Test set Accuracy TAR FAR FRR
A, B, C, D E 95.33% 95.83% 6.62% 4.67%
A, C, D, E B 91.41% 90.22% 8.13% 9.78%
A, B, D, E C 87.50% 84.70% 9.11% 15.29%
B, C, D, E A 92.69% 95.77% 8.12% 4.23%
A, B, C, E D 93.37% 92.50% 5.17% 7.50%

Average 92.06% 91.81% 7.43% 8.29%

After those experiments, we list the best parameters in Table
II. We use our fine-tuned network to evaluate the performance
of EmgAuth system. We divide our dataset into five subsets,
which means each of them has 8 participants’ EMG signal.
These five subsets are marked as A, B, C, D, and E. Cross-
validation is applied to handle the problem of insufficient data.
We set the ratio of the train set and validation set to 4:1, as
we can train the model for five times. The results of 5-fold
cross-validation are listed in Table III. From the table, the
average accuracy reaches 92.06% and the other three metrics
are 91.81%, 7.43%, and 8.49%, respectively.

Except for the third group, the accuracies of the other four
groups are more than 90%. In the third group, the accuracy
is only 87.50%, severely lowering the average performance.
The other three metrics are also terrible. We investigate the
reasons behind it from the corresponding data. We find the
EMG signal waves are different sometimes even they belong
to the same motion of one person. Two reasons may lead to this
situation. First, the user may not do the action in the sampling
time, time drifting will lead to incorrect labeling, which
misleads our system. Second, during the data collection step,
some participants perform unnaturally, which may produce
unqualified data and affect the performance of our system.
These reasons also lead to the fluctuations of these metrics in
the results of cross validation.

V. INFLUENCING FACTORS IN REAL SCENARIOS

The reliability of EmgAuth under various working condi-
tions is critical for real-world deployment. In this section,
we discuss the scenarios that EmgAuth might encounter in
practice.

A. Impact of different enrollment actions

As we mentioned before, there are totally four different
smartphone positions that we use during the data collection
phase. However, in the real scenario, the position of the
smartphone is random. In this section, we would like to in-
vestigate whether EmgAuth can handle other positions besides
the above four locations. We invite five participants to do this
experiment. First, they are required to put their smartphones

Fig. 12. ROC curves of different distance functions.

Fig. 13. Random positions and the authentication result.

as they want (except the above four positions) and we record
the positions of them. Then they take the enrollment step
to store their EMG signal. The results of the authentication
are shown in Figure 13. The green marks are the positions
that EmgAuth authenticates correctly while the reds are the
positions that our system detects by mistake. There is just
one position that EmgAuth fails and the accuracy reaches
93.33%. From this experiment, we can conclude that our deep
learning model learns the features well and has an excellent
possibility of generalization. We also find that no matter where
the smartphone is put, the finger-level movements are similar
when the user grabs his or her smartphone and it is the main
reason why the system has a good generalization ability.

B. Impact of smartphone size and weight

To investigate the influence of types of smartphones, we
invite four participants with four different smartphones. We
design five sets of trials and every trial corresponds to a
specific smartphone. In each trial, the four participants are
asked to use the same smartphone to do the enrollment step
and authentication step. Then in the next experiment, they
change another smartphone at the same time. We do not set
attackers in this experiment so TPR is the only metrics to
measure the performance. The brands and parameters are listed
in Table IV, as well as the experiment result. For the result
of TAR, the overall performance is good except for Huawei
Honor 10. The TAR of Honor is just 80% while the others are
all more than 90%. The reason is that the size of Honor 10 is
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TABLE IV
DIFFERENT SMARTPHONES AND THE CORRESPONDING TAR

Product Weight(g) Size(mm) TAR
iPhone Xs 177 70.9×143.6×7.7 95%
iPhone 7 138 67.2×138.3×7.1 90%

Huawei Honor 10 230 85×177×7.65 80%
Xiaomi 8 175 74.8×154.9×7.6 90%

much bigger than the other three smartphones. A participant
who gets used to the standard size smartphone is hard to adopt
a bigger size one within a short time, which makes him does
changeable motions in trials. In addition, we do not find the
weight of the smartphone is an influencing factor of EmgAuth.
Therefore, we conclude that EmgAuth is device-independent.

C. Performance on left hand

In real life, there are some left-handers inevitably, and
this section is to evaluate whether EmgAuth can deal with
this scenario. We invite two left-handers to help us do this
experiment. The data collection process is identical with the
right hand scenario except for the wearing position. They are
required to do the enrollment first and repeat an action for five
times during the authentication phase. From the experiment,
our system fails just once among the ten times. Therefore, we
can say that EmgAuth is also suitable for left-handers.

D. Performance when standing

To prove EmgAuth is robust, we recruit 10 extra participants
to collect some EMG signal when they are standing and the
smartphones are in the trouser pockets. They are required to
take the smartphones out of their pockets and watch them.
The duration of this action is also two seconds and every time
the assistant says ”start”, the participant repeats the action
five times. In this way, we get a tiny dataset for testing
whether EmgAuth can unlock the smartphone when people
are standing rather than sitting. First, we split the dataset
for enrollment data and authentication data and the ratio of
them is 1:4. Then we make pairs and put these pairs into
the EmgAuth system. The TAR is 98.43% in the trial, which
means EmgAuth can deal with the standing scenario. The
reason why the TAR is higher than sitting scenarios is that
comparing with four different actions of sitting, the action of
standing is straightforward, which is easier for EmgAuth to
find features and make the right decision.

E. Unlocking speed

In this section, we test the speed of EmgAuth both on
the server and the Android smartphone. The whole unlocking
process includes four steps: loading stored EMG metrics, data
segmentation, making pairs and model calculation. Among
the above four steps, loading data consumes the most time
because it is an I/O operation. Therefore, we load the EMG
metrics in memory after a user finishes the enrollment phase
to accelerate the process. Then we test the time both on the
server and a Xiaomi 8 smartphone. When the process runs in
in a server machine, the authentication latency is about 0.048s.

Due to the limited computing resource of the smartphone, the
authentication latency of the simulation App run in a Xiaomi
8 is about 0.16s, which fulfills the requirement of real-time
unlocking.

VI. CONCLUSION

We present EmgAuth, an EMG-based smartphone unlocking
system, which leverages EMG signal and Siamese network to
unlock smartphones. In particular, when training the Siamese
network, we design a special data augmentation technique
to make the system resilient to the rotation of the armband,
which lets the system free of calibration. We conduct an
experimentation with 40 participants for collecting a dataset
and design a convolutional Siamese network for the EMG
signal. Our system can authenticate users effectively with an
average TAR of 91.81% while keeping the average FAR of
7.43%. Extensive experiments are conducted to demonstrate
the usability of EmgAuth for smartphones with different sizes
and at different locations, as well as users with different
postures. To estimate the speed we measure the latency both
on a server and an Android smartphone, the results fulfill the
requirement of real-time smartphone unlocking.

Although the experimental results are promising, the limi-
tation of EmgAuth also exists. First, our system may not work
well in the humid environment as the EMG signal becomes
unstable if the skin surface is wet. Second, the application
scenarios are limited currently which just include sitting and
standing. In the future, we will recruit more people to build
a bigger dataset and evaluate the performance of EmgAuth
in the long-term stability study. In particular, we will design
a smaller EMG sensor to make the system easier to use and
discover more application scenarios.
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