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Abstract—In this paper, we introduce a novel real-time and
contact-free sensor system, Helena, that can be mounted on a
bed frame to continuously monitor sleep activities (entry/exit of
bed, movement, and posture changes), vital signs (heart rate and
respiration rate), and falls from bed in a real-time and pervasive
computing manner. The smart sensor senses bed vibrations
generated by body movements to characterize sleep activities and
vital signs based on advanced signal processing and machine
learning methods. The device can provide information about
sleep patterns, generate real-time results, and support continuous
sleep assessment and health tracking. The novel method for
detecting falls from bed has not been attempted before and
represents a life-changing for high-risk communities, such as
seniors. Comprehensive tests and validations were conducted to
evaluate system performances using FDA approved and wearable
devices. Our system has an accuracy of 99.5% detecting on-
bed (entries), 99.73% detecting off-bed (exits), 97.92% detecting
movements on the bed, 92.08% detecting posture changes, and
97% detecting falls from bed. The system estimation of heart rate
(HR) ranged ±2.41 beats-per-minute compared to Apple Watch
Series 4, while the respiration rate (RR) ranged ±0.89 respiration-
per-minute compared to an FDA oximeter and a metronome.

Index Terms—Sleep monitoring, vibration, fall detection, ad-
vanced signal processing, machine learning.

I. INTRODUCTION

Currently, 654 million people are 65 years and older
worldwide [1], and around 47.8 million live in the United
States [2]. Within those people, nearly 26% live alone at home
and 18% in senior healthcare facilities or similar according to
U.S Census Bureau [2]. In this population, there is a lack of
contact-free and privacy-preserving solutions for monitoring
sleep activities. Most of the monitoring solutions in the market
are conceived to measure just vital signs (heart rate) with
a wearable apparatus/gadget, and those do not detect other
important activities like lack of movement on the bed and falls
from bed. Other devices require person actions, like pressing
a button when a fall happens, but those cannot be activated if
the person loses the conscience. On the other hand, the use of
cameras to monitor sleep generally raises privacy concerns.

This paper introduces a novel real-time and contact-free
sensor system that can be mounted on the bed frame to contin-
uously monitor sleep activities (entry/exit of bed, movement,
and posture changes) and vital signs (heart rate, respiration rate),
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and falls from bed. The technology includes a small yet smart
vibration sensor that can be easily installed and a user-friendly
graphic interface that can be paired with smart mobile devices
to monitor results through a software application. Vibration
sensors have been widely used in smart home applications [3]–
[6]. The smart sensor senses bed vibrations generated by body
movements and sleep activities and then infers sleep activities
and vital signs based on advanced signal processing and
machine learning methods. The system provides information
about sleep patterns, generates real-time results, and supports
continuous sleep assessment and health tracking.

The main contributions of our work are:
• A real-time contact-free sleep monitoring system based

on bed vibration, which allows estimation of heart and
respiration rates as well as sleep activities like on/off bed
detection, movements, posture changes, and for the first
time falls from bed. The system allows sending alerts to
smart devices when sudden changes occur, for example,
the person has too many or too few movements, a fall
down happens, or the person entry/leaves the bed.

• Accurate, light and fast methods for heart and respiration
rates, suitable for pervasive devices, that can be executed
in real-time on a single-board computer.

• First work to propose a method to detect and alert falls
from bed using only vibration signals.

• First work to propose a method to detect movement
and postures changes based only on the vibration signal
generated by the body on the bed.

II. RELATED WORKS

Sleep monitoring is extremely important, even a lifesaver, for
people with undiscovered illness, which causes respiration and
heart failures [7], [8]. The respiration status can be monitored
by breathing apparatuses [9], while the heart rate is typically
measured by wearable devices [7]. However, those devices
need body contact and are intrusive. Many people feel not
comfortable to wear or forget to wear before sleep. Comparing
with FDA approved wearable devices, our system can identify
with high accuracy sleep activities and vital signs. Furthermore,
to the best of our knowledge, this is the first work that proposes
a method to detect falls from bed using only vibration signals.
There are multiple contact-based devices for sleep monitoring.
For example, wearable devices like Apple Watch [10], Jawbone
3 [11], Basis Peak [12], Fitbit Surge [13], and a number of other
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“smartwatch” devices that have been good in demonstrated their
capabilities to measure heart rate; however, they lack deep study
of activities and patterns behaviors of the person during night
and require user intervention for correct performance. Under-
mattress devices like Beddit [14] and Nokia Withings Sleep
Tracking Pad [15] measure sleep time, heart and respiration
rates, sleep cycles; however, these measurements are based on
a whole night average that is shown the next day, which means
there is not real-time information. EarlySense device [16] is the
most near to real-time sleep monitoring and has been developed
to provide continuous monitoring of heart rate, respiration rate,
and bed motion for patients in medical/surgical scenarios using
a pressure sensor; however, it does not detect posture changes
and fall from bed and it is really expensive. Seismometers,
including geophones, have been widely used in geophysical
and civil engineering applications [17]–[20]. Recently, new
applications for smart environments are explored, such as
ambient floor vibration for indoor person localization [6], [21],
bed vibration for heart beating and breathing rate monitoring
[22]–[24], etc, but those applications are not real time. Besides,
there have been rare work on sleep posture identification using
body vibration patterns during sleep.

III. OVERVIEW

We use a smart sensor composed by a geophone (seismic
sensor) [25], [26], a digitizer board and a single-board computer
(Raspberry Pi 3B) [27]. It is shown in Fig. 1. The geophone
detects the velocity of the movements. The digitizer transforms
analog vibration signals to digital that is read by the single-
board computer. The single-board computer reads and processes
the signal to estimate the vital signs and on bed activities. After
multiple tests, we decide that the sensor must be installed in
a range no larger than 40 centimeters from the heart location
when the person lying down. The estimated results are sent
to the Cloud used the single-board computer WiFi. Also, it
is in charge of sensing alert messages via email or/and SMS
and to communicate with the smart assistant (Google Home
or Amazon Echo).

Geophone

Raspberry
Pi 3B

Digitizer

Fig. 1: Helena unit prototype.

Fig. 2 illustrates Helena architecture. The raw data sensed by
the geophone is used to determine the bed status (on/off/sitting).
If the person is detected on bed, Helena cleans the noise and
estimates HR and RR if there are no movements in the last
15 seconds. It is the time window used to calculate the vital
signs with high accuracy. The vital signs are estimated every
3 seconds. When a movement is detected, we evaluate three
scenarios (posture change, off bed and fall from bed). We

use 5 seconds of data before and after the event to calculate
posture change. For fall from the bed, we analyze if after the
movement there is an off-bed status. Then, the system performs
a machine learning model to detect if the event is a fall from
the bed. Otherwise, an off-bed event is set.
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Fig. 2: Helena Architecture.

Additionally, we develop a real-time visualization tool based
on InfluxDB [28] and Grafana [29]. The raw data are stored in a
local database, and results are sent to the cloud. Grafana is used
to create the dashboards for raw data, bed status (on/off/sitting),
HR, RR, movement, posture change and fall from bed.

IV. CHALLENGES

There are three main challenges to estimate sleep activities
and vital signs using a vibration signal captured by a sensor
attached on the bed frame:
• Ambient noises: In the vibration-based systems, the main

issue is the unpredictable noise generated by natural and
human activities. Constant noise, like the one produced by
an air-conditioner, washer/dryer, vacuum may affect the
data quality and vital signs estimation. It is a challenge to
detect and eliminate the noises produced by the different
machines while preserving the signal produced by the
heartbeat. Because Helena is designed for monitoring
single person, additional people or pets in bed may general
noise.

• Event recognition: Vibration-based systems are highly
sensitive and can detect other activities besides the
heartbeat. A major challenge is to distinguish and classify
the relevant events for estimating sleep activities, vital
signs, and fall downs, and discard other non-related events.

• Heartbeat estimation: The heartbeat signal received by
the sensor varies depending on multiple factors like
height and type of mattress, sensor location, types of
beds. Because heartbeat recognition is the base for many
of our algorithms, recognizing heartbeats in different
environments/people/setups is a major challenge of the
proposed development.
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V. ALGORITHM AND SYSTEM DESIGN

A. Signal Enhancing

Since our goal is to realize daily sleep monitoring, the
proposed system should be robust to different environments.
Besides the random noise suppression, an adaptive machine
vibration elimination is also required in the home environment
to handle the noises from home appliances, such as AC (air
conditioner), washer/dryer, vacuum and so on. Based on the
geophone with a 100 Hz sampling rate, the available frequency
range is 0∼50 Hz, according to the Nyquist sampling theorem.
A spectrum scanning method is first applied to remove the
machine noises in the environment. We apply notch filters to
suppress the noise components with iso-dominant-frequencies.
For HR/RR estimation, because the typical HR is between 40
bpm (beat per minute) and 150 bpm and RR is between 12
rpm (respiration per minute) and 25 rpm, which means the
target HR/RR should include 0.2 Hz to 2.5 Hz, only a small
frequency range is needed. Thus, we apply a bandpass filter
with 0.1 Hz low-cut frequency and 8 Hz high-cut frequency to
extract target vibration signals. After the process, the machine
noise is removed, and the signal retains the vibration signatures.

B. On/Off-Bed - bed exits and entrances

Knowing if the person is effectively lying down on the bed
is crucial for other system estimation modules. We propose a
Multiple Feature Fusion(MFF) method, that consists of different
metrics to estimate if the person has entered or exited the
bed. We use a fusion of Spectral Entropy (SE), Kurtosis and
Teager Energy Operator (TEO) to estimate the real energy
when the person is on the bed. The SE treats the signal’s
normalized power distribution in the frequency domain as a
probability distribution and calculates the Shannon entropy
of it. The Shannon entropy in this context is the spectral
entropy of the signal. For a signal x(n), the power spectrum
is S(m) = |X(m)|2, where X(m) is the discrete Fourier
transform of x(n). The probability distribution P (m) is then
P (m) = S(m)∑

S(i) . Then, the spectral entropy is estimated as

SE = −
N∑
m=1

P (m) log2 P (m).

off bed sitting
laying

on back
laying

on right sitting off bed

posture
change

event event event

Fig. 3: Data-fusion based entry/exit bed detection.

Kurtosis is the fourth standardized moment, defined as:

Kurt[X] = E

[(
X−µ
σ

)4]
= µ4

σ4 = E[(X−µ)4]
(E[(X−µ)2])2 , where µ is

the fourth central moment and σ is the standard deviation.
Finally, The TEO can be driven from a second-order differential
equation [30]. The total energy of oscillation (i.e., the sum
of kinetic and potential energies) can be obtained from the
following equation TEO = 1

2kx
2 + 1

2mx
2, where m is the

mass of the oscillating body and k is the spring constant.
Results can be seen in Fig. 3. It is possible to see the decreasing
of the total fused energy when the person is on the bed.

C. Movements and Posture Change

To detect movements, we first use the MFF method to
determine if the person has entered the bed. After that, we
observe that the body movement generates a strong signal
(107 amplitude) while the respiration and heartbeat show an
amplitude about 105. Thus, based on the dramatic energy
change, we can recognize the body movement using a local
thresholding method:

Trm =

{
1 if s(t) > λmax(s(z)), z ∈ (t− τ, t)
0 otherwise ,

(1)
where, s(t) is the signal in time t, λ is a threshold coefficient
and τ is the time lag.

Based on the on bed movement detection results, we develop
a posture change detection method because not all body
movements mean sleep posture changes. For posture change
detection, we analyze 5 seconds signal before and after the
movement to compare the similarity between them. We calcu-
late the similarity average of four metrics -the Spectral Entropy,
Kurtosis, TEO and Power Spectral Density (PSD)- character-
ized by sim = sumi<4

i=0(1 − abs(Ai − Bi)/((Ai − Bi)/2))
where, Ai is the metric i value for the signal after the movement,
and Bi corresponds the metric i value for the signal before
the movement. After several tests, a threshold of sim < 0.85
is established to identify if there is a posture change. Fig. 4
shows the signals of different postures for one person.

Back Left Chest Right

Fig. 4: Five seconds signal from four different postures.

D. HR/RR Estimation

Estimating hearth rate (HR), measured in BPMh directly
from the data spectrum [24] is not accurate because the
heartbeat waveform is not strictly periodical in reality as it can
be seen in Fig. 5.

The local maxima search method may fail (i.e., generate
unreasonable results) when there are noises and other inter-
ference. To improve HR estimation stability, we develop an
envelope based HR estimation method. The envelope is a curve

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

101



such that at each point it touches tangentially the signal. Fig.
5 shows an example of the envelope obtained to estimate
in HR. The parametric equations of the envelope are given
implicitly as U(x, u, C) = 0 and U ′C(x, u, C) = 0. Once
the envelope is obtained, the peaks can be used to estimate
the HR. To solve instabilities, a novel empirical truncated
statistics analysis method is proposed to estimate HR. When
local maxima of envelope are obtained, there are falsely picked
peaks and some missing peaks. Those falsely picked peaks
result in smaller period estimation, whereas the missed peaks
lead to larger estimation results. Here, X is the interval
between two sequential picked peaks.The heartbeat period
within (t− Ih

2 , t+
Ih
2 ) is estimated as a truncated average:

E(X|F−1(a) < X 6 F−1(b)) =

∫ b
a
xg(x)dx

F (b)− F (a)
, (2)

where, g(x) = f(x) for F−1(a) < x 6 F−1(b);

g(x) = 0, everywhere else;

F−1(p) = inf{x : F (x) > p}.

The lower and upper bounds (a and b) are determined based
on the local maxima detection performance. In our applications,
0.1 and 0.9 are chosen for a and b, respectively.

X

Fig. 5: Heart signal. First and second local maxima estimation
from envelope to estimate HR and RR.

Commodity seismometer is insensitive to lower frequency
measurements (usually lower than 0.3 Hz) [22], [24], thus the
respiratory rate BPMr can not be directly observed from seismic
data. Previously, an amplitude-modulation approach is proposed
to use the envelope to estimate carrier frequency [24]. However,
the amplitude modulation of the recorded seismic signal is not
stable. For that reason, we propose a novel technique to obtain
the envelope. We use the HR peaks detected to generate the
respiratory modulation signal by extrapolate them. Then we
obtain the envelope of the signal and count the peaks to estimate
the respiratory rate. Fig. 5 shows the envelope generated by
the proposed method.

E. Fall from Bed

To identify “fall from bed”, we propose to use a machine
learning-based approach. Based on a supervised machine
learning algorithm, Support Vector Machine (SVM) [31], data
are transformed using a kernel to find the optimal boundary
between the different classes. SVM and its derivatives have
been widely used in the biomedical engineering [6], [32]
because it is efficient and easy to implement on embedded
devices. Before applying the machine learning method, we
identify whether the detected event is a candidate to be a
fall from bed. In the stage of “falling from bed”, the person
should be laying or sitting on-bed, and then an event needs to
be detected. When an off-bed is identified after the event, it
becomes a candidate to be a fall from bed. At that moment,
the features are extracted and classified by the SVM to identify
if the event is a fall from bed or another movement. All events
used during training and tests are shown in Fig. 6.

1) Feature extraction: We compute features in time and
frequency domain. The signal events are normalized to get
similar features for each type of events. The normalization is
done dividing the event by the energy average of its signal,
where the energy is defined as E =

∑N
n=0 |s(n)|2. We use the

signal amplitude, event duration, amount of sub-events, and
the last 20 peaks information in the time domain. Fig. 7(left)
shows the time domain features. In the frequency domain, we
select Power Spectral Density (PSD) of the vibration signals,
which exposes the power distribution for different frequencies.
If si represents the signals, then the PSD can be defined as

PSDi = 10log10
abs(FFT(si))2

fs ∗ n
(3)

where fs is the sampling frequency, n is the number of samples
of received signal si and FFT(·) is the Fast Fourier Transform
operation. Fig. 7(right) shows the PSD feature used as a part
of the input.

2) Selection: For experimental purposes, we generate 480
simulated falls from bed. To have plenty variety of signals,
the simulated falls are performed by 3 people in 4 different
bed falling 20 times for each bed-side. To choose the correct
classifier that obtains high levels of accuracy and to have
the ability to adapt to the limited computing resources of the
computer board, we evaluate the accuracy and run-time of three
different classifiers using the 480 falls from bed. The tested
classifiers are Gaussian Process (GP), K-Nearest Neighbors
(KNN) and SVM. The data is split on 80 percent for training

Fall Movement Sitting Jump Drop object Foot Steps

Fig. 6: Bed vibration signals for different events.
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Fig. 7: Time and frequency domain features for fall from bed
classification.

and 20 percent for testing. The process was conducted on
4 different Raspberry Pis for each classifier. The results are
shown in Table I.

TABLE I: Classifiers performance on “fall from bed” detection.
Times are calculated from the average of four Raspberry Pi.
Acc (accuracy), Pre (precision), Rec (recall), F1 (F1 score).

Training ClassificationAlgorithm Acc Pre Rec F1 Time (s) Time (s)
SVM 90.92 0.69 0.81 0.75 26.146 0.472
KNN 91.33 0.69 0.87 0.77 10.340 12.023
GP 87.83 0.62 0.68 0.65 35.237 2.315

All classifiers have an acceptable level of accuracy. Even
though KNN has the highest accuracy and recall, there is no
big difference between SVM and GP. On the other hand, all
training times are acceptable because they are executed just one
time. However, SVM outperforms the classification run-time.
The run-time increases 3.2X times when GP classifier is used,
and 25.45X times using KNN. Then, we selected SVM as a
classification as the classifier model.

Fig. 8: Receiver Operating Characteristic (ROC) of the cross-
validation procedure using 10 folds.

3) Validation: The k-fold cross-validation procedure is
applied to evaluate the classification model. We use k-fold
to estimate how the model is expected to perform when it
makes predictions on data not used during the training of
the model. The procedure splits the data into k groups, and
for each group, it (i) takes one group as a test data set, (ii)
takes the remaining groups as a training data set, (iii) fits and
evaluates the model, and (iv) retains the evaluation score. We
select 10-folds to cross-validate the model. We use AUC (Area
Under the Curve) ROC (Receiver Operating Characteristics)
to check and visualize the performance of our classification

problem. ROC is a probability curve, and AUC represents the
degree or measure of separability. They tell how much model is
capable of distinguishing between classes. An excellent model
has AUC near to 100, which means it has a good measure of
separability. Fig. 8 shows the AUC for all folds. The AUC
average is 89.92, which is an acceptable measurement.

VI. EXPERIMENTS AND EVALUATIONS

We performed three types of experiments to validate the bed
system. The first one was done in a lab environment to set up
parameters, find issues, and validate the system with different
people. Then, we carried out a test in different environments
outside the lab to test different beds, noise levels, and to
validate the HR results comparing with an FDA approved
device. Finally, we set up two units in a senior assisted living
facility in Loganville, GA to test the system with senior people,
crowd environments, and also to get feedback from users,
relatives, and nurses.

A. In-lab experiment:
We carried out the first experiment with 10 participants

(6 males and 4 females) from our lab and collaborators. It
was done in a controlled environment with the same bed and
similar background noise. This experiment was done to tune
some algorithm parameters and validate the accuracy of on-
bed, off-bed, HR, RR, movement, and posture change. For
comparison purposes, we used a commercial fingertip pulse
oximeter, Zorvo, to obtain continuous readings of the vital
signs (HR and RR). The experiment was set up for 18 minutes
per participant, and it was distributed as follows (i) 3 minutes
on-bed, off-bed and sitting on the bed (ii) 5 minutes for HR,
(iii) 2 minutes for RR, (iv) 2 minutes for movements, and (v)
6 minutes for posture change.

1) On-bed, Off-bed and Sitting experiment: When the
person is on-bed, the system starts the algorithms to calculate
the vital signs. We collected 36 bed status from each participant,
12 for each type (on-bed, off-bed, sitting). The participants
change the status every 5 seconds according to our directions.
In this experiment, the system was set up to detect bed status
every 3 seconds. Table II shows the results of the “bed status”
test. The method used to calculate the bed status proved to be
robust and reliable according to the low error level. The method
got a perfect score detecting off-bed because the data-fusion
level is high when there is not a periodical signal detected.
However, the system detected 9 false on-bed alarms when the
participants were seated. Interestingly, after carefully analyzing
these specific cases we found that when a person sits in a
distance less than 30 centimeters from the sensor, it can detect
a faint heartbeat signal that has high auto-correlation levels.
We improved the accuracy analyzing the variability between
HR peaks, where high variability implies sitting. In some cases,
the system can estimate HR if the person is next to the sensor.

2) Heart rate experiment: The 5 minutes HR experiment
was divided into two blocks. The first is called “resting mode”
where the participant lays on the bed for 3 minutes in normal
condition. The second, “active mode”, where the participant
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TABLE II: Matrix confusion for “bed status” experiment.

Ground Truth Evaluation
On-bed Sitting Off-Bed Ac Pr Re F1

On-Bed 120 9 0 0.98 0.93 1.00 0.96
Sitting 0 111 0 0.98 1.00 0.93 0.96
Off-Bed 0 0 120 1.00 1.00 1.00 1.00
Avg. 0.98 0.98 0.98 0.97

needs to do exercise for 2 minutes before laying on-bed another
2 minutes to collect high HR and analyze the variation when
the person begins to relax. During the experiment, our system
was configured to estimate the HR at the same frequency as the
oximeter (every 5 seconds). The error was calculated with 36
readings in rest mode and 24 for the active mode per participant.
Fig. 9 shows the HR average and the errors obtained in both
modes. The estimated average error was 2.35 bpm (beats per
minute) for the resting mode and 2.08 bpm for the active mode.
The error results were also affected by the error added for the
oximeter that is established in 2 bpm in its description. For
example, the maximum error obtained during the experiment
was 3.43 bpm, but after calculating it manually using the raw
data, the real error was 1.26 bpm.

1.60 2.24

2.07

3.19

2.23
1.78

1.63

3.43

2.83
2.52

2.92

2.04
1.87

1.01

2.152.19

2.86

2.33

1.55 1.88

Fig. 9: HR average and mean absolute error from in-lab
experiment.

Fig. 10a shows the estimated HRs from the two devices
on resting mode. Here, an error from the oximeter can be
appreciated at the time 7:35:00 where there is a drop of 10
bpm, and it is recovered after two readings. Fig. 10b shows
the HR behavior during the recovery period of the participant
after exercising. Both results show a drop of 20 bpm in the
first minute, which is considered normal.

3) Respiration rate experiment: We used a metronome to
validate our respiration rate estimation. The metronome is a
generally accepted approach to collect ground truth breathing
data in the research community [33], [34]. Even though people
are forced to breathe artificially using the metronome, we could
estimate the accuracy of our method. The metronome was set
to sound every three seconds to get a RR of 20 rpm. Forty
readings were collected per participant during the two minutes
test. Fig. 11 shows the results obtained for each person and the
metronome baseline. The average error was 0.52 rpm validating
the results obtained in the first experiment. During the HR
experiment, the RR was also estimated by both, our system
and the oximeter. The purpose was to analyze spontaneous

(a)

(b)

Fig. 10: HR visual comparison between Helena and an oximeter.
(a) Before exercising. (b) After exercising.

Fig. 11: RR results from controlled respiration using a
metronome using a frequency of 20 breath per minute.

breathing. We obtained 36 and 24 measurements estimations
during resting and active mode respectively from each person.
The results from the two modes are shown in Fig. 12, having a
mean error of 1.56 rpm during the resting mode and 0.61 rpm
during the active mode. It is noteworthy that the error in the
active mode is smaller because the deep breathing generates
a marked difference between the inhalation and exhalation
phases improving the envelope calculation.

4) Movements: The objective of the experiment is the body
movement detection. However, the experiment was designed to
collect data that will be used to develop future features such as
the movement location. During it, we asked the participants to
move different parts of their body one at a time every 5 seconds.
The body part used were the left hand, right hand, left leg,
right leg, head, and shoulders. We told the participant which
part he/she needed to move according to a pre-established
pattern. A total of 240 events were used for calculating false
negatives and accuracy. The movements were classified into

1.611.32

2.15
0.21

1.51
0.09

0.64

1.36

1.16
0.73

1.95
0.93

1.73

0.42

1.34
0.65

1.88
0.17 1.65

0.22

Fig. 12: Results and errors from spontaneous RR calculated
by Helena.
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TABLE III: Matrix confu-
sion for posture change de-
tection.

Recognized as Eval

To Change No
Change Acc

Back 110 10 91.67
Chest 115 5 95.83
Right 108 12 90.00
Left 105 15 87.50
Avg. 91.25

Fig. 13: Posture change transi-
tion error. B(Back),L(Left),
R(Right),C(Chest)

two groups, “upper movements” (head, arms, and hands) and
“lower movements” (legs and feet). The system did not detect 5
movements from the 240 generated, obtaining an accuracy of
97.92%. All of these 5 movements were from lower movements
specifically from the feet located outside the bed generating
lower magnitude lower than any on-bed event.

5) Posture Changes: We organized a pattern where the
participant had to change to one position from the other three
positions. For example, starting from “left”, move to “back”,
then “chest”, “back”, “right”, “back”, and so on. We collected
48 posture changes from each participant. The results obtained
after the evaluation are presented in Table III. A total of
438 posture changes were successfully recognized getting an
accuracy of 91.25%. Fig. 13 shows the posture change failures
from one position to another. As signals from the “back” and
“left” have similar characteristics, the posture changes with the
highest error were from “back” to the “left” and vice versa.
On the other hand, “chest” and “back” posture signals are very
different, which leads in fewer errors from “back” to “chest”
and vice versa with just one failure.

B. Outside experiment:
We set up the experiment in 13 different homes with varied

environments, beds, and background noise. We got the help
from 25 participants. Specifications of the different mattress,

size, materials, and distance between floor and boxes(frames)
of the 25 beds are listed in Table IV. The experiment was
established for 5 continuous days. Due to some limitation with
the number of units and the FDA devices used to validate our
results, we experimented during 4 different weeks.

1) On-bed, Off-bed and sitting experiment: We established
windows for analyzing on and off-bed. The off-bed window was
set between 9 am and 5 pm. Participants confirmed it was their
time to be out of their homes. For the on-bed hours, a window
was established between 9 pm and 6 am. A limitation of this
experiment is that we could not perform sitting validations.
However, we analyzed the raw data and the HR and RR results.
We did not find any HR and RR calculation outside those
expected. We took as expected values for HR between 40 and
140 and respiration between 12 and 25. Also, we considered
expected continuous variations between estimations not greater
than 8 bpm for HR and 6 for rpm for RR. For example, the
HR values of a false on-bed can vary from 62 to 78 bpm in
5 seconds and for RR from 18 to 26 rpm. We did not find
unexpected values during the 125 nights. We confirmed that
no HR or RR was estimated while the participants were sitting
on the bed. Table IV shows in two columns the false positives
detected per house during the test. The false on-bed column
reflects the false positives on-bed or the times when the system
detected a person on-bed during off-bed hours. During the
entire experiment, five false on-bed detection were presented
in two different houses. In house number 6, four false on-bed
were detected with a duration smaller than 5 minutes. We
analyzed the signal and realized that the environment was
very noisy due to the house construction. Three false on-bed
detection occurred in the bed next to the laundry room. During
this time we found two mixed signals that correlated as well
as HR signal. In another hand, the false on-bed detection on
house number 12 was analyzed, and a cardiac signal was found
with an HR average of 120 bpm. We found it was from the
participant’s dog who usually sleeps at the bottom of the bed.

TABLE IV: Outside test details and results. Relevant information from the participants, environments, and beds is shown. The
results obtained in each of the parts of the system are presented. The highlights are summarized in the last row.

# House Gender Age Weight Location Room
Location

Floor Type
Under Carpet

Bed
Frame

Mattress
Material

Mattress
Height Ave-HR ± Error RR False

On-bed
False

Off-bed
Posture

Change Acc
Fall
Acc

1 Male 39 196 Bogart 2 Floor Wood No Innerspring 14.5 66bpm ± 1.32 21.3rpm 0 0 92.86 100
2 1 Female 37 154 Bogart 2 Floor Wood No Memory foam 11.5 72bpm ± 1.59 22.2rpm 0 0 90.54 100
3 Male 21 121 Bogart 2 Floor Wood No Memory foam 8 64bpm ± 2.08 22.2rpm 0 1 - 100
4 Male 23 147 Bogart 2 Floor Wood No Memory foam 8 58bpm ± 2.13 18.1rpm 0 0 - 100
5 Female 62 114 Bogart 1 Floor Concrete No Innerspring 10 54bpm ± 1.27 20.6rpm 0 0 94.44 75
6

2

Male 19 136 Bogart 1 Floor Concrete No Memory foam 8 76bpm ± 2.68 16.4rpm 0 0 - 100
7 3 Male 33 172 Athens 4 Floor Wood Yes Hybrid 11 58bpm ± 1.97 20.1rpm 0 0 87.30 100
8 4 Female 24 127 Athens 2 Floor Concrete Yes Innerspring 9 63bpm ± 1.57 19.3rpm 0 0 - 100
9 5 Male 22 143 Athens 2 Floor Wood Yes Innerspring 9 67bpm ± 2.73 19.5rpm 0 0 - 100
10 Male 19 204 Alpharetta 2 Floor Wood Yes Hybrid 11 78bpm ± 1.68 20.0rpm 3 0 - 100
11 Male 24 167 Alpharetta 2 Floor Wood Yes Hybrid 11 54bpm ± 1.58 16.7rpm 1 0 - 100
12

6
Male 51 154 Alpharetta 2 Floor Wood Yes Hybrid 11 77bpm ± 5.28 20.9rpm 0 0 94.34 100

13 Male 49 200 Alpharetta 2 Floor Wood Yes Memory foam 10 83bpm ± 1.91 16.2rpm 0 0 - 100
14 Male 24 183 Alpharetta 1 Floor Concrete Yes Memory foam 10 63bpm ± 1.61 17.4rpm 0 0 92.31 100
15

7
Female 64 128 Alpharetta 1 Floor Concrete Yes Memory foam 10 55bpm ± 1.29 19.3rpm 0 0 93.33 100

16 8 Male 41 205 Watkinsville 1 Floor Wood No Memory foam 10 69bpm ± 1.95 20.1rpm 0 0 - 100
17 Male 25 161 Roswell 3 Floor Wood Yes Hybrid 14.5 81bpm ± 5.18 19.7rpm 0 2 - 75
18 9 Female 27 144 Roswell 3 Floor Wood Yes Hybrid 14.5 74bpm ± 6.30 19.1rpm 0 0 - 100
19 Male 33 231 Sandy Srings 2 Floor Wood Yes Memory foam 7 81bpm ± 1.83 20.4rpm 0 0 - 100
20 Female 18 143 Sandy Srings 2 Floor Wood Yes Memory foam 7 72bpm ± 2.18 21.2rpm 0 0 91.49 100
21

10
Female 59 169 Sandy Srings 2 Floor Wood No Memory foam 7 63bpm ± 1.59 21.1rpm 0 0 - 100

22 11 Male 34 139 Northcross 2 Floor Wood Yes Hybrid 11.5 64bpm ± 3.80 16.2rpm 0 0 - 75
23 12 Male 32 141 Dunwoody 9 Floor Concrete Yes Hybrid 11.5 78bpm ± 3.24 22.0rpm 1 0 - 100
24 Female 44 196 Marietta 2 Floor Wood Yes Innerspring 9.5 75bpm ± 1.63 18.8rpm 0 0 - 100
25 13 Female 58 146 Marietta 2 Floor Wood Yes Innerspring 9.5 61bpm ± 1.77 16.7rpm 0 0 - 100

Summary Males 16
Females 9

Min 18
Max 64

Min 112
Max 231 Cities 9 Levels 5 Types 2 Yes 17

No 8

Innerspring 6
Memory 11
Hybrid 8

Min 7
Max 14.5

HR Avg. 68.24
Error Avg. 2.41

Min 16.2
Max 22.2 Total 5 Total 4 Avg. 92.08 Avg. 97
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The system was able to detect and calculate the dog’s HR.
The accuracy calculated per day and hour would be 96% and
99.5% respectively. The false off-bed column shows the false
exits from the bed. It happens when the system cannot detect
the heartbeat due to poor posture and/or a thick object used
between the body and the mattress. The accuracy calculated
per day and per hour was 97.6% and 99.73%. The solution
proposed for both false detection is to recognize a big event
before “bed status” change. These events are induced when
the person sitting, lying down, leaving the bed or changing
positions. With this approach, the eight detection in total can
be reduced to one.

2) Heart and respiration rate experiment: We used an FDA
class 2 medical device, Apple Watch Series 4 [35], to validate
the accuracy of our HR method. The Apple Watch provides
HR continuous reading in a range between 3 to 10 seconds.
One of the limitations is the battery life since it only allows
collecting around 5 hours of continuous HR. Participants used
an AppleWatch for 5 days at bedtime. We selected it because
it is one of the most accurate devices on the market calculating
HR with an average error of 2.99 bpm [36]. AppleWatch
incorporates some errors during the HR estimation where the
changes between 2 consecutive readings are larger than 25
bpm, and it is not normal even is the person is having a
panic attack [37]. Fig. 14 shows the graphic results between
AppleWatch and our system in different tests. In both figures,
our method follows the pattern established by the AppleWatch.
Also, the errors from the AppleWatch can be observed. The
largest different during the test is shown at 2:40 am in Fig.
14a. We checked other indicators at the same time, and we
observed that in these 12 minutes, several movements were
detected. We can infer that the person was awake at this time.
In the same figure, at 3:20 am, there are 10 minutes of missing
results by our system because it detected off-bed status. It was
confirmed by the participant.

(a)

(b)

Fig. 14: HR comparison between Apple Watch Version 4 and
Helena. (a) Participant 17. (b) Participant 20.

Table V summarizes the results of the entire HR exper-

iment, showing the mean absolute error (MAE) and the
peaks introduced by the AppleWatch. Note that the error
decreases according to the growth of the time window, and the
AppleWatch added more than three errors in one hour. We set
15 minutes windows for comparison due to many commercial
devices calculate HR at this frequency. The MAE of the system
is 2.41 bpm even when the AppleWatch incorporates during
that time an unreliable peak of data. Devices on the market
calculate HR with an average error between 2 and 5 bpm.
The error obtained in our experiment shows that our system is
within the confidence range estimating HR. Table VI shows a
ranking summary of the MAE using 15 minutes window. The
four best results showed an average error of less than 1.6 bpm.
According to Table IV, the common variable to obtain these
results is the type of mattress, in this case innerspring. The
same variable affects the system performance because in the
highest four errors detected, the type of mattresses was a hybrid.
The hybrid bed has two layers innerspring on the bottom and
foam on the top. After checking the signal, we noted that the
bed material affects the energy signal. However, there are some
exceptions as participants 7, 10 and 11. It is because two other
variables influence the energy signal such as person weight
and mattress height. In those cases, the participants obtained a
lower error than the average due to their weight and heartbeat
strength. Even when participant 18 is an overweight person,
the error obtained in this experiment was the highest because
the participant’s bed is thicker.

TABLE V: HR mean absolute error from Helena and abnormal
peaks during estimations.

Average Mean Absolute Abnormal Peaks from
Time Error±STD AppleWatch Helena

1 minute 4.28 ±2.80 bpm 0.059 0
3 minutes 4.01 ±2.53 bpm 0.183 0
5 minutes 3.43 ±2.23 bpm 0.302 0
10 minutes 2.89 ±2.06 bpm 0.611 0
15 minutes 2.41 ±1.88 bpm 0.926 0
30 minutes 1.76 ±1.56 bpm 1.866 0
1 hour 1.41 ±0.70 bpm 3.384 0

TABLE VI: Mean absolute error rank of HR validation.

Mean Absolute Abnormal Peaks fromRank Participant Error±STD AppleWatch Helena
1 C5 1.27±1.29 0.544 0
2 C15 1.29±1.82 0.742 0
3 C1 1.32±1.59 1.032 0
4 C8 1.57±1.26 0.786 0
22 C22 3.80±3.40 1.143 0
23 C17 5.18±3.47 0.887 0
24 C12 5.28±3.90 0.786 0
25 C18 6.30±4.73 1.446 0

Validating the respiration rate (RR) was more difficult.
Affordable on-the-market devices for monitoring RR have
low accuracy and are difficult to wear overnight. For this
reason, we only were able to evaluate the results based on
the “range of confidence” and the “acceptable variability”.
The “range of confidence” was established between 13 and
25 rpm as we worked only with healthy participants. The
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“acceptable variability” means no abrupt changes between one
RR estimation and another in a shorter time. None of the
participants were outside of the “range of confidence”, and
the highest variability was obtained by participant 18, with 4
rpm different between two consecutive measurements. Table
IV shows the RR average from each participant.

3) Posture Change and Movement experiment: We ob-
tained permission from 8 participants to install infrared cameras
with motion detection [38]. Fig. 15 shows the camera used and
images from the video recorded. The cameras were configured
to record video during the bedtime between 9 pm to 6 am.
Additionally, cam alerts were activated to record 12 seconds
of video after movement detection. The alerts helped us to
validate true positives, false positives and true negatives. In
each alert, we verified if there was a posture change or not
contrasting it with the results of our system. Additionally,
we verified the continuous video recorded in cases where
our system registered a posture change, but the alert was not
emitted by the camera. This specific case occurred when the
person made two continuous posture change and the alert was
activated just the first time.

(a) (b) (c) (d)

Fig. 15: Posture change validation. Camera used in the
validation and images taken during the experiment. (a) The
infrared camera with motion detection. (b) Lady sleeping on the
right. (c) Second lady sleeping on the back. (d) Man sleeping
on the left.

The test results are shown in Table VII. We noted that
the failures produced by the system occurred in 76.31% of
cases when the posture change was from left to back or vice
versa, similar to results registered in the laboratory test. The
average accuracy for the spontaneous posture change is 92.08%
which validates results obtained in the simulated posture change
test performed in the laboratory. We were unable to perform
a quantitative evaluation of movements during the bedtime
windows because slight movements detected by the system
are not detected by the camera. However, our system detected
movements in all alerts not classified as a posture change.

4) Fall-down: Because falls from bed are not common
events to be validated in a real environment, we performed
simulated falls when we installed the sensors in different
environments. Two falls on each bedside were simulated on
each bed. Only 3 events were not classified as a fall from bed
having an accuracy of 97%. Throughout the experiment, we did
not detect any false fall from the bed. Even when the method
was trained with different fall positions, people, environments,
and beds, the data were simulated falls. For this reason, we
cannot guarantee the same level of accuracy in spontaneous

TABLE VII: Posture change validation results.

Changes detected
Parti

Event detected
by the camera

Real posture
changes yes no Acc

C1 60 56 52 4 92.86
C2 76 74 67 7 90.54
C5 54 54 51 3 94.44
C7 69 63 55 8 87.30
C12 57 53 50 3 94.34
C14 66 65 60 5 92.31
C15 62 60 56 4 93.33
C22 51 47 43 4 91.49
Avg. 92.08

falls. However, we plan to integrate another sensor installed
on the floor to combine the events that occur in the bed and
on the floor, to provide a higher level of confidence [6].

Heart	Rate

Respiration	Rate

Status

Last	Movement

General	Dashboard

Heart	Rate Respiration	Rate Movement Posture	change Status
10:00 11:00 12:00 		1:00 	2:00 			3:00 4:00 5:00 6:00 7:00	2019-08-05	

07:09:23

20

40

60

80

100

120

Fig. 16: System results dashboard from one participant at
Magnolia Senior Care Facility.

C. Senior Care Center Test

Because two previous tests are performed with healthy people
and under 60 years, we decided to perform an additional test
with senior people. Two units were installed for two days in
Magnolia Senior Care facility located in the city of Loganville
GA. We received the approval by the manager, the participants,
and their families. The participants were 87 years old and 147
pounds gentleman, and a 74 years old and 132 pounds lady.
The on-bed, off-bed and sitting status, were confirmed by the
nurses. The HB and RR were monitored in real-time from our
central dashboard. The values of both HR and RR were normal
throughout the process. No false fall from bed was detected.
We could not perform posture change or movement validations.
Fig. 16 shows the monitoring dashboard during part of the
process, which allows seeing the report in real-time showing
the last 5 minutes results and also to check historical results.

VII. CONCLUSION

An accurate and suitable pervasive sleep monitoring sys-
tem (Helena) based on a contact-free bed-mounter sensor is
proposed in this paper. Novel methods for heart rate and
respiration rate estimations have been introduced only based
on heart vibrations on the bed. For the first time, a non-
intrusive method to detect and alert falls from bed has been
introduced with an accuracy higher than 95%. The system also
allows real-time monitoring of movements and posture changes.
The performance has been multiple times tested on different
people, beds, environments to determine its accuracy and has
been compared with FDA approved wearable devices reaching
promising results.
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[14] L. Leppäkorpi, “Beddit is a new kind of device and app for tracking
& improving sleep and wellness,” Beddit Is a New Kind of Device and
App for Tracking & Improving Sleep and Wellness, 2014.

[15] “Nokia Withings Sleep Pad,” https://www.withings.com/us/en/sleep, last
Accessed: 2019-04-30.

[16] M. Helfand, V. Christensen, and J. Anderson, “Technology assessment:
early sense for monitoring vital signs in hospitalized patients,” 2016.

[17] W.-Z. Song, R. Huang, M. Xu, B. A. Shirazi, and R. LaHusen,
“Design and Deployment of Sensor Network for Real-Time High-Fidelity
Volcano Monitoring,” IEEE Transaction on Parallel and Distributed
Systems, vol. 21, no. 11, pp. 1658–1674, 2010. [Online]. Available:
http://dx.doi.org/10.1109/TPDS.2010.37

[18] W. Song, L. Shi, G. Kamath, Y. Xie, and Z. Peng, “Real-
time In-situ Seismic Imaging: Overview and Case Study,” in
SEG Annual Meeting 2015, Society of Exploration Geophysicists.
Society of Exploration Geophysicists, 2015. [Online]. Available:
http://dx.doi.org/10.1190/segam2015-5833447.1

[19] F. Li and W. Song, “Automatic arrival identification system for real-time
microseismic event location,” in SEG Technical Program Expanded
Abstracts 2017, S. E. of Geophysicists, Ed., 2017, pp. 2934–2939.
[Online]. Available: http://dx.doi.org/10.1190/segam2017-17667176.1

[20] J. Clemente, F. Li, M. Valero, A. Chen, and W. Song, “Asis: Autonomous
seismic imaging system with in-situ data analytics and renewable energy,”
IEEE Systems Journal, 2019, Online.

[21] S. Pan, N. Wang, Y. Qian, I. Velibeyoglu, H. Y. Noh, and P. Zhang,
“Indoor person identification through footstep induced structural vibration,”
in Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications. ACM, 2015, pp. 81–86.

[22] Z. Jia, M. Alaziz, X. Chi, R. E. Howard, Y. Zhang, P. Zhang, W. Trappe,
A. Sivasubramaniam, and N. An, “HB-phone: a bed-mounted geophone-
based heartbeat monitoring system,” in Information Processing in Sensor
Networks (IPSN), 2016 15th ACM/IEEE International Conference on.
IEEE, 2016, pp. 1–12.

[23] M. Alaziz, Z. Jia, J. Liu, R. Howard, Y. Chen, and Y. Zhang, “Motion
scale: A body motion monitoring system using bed-mounted wireless
load cells,” in Connected Health: Applications, Systems and Engineering
Technologies (CHASE), 2016 IEEE First International Conference on.
IEEE, 2016, pp. 183–192.

[24] Z. Jia, A. Bonde, S. Li, C. Xu, J. Wang, Y. Zhang, R. E. Howard, and
P. Zhang, “Monitoring a Person’s Heart Rate and Respiratory Rate on a
Shared Bed Using Geophones,” 2017.

[25] C. E. Krohn, “Geophone ground coupling,” Geophysics, vol. 49, no. 6,
pp. 722–731, 1984.

[26] “GeoPhone.” [Online]. Available: https://www.sparkfun.com/products/
11744

[27] E. Upton, “Raspberry Pi 3,” URL
https://www.raspberrypi.org/products/raspberry-pi-3-model-b, 2016.

[28] Influxdata Inc, “InfluxDB,” 2019. [Online]. Available: https://www.
influxdata.com/

[29] Grafana Labs, “Grafana,” 2018. [Online]. Available: https://grafana.com/
[30] R. S. Holambe and M. S. Deshpande, “Nonlinear measurement and

modeling using teager energy operator,” in Advances in Non-Linear
Modeling for Speech Processing. Springer, 2012, pp. 45–59.

[31] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[32] L. Wang, K. Huang, K. Sun, W. Wang, C. Tian, L. Xie, and Q. Gu,
“Unlock with Your Heart: Heartbeat-based Authentication on Commercial
Mobile Phones,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 2, no. 3, p. 140, 2018.

[33] A. Johansson, “Neural network for photoplethysmographic respiratory
rate monitoring,” Medical and Biological Engineering and Computing,
vol. 41, no. 3, pp. 242–248, 2003.

[34] R. Ravichandran, E. Saba, K.-Y. Chen, M. Goel, S. Gupta, and S. N.
Patel, “Wibreathe: Estimating respiration rate using wireless signals in
natural settings in the home,” in 2015 IEEE International Conference
on Pervasive Computing and Communications (PerCom). IEEE, 2015,
pp. 131–139.

[35] “AppleWatch4.” [Online]. Available: https://www.apple.com/
apple-watch-series-4/

[36] E. A. Thomson, K. Nuss, A. Comstock, S. Reinwald, S. Blake, R. E.
Pimentel, B. L. Tracy, and K. Li, “Heart rate measures from the apple
watch, fitbit charge hr 2, and electrocardiogram across different exercise
intensities,” Journal of sports sciences, vol. 37, no. 12, pp. 1411–1419,
2019.

[37] K. Spiegelhalder, M. Hornyak, S. D. Kyle, D. Paul, J. Blechert, E. Seifritz,
J. Hennig, L. Tebartz van Elst, D. Riemann, and B. Feige, “Cerebral
correlates of heart rate variations during a spontaneous panic attack in
the fmri scanner,” Neurocase, vol. 15, no. 6, pp. 527–534, 2009.

[38] “Wyze2.” [Online]. Available: https://www.wyze.com/product/
wyze-cam-v2/

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

108


