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Abstract—This contribution proposes an approach for anno-
tating human actions and their coarse semantic descriptions
for multichannel time-series. For this purpose, a new dataset
that consists of Optical Motion Capturing and IMU time-series
data for industrial deployment is created and annotated by 6
individuals. The expenditure of time for labelling, both classes
and semantic attributes, and the annotation consistency are
examined. The initial annotations are revised by a single domain
expert to measure its effect on the overall between-individual
consistency. Consistency measurements by means of Cohen’s
κ are analysed. The results give insights on the effort for
dataset creation in the field of Human Activity Recognition for
industrial application. The Cohen’s κ for consistency assessment
was moderate and substantial for the initial annotation, and it
increased slightly after revision.

Index Terms—Human Activity Recognition, Labelling, Anno-
tation, Human Reliability, Logistics, Warehousing

I. INTRODUCTION

Manual annotation of multi-channel times series data for
Human Activity Recognition (HAR) is a time-consuming and
expensive task [1]. The effort scales with the amount of data to
annotate. Due to the intra- and inter-class variability of human
motion, a large amount of observations from different subjects
is necessary for methods of supervised learning [2]. Manual
labelling by different annotators is prone to inconsistencies,
also referred to as annotation noise [3]. Even the same
annotator may label differently when repeating the process.
Additional repetitions and corrections are needed to enhance
the quality of the dataset, which would further increase the
effort. Also, quantifying the human performance with respect
to the annotation consistency provides useful information
when deploying a classifier.

This annotation effort is further increased when not only
activities, but also semantic descriptions are labelled. Recently,
attribute representations have been proven successfully for
solving HAR [4]–[6]. They show advantages where data are
highly unbalanced or training and testing-data sets are disjoint.
However, data sets with such representations do not exist yet.
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The scope of this contribution is to propose a method
for annotating human activities along with their attribute
representation, and to quantify both the annotation effort
and its consistency when manually labelling multi-channel
time series datasets. Therefore, an empirical investigation is
conducted based on an optical Motion Capturing (oMoCap)
dataset of human activities in warehousing. This oMoCap-
dataset is synchronized with Inertial Measurement Unit (IMU)
data streams for deployment in a real warehouse.

The remainder of this contribution is structured as follows.
In Section II, the novelty value and the research goal of this
contribution are outlined. The data set and the applied method
for data annotation and its revision is presented in Section III.
Next, the results regarding effort assessment and consistency
assessment are evaluated in Section IV. A discussion is
presented in Section V.

II. RELATED WORK

As pointed out in a recent survey, publications dealing
with novel approaches of multichannel time-series HAR rarely
mention the annotation effort or its consistency [7]. In most
cases, the dataset creation effort is not discussed. In only a
few instances, the annotation method is described vaguely.
There are only few quantitative statements about effort and
consistency of annotations for HAR known to the authors. In
[8], it took 26 min to annotate 1 min of order-picking activities
from a video that was synchronized with an IMU data stream.
All data originated from a real warehouse. Cross and repetition
tests revealed a consistency of 74% and 90%, respectively. In
[6], warehousing activities were recorded with an oMoCap-
System in a laboratory environment. Activities were recorded
in modular units and not within a scenario consisting of several
process steps. On the one hand, annotation effort was rather
low—it took 2.5 min per recorded minute, as some handling
activities included approaching a stack of boxes, so annotating
Walking was necessary. On the other hand, the classification
performance was rather poor for some activities and attributes.
Annotating the prominent OPPORTUNITY dataset took 7−10
hours per 30 min of video [9]. The annotators were asked
to label the activities in a human 3D-Model of this dataset.



Fig. 1. Visualization of the MoCap skeleton performing the activity Handling (downwards).

Provided with a list of 11 activities, they reached an average
accuracy of 56% [10].

Recently, semantic descriptions of activities have been used
for solving HAR [6]. These, so called, attributes are useful
when datasets are highly unbalanced, training and testing
are disjoints, and for zero-shot learning problems. Random
and expert-given attribute representations show a similar and
superior performance than directly classifying human actions.
However, these representations are created post-annotation,
relating each activity class with a set of defined attributes;
that is, they are not directly annotated.

Apart from HAR, the annotation of training data plays
a major role in other domains of pattern recognition. For
instance, [11] reports that the manual annotation of 27hours
of video for car tracking took about eight person months.
Annotating the SUN RGB-D dataset took 2, 051 hours for
10, 335 RGB-D images [12].

In [13], a description on the types of annotation and a novel
method of model based annotation is presented, which can
allow reasoning behind hidden properties and causal relations
in the annotation. The consistency of the annotations set by
different annotators was measured with Cohen’s κ [14], and
the Krippendorff’s α.

Summarizing, the presented state of the art reveals that
considering the data set creation effort and consistency is
crucial for proper deployment of supervised learning. Dataset
creation may require more effort than the deployment of a
classifier. For HAR from multi-channel time series data using
semantic attributes, an empirical study to assess effort and
consistency has not yet been carried out.

III. METHOD

In the DFG-Project ‘Transfer Learning for Human Activity
Recognition in Logistics’, a dataset of human warehousing
activities is created in the ’Innovationlab Hybrid Services
in Logistics’ at the TU Dortmund University [15]. Data are
captured synchronously using oMoCap, IMUs and RGB-D
streams. This contribution focuses solely on the oMoCap data
as, for real applications, identities of individuals must not be
recorded, but it enables annotation by visualizing a skeleton.
The software provides global poses of body segments and
joints. A pose is a combination of position and angular values
in [X,Y,Z] coordinates. All data are recorded with 200 fps.
Short recording units of 120s are deployed for helping with
the synchronization of the IMU recordings through a specific
subject’s movement as trigger signal. This results in a total of
24, 000 frames per recording.

A list of activities and attributes was defined by domain
experts. The semantic meaning and examples of proper anno-
tations are explained in annotation guidelines. There are eight
activity classes, namely Standing, Walking, Moving Cart, Han-
dling (upwards), Handling (centred), Handling (downwards),
Synchronization and None. The Synchronization class is used
for synchronizing the other data sources with oMoCap time
series. None identifies frames that shall not be used for training
because of heavy noise or errors in the readings.
17 semantic attributes are separated into four major groups:

i Leg Motion: Gait Cycle, Step, Standing Still
ii Upper Body Motion: Upwards, Centred, Downwards, No In-

tentional Motion, Torso Rotation
iii Handedness: Right, Left, No Arms
iv Item Pose: Handy Unit, Bulky Unit, Utility-Auxiliary (e.g., a

knife or adhesive tapes), Cart, Computer, No Item

A Python-Tool has been created for annotation. It loads
oMoCap-data for the skeleton visualization to make the ac-
tivities apparent, as seen in Figure 1. Each annotator was
tasked to set the initial and final frame of a window that
corresponds with the starting and ending of an activity. He or
she then proceeds to pick one activity and, if the class chosen
is not None, at least one attribute per group. There is no fixed
assignment of an attribute representation incorporated in the
tool. Thus, the annotators are free to choose combinations
of activities and attributes they find appropriate. The only
two exceptions are the Synchronization and None classes. The
former is assigned a fixed representation while the latter one
is assigned an 18th attribute of the same name. By the end of
this process the initial annotation is created.

The human annotators are given a documentation sheet.
First, they are asked to estimate their experience with respect
to labelling data in general, and for HAR specifically. The
sheet provides to the annotators a list of recordings they
are expected to process. The beginning and the end of the
annotation time can be entered by clicking a button. It is
also possible to enter break times so that the total time spent
on annotating is calculated. Remarks by the annotator can
be entered in a separate field. The log’s information may
be helpful to trace errors found in the annotation tool or
the guidelines. Furthermore, it is important to know if long
excerpts of a recording cannot be annotated properly, resulting
in the None class. This is because using the None class is
expected to drastically decrease the expenditure.

Since the initial annotation is prone to errors, it is followed
by an iterative revision process. The attribute representation
helps to revise the annotated activity classes in a simple



Fig. 2. Method for Annotation and Revision

manner. For that, the first step of each iteration is the logical
verification that focuses on two kinds of errors. First, an
attribute representation can be invalid for reasons such as
missing or conflicting attributes. Second, the same attribute
representation must not be assigned to two different classes
on any occasion. Each logical error where there is no obvious
solution apparent without considering the visualization, is
assigned an auxiliary attribute called Error. The second step
is the semantic examination. The visualization and labels are
examined by a human. This step is guided by the 19th attribute
called Error, which is highlighted in the tool’s interface
as well as the comments from the annotators listed in the
documentation sheet. Logical and semantic errors are fixed
manually. Since the alteration of the labels may add new
logical errors and inconsistencies, the process starts anew
with the logical verification. This iterations proceed until no
more logical flaws are detected and the experts examining the
annotated data agree with the labels. The entire method is
illustrated in Figure 2.

Since all data for this publication originates from the same
recording session laboratory set-up, there are five identifiers
necessary to make the naming of each recording unambiguous:

• S - Subject: The Individual who has been recorded.
• R - Recording: The number of the recording unit of 120

s each within the recording session
• A - Annotator: The individual annotator
• N - Annotation Run: Count of the number of times that

one annotator has annotated the same recording
• I - Revision: Count of revision runs (logical and semantic)
In total, the dataset will contain R = 30 recordings of 120s

from 14 subjects (S) in three different scenarios, including 8
activities and 18 semantic attributes.

IV. EVALUATION

We evaluated the annotation by means of the annotation
time and consistency. The effort assessment quantifies the time
spent on annotating a subset of the aforementioned dataset.
The human annotation consistency examines the question -
to what degree do the individuals agree on the labels. Six
annotators (A) were asked to participate in an annotation study
by labelling 30 oMoCap-recordings from nine subjects (S).

Assessing the documentation sheet revealed that A4 has
little experience in labelling but none with respect to HAR,

while A6 has a lot of experience at labelling in general as well
as in HAR in specific. The remaining annotators did not have
any experience with respect to dataset creation for supervised
learning. A1, A3, A4 and A6 were scientists involved in
creating the laboratory set-up, setting up the sensors and
creating both the annotation guidelines and the tool. A2 and
A5 joined the project when support for annotation became
necessary.

A. Effort Assessment

The following questions regarding the expenditure for man-
ual annotation will be answered by the method:

• What is the mean time and its standard deviation for
annotating an oMoCap-recording of 120s / 24, 000 frames
using both activity classes and semantic attributes?

• How much does the annotation time differ among the
annotators? Is there a link to their prior experience?

• Does the annotation time per recording decrease over the
course of several runs, hinting towards a learning effect?

Once the annotation is done and the documentation sheet
is filled out by each annotator in accordance to the method
described in section III, the aforementioned questions can be
addressed.

When assessing the time spent on annotation, the None class
has to be considered specifically. Long windows of this class
may be necessary due to errors in the sensors readings, but
they heavily influence the time spent on annotating.

Table I shows the number of recordings processed by each
annotator, the total and mean time spent per recording. The
amount of recordings each annotator processed varies as they
were not given the same amount of recordings. Few assigned
recordings were impossible to process and thus scraped. At
this point, each recording was labelled once by an annotator.
A6, the annotator with the most experience, annotated the

fastest. A4, the annotator with little experience, was annotating
at a comparable rate to A1 and A3, who were also aware of
the annotation pipeline beforehand. In contrast, A2 and A5
took more effort to annotate their recordings as they joined
the project when the annotation process began.

The variance in annotation time is due to the properties
of each recording. Apart from unusable data, which is dealt
with by using the None class, there are frequent transitions
between activities. For example, a recording that mainly



TABLE I
TOTAL NUMBER OF ANNOTATED RECORDINGS PER ANNOTATOR, TOTAL TIME AND

MEAN TIME PER RECORDING. TIME IS GIVEN IN [HH:MM].

N = 1 Effort Assessment
Rec. Total time[h] Time per Rec.[h]

A1 38 49 : 18 01 : 17± 00 : 24
A2 37 72 : 06 01 : 56± 00 : 34
A3 36 48 : 55 01 : 21± 00 : 30
A4 28 37 : 19 01 : 19± 00 : 37
A5 30 84 : 18 02 : 48± 01 : 19
A6 38 23 : 11 00 : 36± 00 : 17
All 207 303 : 27 01 : 25± 00 : 57

consists of the subject walking with the cart can be annotated
faster than multi-stage handling processes. Since all annotators
processed recordings that did not overlap, the mean values
cannot be generalized entirely at this point. It is possible that
the annotation time per recording would have deviated if they
had been distributed differently. Still, 207 recordings and 303
hours spent on manual annotation provide an initial insight.

In Figure 3, the time spent by A1 for annotating 30
recordings from the same subject is illustrated. While the
first annotation took the longest, a training effect cannot be
observed. The same applies to the remaining annotators.

Among all annotators, a major influence on the annotation
time per recording are the proportions of Walking, Moving
Cart and Standing activities. This is because their attribute
representations are simple to determine and their execution
spans over a long period of time compared to Handling
activities. Another reason is the problem with the sensor
readings. For example, the drop in R24 and R29, see Figure 3,
is due to problems with sensor readings that made most of the
data impossible to interpret. Thus, the None-Class dominated.

B. Human annotation consistency

Considering the high frame rate and human mistakes, a
frame-wise agreement on the labels seems unrealistic when an-
notating the same recording twice—neither when the labels are
set by two different individuals nor by the same person. Thus,
assessing the human annotation consistency must consider
both between and within-subjects consistency of annotation.
This contribution proposes to compute the Cohen’s κ for this
purpose [13], [14]. In contrast to performance metrics such as
accuracy or the F1-measure, Cohen’s κ emphasises agreement
and it does not consider one annotation as the ground truth.
Cohen’s κ is defined as κAa,Ab

=
Pr(a)Aa,Ab

−Pr(e)Aa,Ab

1−Pr(e)Aa,Ab
,

where Pr(a) represents the actual observed agreement among
two annotation runs A by the same or two different individuals;
this is referred to as the accuracy, the number samples that
both annotators agree divided by the total number of samples.
Pr(e) is the expected chance agreement, and it used to
take into consideration that two annotators may have guessed
the same label by chance. It is defined as Pr(e)Aa,Ab

=
1
M2

∑
C A

c
aȦ

c
b, where M is the number of samples, and C the

activity class or attribute, Aca the number of times annotator
a predicted class c.

To acquire the necessary data, 4 out of the 6 annotators—
following the results regarding the annotation time—, are
asked to annotate 6 recordings (R) of 3 individual subjects
(S); that means 2 recordings or 4 min per subject, and 96 min
of recordings in total. The annotators performed the labelling
twice per recording (N = 1, N = 2).

Based on this, Cohen’s κ metric is computed pair-wise for
both, the between-individual cross-test as well as the within-
individual repetition test. This is done for all classes and
semantic attributes. First, the between-consistency is computed
for the initial annotation (N = 1) of each of the 4 annotators
for all 6 recordings. Next, the annotator A1 is asked to revise
all 24 annotations (I = 1) according to the pipeline described
in section III.

First, evaluating Cohen’s κ for each class and attribute
helps to reveal ambiguities concerning the rules for proper
annotation according to the guidelines. Second, comparing
the between-consistency of revision I = 0 and I = 1 may
reveal a boost in consistency when labels are set by different
individuals, but revised by a single annotator. Third, one
can compare the between-consistency for I = 1 among all
annotators with the within-consistency of A1, the person who
revised the annotations. If the values come close to each other,
this hints that it is not necessary that the same annotator sets all
labels himself to ensure a high consistency. Instead, an initial
annotation by a crowd of annotators that is finally revised by
the same person may be sufficient. Fourth, the influence of
the time spent on annotation on the between-consistency is
of interest. For example, one may ask, whether a person who
annotates rather fast agrees with a slower annotator. Also, the
effort for revision may vary depending on the time consumed
by initial annotation.

In table II, the within-consistency Cohen’s κ was computed
for the initial annotation of two recordings for 3 subjects.
The given values are based on a total of 6 · 2min = 12min
recording data per annotator. At this point, solely the classes
are taken into account.

TABLE II
WITHIN-CONSISTENCY κ FOR INITIAL ACTIVITY CLASS ANNOTATION OF R1 AND

R2 (2 · 120sec = 240sec) FROM SUBJECTS 7, 8, 9 (I = 0).

N = 1 / N = 2 Within-consistency κ
Subject

A 7 8 9 Mean
A1 0.75 0.75 0.81 0.77 ± 0.04
A2 0.64 0.64 0.73 0.67 ± 0.05
A3 0.71 0.94 0.76 0.80 ± 0.12
A6 0.83 0.82 0.67 0.78 ± 0.09

In general, the Cohen’s κ values lie within a small interval
and hint towards a strong within-consistency—for moderate
agreement 0.41 ≤ κ ≤ 0.60, and for substantial agreement
0.61 ≤ κ ≤ 0.80 [14]. Interestingly, A2 spent the most time on
annotation, but achieves the lowest within-consistency score.
The highest value of κ = 0.94 was achieved by A3 for the
two recordings of S8. This is due to the high amount None-
class labels set during both annotation runs. A3 was the only
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Fig. 3. Time [min] spent by A1 for annotating a total of 30 recordings from the same subject.

annotator considering the visualization as incomprehensible
due to noise.

Table III (I = 0) illustrates the between-consistency based
on the same recordings. Solely the first annotation run is taken
into account (N = 1). The non-revised values (I = 0) are
shown first in each cell. In general, the values tend to be
slightly lower than for the within-consistency hinting towards
a ”weak” to ”moderate” agreement [14]. The low κ-values of
0.19 − 0.22 of A3 for S8 are due to the high proportion of
None-class labels. The agreement between A6 and the other
annotators did not suffer from the quickly executed annotation.

The revision of all annotations was conducted by A1 and
revealed the following issues. The revision of the labels set
by A6 consumed more time than the other revisions. A6
considered activity classes of longer duration, mixing different
attributes in a unique attribute representation. The revision of
the labels set by A1 himself was the fastest. A1 found no
systematic violations of the annotation guidelines by the other
annotators with respect to the activity class labels.

Table III (I = 1) gives the between-consistency values
after all recordings were revised—second value in each cell.
Between-consistencies of regards A2 and A3 improved after
the correction of None class. Nevertheless, there is no consid-
erable improvements with respect to the other annotators. As
the semantic examination in the following revision iterations
(I + 1) solely focused on the error class, there were minimal
changes of the annotations after the revisions.

Table IV shows the between-consistency κ of the classes in
the initial annotation I = 0 among annotator pairs in more
detail. Synchronization class shows the best consistency as
it was the only activity class with fixed guidelines. Class
None contains either zeroes or no values as A3 was the
only one annotating such class. In general, activity classes
Walking, Moving Cart and Handling (downwards) are sub-
stantially reliable. Activity Handling (upwards) is moderate
reliable. The activities Standing and Handling (center) show
less consistency among the annotators. This is as these classes
tend to be mixed in the annotation.

Table IV also presents the between-consistency κ after the
revision I = 1. Revision improved the consistency of activity
classes Handling (upwards) and Handling (center), and set
Standing class as moderately reliable.

The evaluation of the between-consistency per attribute for
the initial annotation I = 0 is given in table V. The κ-values
vary widely within a span from 0.01 to 0.92. Seemingly, there
was no common understanding among the annotators about
how to use Torso Rotation attribute. Leaving out the Torso
Rotation, the lowest value of 0.3 is provided by the Centered
attribute. It refers to handling activity in a centered pose. This
attribute is the most used of all which heavily influences the
chance agreement and thus the κ-value.

In general, the attributes referring to Item Poses yield the
highest agreement. Annotators are consistent with the use of
the attributes Utility-Auxiliary and Computer. These attributes
were not annotated, not even by error as they do not belong to
the annotated scenarios. The overall best value was achieved
by the Handy Unit attribute, which refers to a pose that is taken
when handling a Bulky Unit such as a small load carrier.

During the revision process, several findings were made
with respect to ambiguous utilization of attribute labels. They
support the findings of table V (I = 0), meaning that those
attributes with a low agreement required the most revision
effort. Apart from that, there have been smaller violations of
the annotation guidelines, in particular by A6. Nevertheless,
there were no systematic violations among all annotators
except for attribute Torso Rotation.

The evaluation of the between-consistency per attribute for
the revised annotation is given in table V (I = 1). After
revision, the consistency of attributes improved in general.
However, this improvement is rather small. In addition, the
attributes Step and Torso Rotation showed moderate and weak
consistency.

V. DISCUSSION AND CONCLUSION

This contribution proposed and evaluated an approach for
labelling multichannel time-series for synchronized MoCap
and IMU datasets for HAR including annotation of semantic
attributes. The results of this contribution originate from an
excerpt from an extensive recording sessions in a laboratory
set-up based on real warehousing scenarios. Activity class
labels and semantic attributes were annotated using the Mo-
Cap skeleton visualization. Two aspects were evaluated in
specific—the expenditure of time and the consistency of the
annotations.



TABLE III
BETWEEN-CONSISTENCY κ FOR I = 0/I = 1 ACTIVITY CLASS

ANNOTATION OF RECORDINGS 1 AND 2 (240s) FROM SUBJECTS

7, 8, 9 (I = 0). SUBSTANTIAL AGREEMENTS ARE HIGHLIGHTED IN

BOLD.

N = 1 Between-consistency κ
Subject I = 0/I = 1

A 7 8 9 Mean
A1-A2 0.72/0.74 0.54/0.53 0.58/0.64 0.61 ± 0.09 / 0.64 ± 0.11
A1-A3 0.71/0.67 0.22/0.60 0.65/0.59 0.53 ± 0.26/0.62 ± 0.04
A1-A6 0.75/0.81 0.74/0.76 0.59/0.77 0.69 ± 0.09/0.78 ± 0.03
A2-A3 0.66/0.60 0.25/0.62 0.62/0.73 0.51 ± 0.23 / 0.65 ± 0.07
A2-A6 0.64/0.67 0.61/0.55 0.53/0.75 0.59 ± 0.06 / 0.65 ± 0.10
A3-A6 0.62/0.68 0.21/0.66 0.49/0.72 0.44 ± 0.21 / 0.69 ± 0.03

TABLE IV
BETWEEN-CONSISTENCY κ FROM THE CLASSES IN THE INITIAL AND REVISED ANNOTATION

(I = 0/I = 1). SUBSTANTIAL AGREEMENTS ARE HIGHLIGHTED IN BOLD.

Stand. Walk. Mov.
Cart

Handl.
up.

Handl.
cen.

Handl.
down.

Synchron. None

A1-A2 0.32/0.53 0.65/0.74 0.77/0.81 0.65/0.71 0.56/0.63 0.73/0.67 0.69/0.82 -
A1-A3 0.24/0.56 0.74/0.76 0.79/0.82 0.61/0.76 0.41/0.56 0.62/0.56 0.96/0.97 0
A1-A6 0.69/0.73 0.71/0.83 0.77/0.87 0.65/0.75 0.64/0.76 0.76/0.86 0.98/0.97 -
A2-A3 0.48/0.59 0.85/0.80 0.83/0.82 0.39/0.69 0.44/0.60 0.70/0.64 0.70/0.82 0
A2-A6 0.32/0.52 0.64/0.76 0.77/0.80 0.62/0.64 0.65/0.61 0.82/0.73 0.69/0.81 -
A3-A6 0.19/0.54 0.63/0.83 0.75/0.85 0.46/0.78 0.42/0.60 0.70/0.64 0.96/0.97 0

TABLE V
BETWEEN-CONSISTENCY κ FROM THE ATTRIBUTE REPRESENTATION FOR

ANNOTATION (I = 0 / I = 1). SUBSTANTIAL AGREEMENTS ARE HIGHLIGHTED IN

BOLD.

I = 0/I = 1 Between-consistency κ
Annotator Pairs

Attribute A1-A2 A1-A3 A1-A6 A2-A3 A2-A6 A3-A6
Gait Cycle 0.69/0.68 0.64/0.75 0.67/0.70 0.83/0.76 0.69/0.74 0.69/0.84
Step 0.53/0.54 0.47/0.37 0.41/0.45 0.57/0.5 0.47/0.52 0.45/0.51
Standing Still 0.69/0.71 0.67/0.61 0.62/0.64 0.65/0.71 0.64/0.66 0.50/0.56
Upwards 0.67/0.79 0.77/0.70 0.75/0.83 0.45/0.72 0.63/0.72 0.57/0.80
Centered 0.56/0.58 0.53/0.43 0.54/0.69 0.43/0.58 0.50/0.62 0.29/0.62
Downwards 0.70/0.55 0.56/0.60 0.76/0.81 0.70/0.57 0.80/0.72 0.68/0.70
No Int. Motion 0.53/0.64 0.62/0.57 0.71/0.72 0.62/0.71 0.63/0.69 0.52/0.67
Torso Rotation 0.28/0.41 0.17/0.18 0.40/0.48 0.01/0.09 0.16/0.28 0.11/0.17
Right 0.67/0.70 0.71/0.50 0.72/0.71 0.50/0.80 0.68/0.74 0.55/0.72
Left 0.67/0.72 0.70/0.64 0.66/0.68 0.68/0.75 0.68/0.74 0.63/0.67
No Arms 0.66/0.80 0.83/0.74 0.83/0.78 0.79/0.90 0.66/0.81 0.65/0.82
Handy Unit 0.77/0.77 0.72/0.72 0.74/0.72 0.93/0.90 0.91/0.90 0.92/0.88
Bulky Unit 0.81/0.80 0.77/0.66 0.76/0.74 0.70/0.89 0.87/0.85 0.70/0.83
Utility-Aux. - - - - - -
Cart 0.82/0.82 0.80/0.74 0.83/0.82 0.82/0.89 0.87/0.89 0.79/0.87
Computer - - - - - -
No Item 0.82/0.84 0.87/0.80 0.86/0.82 0.77/0.92 0.83/0.85 0.72/0.85

While the annotation time differed among 6 human anno-
tators, it took on average 85min per 2min of recorded data.
The results confirm previous findings in this field, but they are
new with respect to the impact of annotating attributes.

Within and Between-consistency based on the Cohen’s κ
showed that annotators are moderately consistent when la-
belling recordings in the first trial. Within-consistency is higher
than between-consistency as minor disagreement among an-
notators are present. After an annotation revision by single-
domain expert, the consistency for activity classes and at-
tributes improved. However, this improvement is rather small
in comparison to the revision effort. This shows that more strict
and clear guidelines for the first annotation shall be considered.

For future work, the authors plan to publish the entire
dataset that consists of more recordings and more scenarios
than incorporated in this contribution. The data will be labelled
by a crowd of annotators and revised by few domain experts
as this approach has been proven to give a high consistency
while allowing for a fast labelling process.
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