Activity Recognition using Multi-Class
Classification inside an Educational Building

Anooshmita Das*, and Mikkel Baun Kjergaard!
Center for Energy Informatics, University of Southern Denmark, Odense, Denmark
Email:*adas @mmmi.sdu.dk imbkj @mmmi.sdu.dk

Abstract—Activity Recognition can be referred to as the
process of describing and classifying actions, pinpoint specific
movements, and extract unique patterns from the dataset us-
ing heterogeneous sensing modalities. Activity Recognition ap-
proaches have garnered the attention of researchers in the energy
management domain to enhance energy utilization in buildings.
In our experiment, we define activities as a combination of
different actions, which are detected using multiple sensors. To
learn insights for the various activities, we used inexpensive
Passive Infrared (PIR) sensors in the test-bed. This study aims
at gaining high-level knowledge about activities from the low-
resolution sensors deployed. For accurate occupancy counts,
we have used 3D Stereo Vision Cameras at the entrance, and
count lines are defined to capture the transitions of inflow and
outflow of multiple occupants. Multi-class labels enable activity
recognition on the collected dataset. The multi-class labels used
are 1) Moving, 2) Stagnant, 3) Outside, 4) Both (Moving and
Stagnant), 5) No activity inside. The labeling for the multi-
class is done through an algorithm using supervised learning.
The data acquisition gets carried out from 23" November to
3'Y December 2018, spanning over a period for 11 days. The
results document that Gradient Boosting Classifier outperforms
any other Machine Learning Classification (MLC) algorithm with
an accuracy of 97.59% and an F1 score of 97.40% for activity
recognition. This paper also explicitly highlights the challenges
and limitations faced during the initial phase for the deployment,
and it identifies the key research trends and directs towards
the potential improvements in the field of occupancy sensing for
energy-efficient buildings.

Index Terms—Building Performance, Occupant Behaviour,
Sensor Fusion, Pattern Recognition, Knowledge Discovery, Ma-
chine Learning, Activity Recognition

I. INTRODUCTION

With the advancement of ubiquitous computing and the
availability of a wide range of low-cost sensing modalities,
human activity recognition (HAR) has garnered attention from
both researchers and industry [1]-[5]. AR also has many no-
table and compelling applications ranging from healthcare to
fitness, elderly assistance, ambient sensing, indoor navigation,
gaming, are to name a few [2], [3], [6], [7]. Activity Recogni-
tion (AR) using various sensing modalities has emerged as a
game-changer for automated monitoring of occupant behavior
analysis [6], [8].

The primary goal of AR is modeling and making informed
decisions about occupant behavior and actions along-with
automated identification of the tasks in real-world settings by
processing the spatial and temporal features acquired from
diverse sensing modalities [6]. The massive data generated

from the building systems contain valuable and rich informa-
tion that requires to be mined and facilitate up-to-date actions
and informed decision making. Generally, the execution of
different daily activities by occupants gets performed under
diverse contexts, for example- specific scenario, location, time,
and object [9], [10].

In this paper, Activity Recognition (AR) can be defined
as pin-pointing specific movements and learning profound
knowledge about the actions of multiple occupants using low-
level sensing modalities inside a monitored space [6]. AR
is also concerned with the assignment of an activity label
to a sequence of sensor events generated from the hetero-
geneous sensors available from building systems. However,
in real-world applications, most of the data remain unla-
belled (unsupervised), and activities take place continuously,
i.e., occupants quickly transfer from one activity to another.
Activity recognition should aid context-aware computing to
handle Spatio-temporal data. Activity Recognition method
implemented should be flexible to capture the variations and
diversity of occupant behavior and actions.

In this research work, an educational building gets consid-
ered for the experiments, and the occupants complete their
mundane tasks without any intervention in a no-restriction
environment. Activity Recognition is a pivotal process to
incorporate ambient intelligence into a smart environment. AR
includes a complex process of active monitoring, sensor map-
ping, activity modeling, reasoning, making informed decisions,
and inferences about an activity. It is imperative to recognize
the ongoing activity and identify exposed abnormalities, ex-
tract contextual attributes related to that activity and automate
actions within the monitored area. The mundane tasks are
the frequent actions that are repeated by the occupants and
these routine actions or activities are considered as it helps
to set a defined boundary for the daily activities performed
by the occupants. The most challenging element of multi-
occupant activity recognition is data association, i.e., mapping
an occupant with what caused the sensor triggering while
using non-intrusive sensors that cannot directly identify the
individual [6].

The stochastic and dynamic nature of occupancy behavior
increases the complexity of identifying the activities precisely
[6]. Therefore, sensor fusion seems a feasible option to lever-
age the unique capabilities and overcome the limitations for
each sensing modality [11]. This paper presents the sensor
fusion of inexpensive Passive Infrared (PIR) sensors and 3D



Stereo Vision Camera to detect the activities within the context
of training, testing and validation dataset.

Cameras are considered intrusive; therefore, we have fol-
lowed protocols and asked the Building Management System
(BMS) authorities for proper authorization and permission.
The recordings from 3D Stereo Vision Cameras were obtained
for ground truth validation; the recordings were procured with
stringent compliance to user’s privacy and Danish Regula-
tion to collect scientific data. The occupant confidentiality
is preserved, and the video recordings were deleted after
the validation was done. For further evaluation, a confusion
matrix is created to infer different underlying causes for
the discrepancies of imbalanced class distribution within the
dataset. The data is collected for the entire test period of 11
days spanning from 23" November to 3™ December 2018.
The dataset used for this experiment is good enough to capture
the semantic occupancy presence impression and extrapolate
unique information about occupancy behavior and actions.

The significant goals considered in this paper gets described
below-

1) Propose a methodology to transform the time-series data
from heterogeneous sensor readings into feature vectors to
have labeled supervised learning.

2) Dataset gets split into training, testing, and validation set
to evaluate the feature vector using cross-validation techniques
such as - 10 Fold Cross-Validation and evaluation metrics such
as - accuracy, F1 Score, and misclassification rate.

3) Comparative analysis and inference of performance for
different Machine Learning Classification (MLC) algorithms
for identifying activities.

4) Comprehensive discussion for decoding the significant
challenges of multi-occupant activity recognition and revealing
insights on dynamic occupant behavior.

The significant contributions of this paper are:

1) Propose a label based approach for activity recognition
using traditional and advanced Machine Learning Classifica-
tion (MLC) algorithms. It highlights the experimental results,
which MLC algorithm provides better results using k-fold
cross-validation techniques. We evaluated it using metrics such
as accuracy, F1 Score, and misclassification rate.

2) Crafted an experiment to demonstrate a real case scenario
deployment and proposed a method for accurately estimating
occupant activities using various sensing modalities in a non-
intrusive and reliable manner.

The rest of the paper gets organized as follows: Section 2
gives an overview of the related work. Section 3 provides an
overview of the case scenario. Section 4 describes the method-
ologies used for data alignment, data cleaning, pre-processing,
sensor fusion, and data aggregation. It also elucidates the data
labeling algorithm for labeling the instances for multi-class
classification. Section 5 discusses the evaluation and results.
Section 6 provides a discussion and highlights the limitations
and future scope of the proposed activity recognition method.
In Section 7, a conclusion gets drawn.

II. RELATED WORK

The growth and improvement in wireless technologies and
Internet of Things (IoT), augmented with Machine Learning
(ML) and Deep Learning (DL) paradigms, the smart environ-
ment gets transformed and revolutionized. Diverse applications
can be underpinned by using state-of-the-art machine learning
algorithms such as - efficient space utilization, intelligent
building operations, improved heating, ventilation and air
conditioning (HVAC) conditions, safety, and evacuation, to
name a few. [12], [13]. Recently, researchers have witnessed
an increasing focus in the prominence of activity recognition
for multiple occupants in offices, study-rooms, meeting-rooms,
and public places to study the occupancy behavior influence on
energy consumption and management domain inside a build-
ing [6]. Activity recognition has also garnered the attention
of researchers as it has other notable applications such as
healthcare, lifestyle monitoring, elderly assistance, and indoor
localization. Traditional Machine ML methods such as Support
Vector Machines (SVM), Decision Trees (DT), Naive Bayes,
Markov Models have significantly fostered the research of
activity recognition during the past few decades. The recent
works had been summarized in Table I.

III. EXPERIMENTAL SET-UP

In this paper, an experiment is crafted in a large study-room
in an educational institute. We deployed 30 PIR sensors and
2 3D Stereo Vision Cameras from Xovis manufacturers, at
the entrance/exit points to capture the transitions of occupants
inside-out through count lines. The test space is occupied
by multi-occupants performing their mundane tasks in a no-
restriction environment. The PIR sensors used for this case
was Hamilton H7C. The PIR sensors are affordable, easy to
deploy with a longer battery-life. The detection angle for Field
of View(FoV) of Hamilton was 43-47 °and detection range is
5 meters. The sampling frequency of the PIR sensors is 20
seconds. In this case, the sensors are mounted at a height of
3.8 meters. These Hamilton’s are designed to have a battery-
life of up-to 5 years. Figure 1 shows the sensor placement
layout for the deployed case scenario. The sensor can capture
motion and presence, air humidity, illuminance, acceleration
and temperature. The Hamilton sensor connects to the cloud
via a gateway and data is extracted via a cloud-based REST
API provided by the Hamiltoniot. Each PIR has an unique
sensor-id, represented by green dots in Figure 1.

IV. METHODOLOGY

The overview of the proposed activity recognition method
is given in Figure 2 . The crucial components are listed below:

A. Time Series Data: Acquisition

The time-series data (in A) gets collected from heteroge-
neous sensing modalities such as - PIR sensors and 3D Stereo
Vision Camera. Once the data is gathered, pre-processing (in
B) is a crucial step implemented to have a structured dataset
from the raw sensor readings, see Figure 2.
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Fig. 1. Case Scenario OU44 Study Zone: Sensor placement PIR (green dots) = = - 5 5 - T

and Cameras (Entrance/Exit). The yellow elements are the tables and the light
blue elements are the furniture

a) Dataset: We used a dataset from a large office build-
ing, 8000 m2, mainly comprising of office-rooms, classrooms,
and study zones. The room type considered for this experiment
was a study zone. The dataset contains 5011 PIR readings,
3847 people counts. The people counting camera from Xovis

B. Pre-processing

Firstly, the training data is aligned based on the time-
stamps using the pandas library. As part of the pre-processing,
data cleaning is performed to remove inconsistencies and
missing data in the dataset. This step ensures that the data
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is relevant, and it can be transformed to fit into the model
framework. Up-sampling is performed at a 1-minute granular-
ity because different sensors had varying sampling rates. PIR
sensor triggers every 20 seconds and the camera resolution
was | minute. So we combined 3 PIR samples to match
the granularity of the camera. Data normalization (min-max
normalization) was performed to reduce the redundancy, and it
guarantees a uniform and structured dataset to work for further
analysis. It helps to avoid the dependence on the specific
choice of measured units instead provide equal weight to all
the attributes in their representation in the dataset.

1) Training, classification, and Testing based on feature
vectors: The fundamental task of this research work rec-
ognized the activities of multi-occupants based on the test
dataset. The entire dataset gets split into 7 days of training data
consisting of labeled instances and 4 days of the unlabeled test
dataset. A feature can refer to as a function of heterogeneous
sensor data over a fixed time duration, and a class can be
defined as the representation of occupancy state and action at
any given instant of time.

Before splitting the data, we performed data annotation on
the dataset. It is common practice to attach a label (annotation)
that is representing the activity in which a given event belongs
to, and is known as Data Annotation. Algorithm 1 shows the
logic behind labeling the instances in the training dataset. The
multi-class classification labels used are 1) Moving- a person
is showing specific movements or walking within the test space,
2) Stagnant - a person is still inside the test space, for example
- sitting, 3) Outside - a person who is outside the vicinity of
the test space, but crossed the count line of the camera, without
entering the study zone, 4) Both (Moving and Stagnant) - a
single sensor is constantly triggering which means a person
is still at that position, also other sensors are triggering at
the same time which indicates movement in a different zone’,
we can assume that multiple occupants are present in the test
bed, 5) No activity inside - if there is no sensor triggering for
a prolonged duration inside the test space. We consider that
there is no occupant performing activities, this is important
to consider because after the office hours or during the night
time, there are no occupant’s inside the test space. The testing
and evaluation get explicitly described in Section 5.

2) Privacy and Data Suppression:: The most sensitive part
of this dataset is the data collected outside the opening hours
inside the public space since those readings get plausibly

Algorithm 1 Labeling the Instances: Supervised Learning

Input : Time-Series Data combined in a CSV file which
includes Xovis-Cameras and PIR readings
Output: Labelled instances
A list is created consisting of PIR and Xovis Camera readings
list = [PIR;... PIR3), Xovis-Camera 1, Xovis-Camera 2]
if No Camera and PIR sensor activates then
| No-Activity Inside label is assigned to that instance
else if Only xovis camera activates then
| Outside label is assigned to that instance
else if trigger-count of any PIR > 2 and other PIR sensors =

0 then
| Stagnant label is assigned to that instance

else if trigger-count of any PIR > 2 and at-least one PIR
trigger-count in different zone = I then
| Both label is assigned to that instance

else
| Moving label is assigned to that instance

end

collected from employees working within the monitored area.
This part of the data can be used by the employer to admin-
istrate and estimate the work performance of the employees
in the area. Due to this, we do not release any of the sample
readings collected outside of the opening hours [19]. Further-
more, the occupants in the monitored area also have the right to
privacy. For the protection of the identity of the days, stringent
measures get undertaken. We do not include the dates as part
of the dataset. Also, re-ordering the days by mapping the date
component between 0-10, thus creating a random permutation
of the days. These precautions make it significantly more
difficult for adversaries to perform data linkage attacks upon
the released data, and hence identifying/revealing the identity
or critical information of the occupants or the location of the
monitored area. In the dataset, we have introduced a workday
indicator that accounts for weekends and national holidays.

C. Sensor Fusion and Data Transformation

Sensor fusion intelligently combines data from the het-
erogeneous sensor to achieve enhanced accuracy and derive
more contextual knowledge and extract unique patterns about
occupant activities. Data aggregation merges the PIR readings
and camera counts into a coherent structure (C) in Figure 2
and eliminates the noise and variability in the dataset.



D. Model Selection, Comparison and Evaluation

To precisely evaluate (in E) the performance and model
comparison (see Figure 2), metrics such as accuracy, F1 score,
misclassification rate get used for different MLC algorithm
such as - Decision Trees (Adaboost) (DT), Random Forest
(Adaboost) (RF), Gradient Boosting, K- Nearest Neighbor
(KNN), Naive Bayes, Support Vector Machine (SVM), XG-
Boost (in D) using a dataset from a large office building.
For cross-validation, 10 fold cross-validation technique gets
implemented.

V. EVALUATION AND RESULTS

This section presents and discusses the results achieved
after applying pre-processing and sampling techniques, feature
selection methods, and implementing MLC algorithms to the
dataset.

TABLE III
ACTIVITY RECOGNITION SCORES FOR DIFFERENT CLASSIFIERS
Classifier Accuracy F1 Score Misclassification
Decision Trees 91.08 % 89.75 % 0.085 %
Random Forests 91.25 % 90.02 % 0.063 %
Gradient Boosting 97.59 % 97.40 % 0.024 %
KNN 93.76 % 93.21 % 0.062 %
Naive Bayes 88.57 % 88.07 % 0.114 %
SVM 92.70 % 91.53 % 0.073 %
XGBoost 96.93 % 96.63 % 0.030 %

There are 231 labelled instances for Moving, 48 labelled
instances for Stagnant/Sitting, 106 labelled instances for Out-
side, 287 labelled instances for Both (Moving and Stagnant)
and 2281 labelled instances for No activity inside in the
dataset, see Figure 3. As we deployed non-intrusive sensors,
the experiment is not inclusive of all the complex activities.
One of the major limitations of using non-intrusive sensors is
data mapping with the underlying cause of what activated the
sensor triggering.

Table 3 highlights the results for the different classifiers after
implementing the evaluation metrics. It provides a comparison
of accuracy, F1 Score, and Misclassification rate of different
MLC algorithms. Gradient Boosting Classifier achieves an ac-
curacy of 97.59 %, F1 Score of 97.40 % and misclassification
rate of 0.024 %. Figure 4 shows the accuracy score for DT
Adaboost, RF Adaboost, KNN, Naive Bayes, SVM, XGBoost,
which is 91.08 %, 91.25 %, 93.76 %, 88.57 %, 92.70 %, 96.93
%, respectively. Figure 5 shows the F1 score for DT Adaboost,
RF Adaboost, KNN, Naive Bayes, SVM, XGBoost, which is
89.75 %, 90.02 %, 93.21 %, 88.07 %, 91.53 %, 96.63 %,
respectively.

For the ground truth, count lines are defined to monitor
the transitions (entrances/exits) of occupancy flow. We also
have procured video recordings for the test-period, however
validation of the ground truth data was tedious and manually
expensive.

VI. DISCUSSION, LIMITATION AND FUTURE SCOPE

The primary purpose of this research is the design and de-
velopment of an affordable and non-intrusive solution to detect
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occupant activities inside a monitored space using inexpensive
PIR sensors. Choosing the right sensor is critical for successful
activity recognition. The sensor placement strategy is another
critical criteria to recognize fine-grained activities accurately.

We also identify that there is a requirement to classify or
differentiate the sub-activities instead of assignment of the
same labels to similar activities or likely to be similar activ-
ities. Besides, the pre-processing might have added irrelevant
data, which may have affected the performance of the MLC



algorithms negatively. There is a limitation in this study that is
not inclusive of all kinds of activities. Thus, our future work
would focus on further investigation of deploying acoustic or
wearable sensors to detect other kinds of activities.

Another plan of work would also require the creation of a
knowledge base for the activities. That would help in the meta-
data construction and mapping of the sensor to the activities.
We would also like to explore and extend the study-period.

Significant advancement by deep learning methods is
achieved in the field of activity recognition. It has also
alleviated the curse of the dimensionality that traditional ML-
based activity recognition methods suffer from. One of the
limitations of ML algorithms applied in activity recognition
is that the feature extraction relies upon manually designed
features, domain knowledge, and experience, which hinders
the generalization of the model. ML algorithms cannot handle
complex activity recognition scenarios, which are tedious and
manually expensive in terms of data collection, labeled anno-
tations, and model construction. The first advantage of using
Deep learning models is that feature extraction is efficient with
little efforts from humans. Secondly, the deep learning models
can get reused for similar problems, and the construction of
the DL models is efficient.

Therefore, advancement in deep learning makes it possible
for automated feature extraction and selection. The features
can be learned automatically by the network instead of manual
assignment. DL can be applied when there is a lack of domain
knowledge for feature introspection. Shallow features can
be recognized well with ML but a difficulty in recognizing
context-aware activities (for example: working on laptop).
In traditional approaches, extensive training data and labeled
annotations are mandatory for supervised learning, but in
real-world applications, most of the data remain unlabelled
(unsupervised). Due to this, typical models are unadaptable to
a diverse range of context-aware activity recognition configu-
rations. In future work, DL can be conscripted in the applica-
tion when the data size is large; for smaller datasets, ML is
preferable. DL outshines/outperforms for complex prediction
tasks. Unlike ML approaches, DL classifiers train through
feature learning rather than task-specific algorithms. As part
of future work, we want to explore deep learning models and
compare the performance of activity recognition.

VII. CONCLUSION

Activity recognition is a field concerned with identifying
specific movements of occupants based on heterogeneous
sensor data. Annotated Labels get used for typical activities
performed within the monitored space such as - walking,
sitting, etc. Activity recognition based on sensor data requires
a profound high level of knowledge about occupant activities
using multitudes of low resolution sensing modalities. In
this paper, we implemented and demonstrated the activity
recognition using Machine Learning Classification (MLC) al-
gorithms based on a real case scenario. The results also provide
a performance comparison among different traditional and
advanced MLC algorithms. The patterns extracted from the

dataset can grant access to the new dimension of investigation
associated with the dynamic occupant behavior inside the
commercial/public/educational buildings.
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