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Abstract—With the demographic change towards ageing pop-
ulation, the number of people suffering from neurodegenerative
diseases such as dementia increases. As the ratio between young
and elderly population changes towards the seniors, it becomes
important to develop intelligent technologies for supporting the
elderly in their everyday activities. Such intelligent technologies
usually rely on training data in order to learn models for
recognising problematic behaviour. One problem these systems
face is that there are not many datasets containing training data
for people with dementia. What is more, many of the existing
datasets are not publicly available due to privacy concerns. To
address the above problems, in this paper we present a sensor
dataset for the kitchen task assessment containing normal and
erroneous behaviour due to dementia. The dataset is recorded by
actors, who follow instructions describing normal and erroneous
behaviour caused by the progression of dementia. Furthermore,
we present a semantic annotation scheme which allows reasoning
not only about the observed behaviour but also about the causes
of the errors.

Index Terms—activity recognition, annotation, data collection

I. INTRODUCTION AND MOTIVATION

People with dementia wish to remain independent and
continue their social life as long as possible. To achieve
this, they usually need assistance, as they have difficulties
in performing everyday activities [2]. Assistive technology
devices (ATD) have the potential to help people with dementia
to maintain their independent social life by supporting their
everyday activities [25]. To build a model of human behaviour
during the execution of everyday activities, however, one
needs a suitable dataset, with which to identify relevant model
elements and to train the model to recognise normal and
problematic behaviour.

One aspect of computational behaviour analysis research
for people with dementia is to recognise activities of daily
living (ADL) [9], some of them characterised by the usage of
specific objects or tools (this is also known as instrumented
ADL, or iADL). Traditionally the latter lies in the field of
computer vision, where cameras and specific algorithms are
used to locate and recognise certain objects and how they are
handled. However, cameras are often unsuitable for certain
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environments and usually require a certain amount of com-
puting power. Over the last years more and more approaches
investigated the use of wearable motion sensors for detecting
even high-level abstract and complex activities [7], [30] based
on computational behavioural models. A sensing modality and
a dataset for recognising object usage based on motion sensors
would provide valuable information and be a logical extension
of those techniques. Currently a new generation of cheap
and low-energy miniature motion sensors becomes available,
which, in combination with wrist worn devices like smart
watches and low-energy wireless communication finally allow
us to look in that direction.

In this paper we analyse the feasibility of such an ap-
proach using a flock of wireless motion sensors and a simple
algorithm with low computational complexity for detecting
similarities in motion patterns between handled objects in
kitchen applications. We use this sensing approach to record
a sensor dataset describing the kitchen task assessment (KTA)
setting, which consists of both normal and simulated erro-
neous behaviour due to dementia. Additionally, we provide
a semantic annotation schema for the dataset, which allows
reasoning about the action class, objects being manipulated as
well as causes of observed behaviour. The paper is structured
as follows: In section II we discuss the related work with
respect to existing datasets about people with dementia and
the corresponding annotation schema. Section III discusses
the methods and materials used in the paper, while Section
IV presents the collected dataset, the corresponding annota-
tion and the object recognition accuracy. Finally Section V
concludes with a discussion and planned future work.

II. RELATED WORK

A. Object detection for activity recognition tasks

The idea of detecting object usage for recognising activities
of daily living itself is not new at all and there can be found
some initially promising approaches in the past. Different
works propose various sensor modalities and techniques for
identifying the objects being manipulated. One very popular
type of data for activity recognition is sensor data. Sensor-
based approaches for object detection for activity recognition
rely on accelerometer data [8], [13], [14], sound data [8], wrist-
worn sensors [10]. For example, Stick et al. propose the com-



bination of accelerometer and RFID data for object detection
[18]. In other work, Stein et al. use the combination of sensor
and accelerometer data to recognise complex human activities
[17]. To address the problem of labelled data, some works
propose the combination of video-based object detection and
clustering of video descriptions to identify action classes and
their relations to objects [12]. Other works propose methods
for automatic generation of semantic behaviour models based
on textual instructions [21]. These models are then used to
recognise the action classes and the objects on which the
classes are executed. In our approach we use accelerometer
and gyroscope data from sensors attached to objects and
wearables. This data is first used to recognise the object being
manipulated and based on that activity recognition can be
performed.

B. Datasets for behaviour of people with dementia

Above we saw different works addressing the problem
of object detection for activity recognition. These works,
however, usually address the behaviour of healthy persons,
who do not exhibit challenging behaviour due to cognitive
impairments. This indicates that models trained on normal
behaviour will not be able to detect problems caused by the
progression of dementia. To address this problems there are
several datasets that contain data from people with dementia.
For example, the InsideDem project recorded one month of
data with the behaviour of people with medium to severe
dementia in two senior homes [3]. The data was recorded
with wearable bracelet and consist of motion, rotation, as well
as surrounding loudness level, light level, and air pressure.
In another project, Dem@Care, various types of data were
recorded in different experiments in laboratory settings [4].
These included video and audio data, motion sensors on
objects, and sleep sensors. Another project, SinDem, addresses
the outdoor mobility of people with dementia and contains the
accelerometer and GPS data of people in the early phases of
dementia [15]. The problem with all these datasets is that they
are either not publicly available as they contain data from real
patients, or they are conducted in laboratory settings and do not
address the types of behaviour errors in a systematic manner.

C. Datasets for cooking behaviour

Kitchen activities are central to our everyday life and the
ability of independently preparing and intaking food to a great
degree defines our ability to lead independent life. While
there are not many datasets addressing the kitchen activities
of people with dementia1, there is a variety of datasets for
kitchen activities executed by healthy participants. For exam-
ple, Krüger et al. record a dataset describing the preparation
and consumption of carrots soup [5]–[7]. The experiment is
recorded with accelerometer sensors from a motion tracking
body suite. Another dataset recorded at the SPHERE house in
Bristol contains the unscripted cooking activities of different
people in real home settings [11], [30]. The used sensors are

1Such activities are partially covered in the InsideDem and Dem@Care
datasets but they are not annotated for the observed behaviour problems.

environmental sensors such as temperature, light, water and
electricity consumption, and movement, as well as cupboard
sensors detecting opening and closing of cupboards. Another
popular dataset with kitchen activities is the CMU kitchen
dataset consisting of preparation of pizza, brownies, salad,
and eggs [19]. The dataset consists of cameras from different
angles, as well as body-worn accelerometer sensors.

D. Types of annotation

One of the main challenges in using existing datasets is the
lack of high quality annotation [29]. Producing annotation is
a time consuming and error-prone process that is even more
complicated when one needs to additionally annotate relations
between actions and objects. According to Yordanova and
Krüger, there are three types of annotation based on the label
structure [27], [28]. The first type of annotation is the one that
uses strings that have no semantic meaning. This is the easiest
and most common annotation type as it requires less time to
be produced. The second type of annotation is plan annotation.
It is divided into goal labelling (what is the goal the person is
pursuing) and plan annotation (what are the steps for reaching
the goal). The third type of annotation is semantic annotation
and the produced labels have semantic structure. This kind
of annotation contains relations between the annotated actions
and objects as well as additional contextual information, which
is not present in the first two types of annotation. In the case
of dementia, we usually need semantic annotation as we want
to recognise normal and challenging behaviour and to reason
about its causes.

III. METHODS AND MATERIALS

A. Kitchen task assessment

The aim of the kitchen task assessment (KTA) problem [1]
is to detect whether the person is able to perform kitchen tasks
independently by measuring the way the task is executed and
the types of errors that appear during its execution. Generally,
with the progression of the disease, also the frequency of
errors increases until at some point the person is no longer
able to perform kitchen activities independently [16]. In our
experiment, however, we do not simulate the progression of
the disease but we rather concentrate on simulating one type
of error per run.

B. Errors due to dementia

There are different kinds of behaviour errors caused by
disorientation in persons with dementia. According to Serna
et al. the exhibited errors can be classified into six categories
according to the type of physically observed problem in the
execution of the task [16]. These are initiation error, organ-
isation error, performance error, sequencing error, judgment
and safety error, and completion error. Table I lists the types
of errors and the corresponding explanations. In our work we
simulate these errors during the execution of kitchen tasks.



TABLE I
ERRORS DUE TO DEMENTIA

Type of error Description
initiation error Can the person begin the task?
organisation error Can the person gather the items necessary to

perform the task?
performance of all steps Can the person perform all the steps necessary to

complete the task?
sequencing Can the person sequence the activities that make

it possible to complete the task?
judgement and safety Is the person safe in performing the task?
completion Does the person know when he or she is finished

with the task?

C. Semantic annotation

As already mentioned in Section II, in order to be able
to reason about the causes of observed behaviour, we need
to produce semantic annotation. In this work we follow the
approach proposed in [26]. We use semantic representation of
the objects and actions combined with state representation of
the progression of the world to track changes in the observed
behaviour and how it influences the environment. Figure 1

init s1 s2

take(knife,drawer)

is-at (knife) 7! ¬drawer
is-at (knife) 7! board

objects taken () 7! 0

is-at (knife) 7! ¬drawer
is-at (knife) 7! ¬board
objects taken () 7! 1

is-at (knife) 7! drawer

is-at (knife) 7! ¬board
objects taken () 7! 0

put(knife,board)

Fig. 1. Example of the state space progression with the execution of new
action. Figure adapted from [26].

shows an example of the progression of the state space in the
case of taking a knife to cut some product. In the initial state
the knife is in the drawer, it is not on the cutting board and no
object has been taken. With the execution of the action “take”,
the new state changes and the knife is no longer in the drawer
and one object has been taken. In that manner, we represent
not only the semantic structure between actions and objects
but how their state changes with the execution of each action.

As the manual model definition for semantic annotation
is time consuming process (e.g. see [27], [28]), we utilise
an approach for automatic model generation based on the
label strings produced through the ELAN annotation tool.
This approach is based on works proposing learning behaviour
models from textual instructions [20], [21] and is described in
[22].

D. Experimental setup

1) Scenario: The goal of the experiment was to repeat the
kitchen task assessment and in the same time to simulate the
different types of errors due to dementia listed in Table I. Table
II shows the execution sequence for the KTA when normal
behaviour is ehxibited. Apart from the normal runs, also runs
with different variations of errors were recorded. Each par-
ticipant received instructions with the execution steps similar
to the execution sequence listed in Table II. The participants

TABLE II
DESCRIPTION OF THE SUB-TASKS IN THE KTA EXPERIMENT DURING

NORMAL RUN.

1) Initiate the task

1) Go to the refrigerator
2) Open the refrigerator

2) Measure

• Take the milk out of the refrigerator
• Close the refrigerator
• Pick up the measuring cup
• Measure the right quantity of milk

3) Stir

• Pour the measured milk into the saucepan
• Pour the pudding mix into the saucepan
• Pick the wooden spoon
• Stir the ingredients

4) Cook

• Turn on the stove
• Place the saucepan on the stove
• Stir until the mixture is hot
• Turn off the stove

5) Pour

• Pick up the saucepan
• Pour the mixture into the four dishes
• Pick up the spatula
• Scrape out the saucepan

6) Clean up (end of task)

• Put all the tools into the sink

were provided with instructions both for the normal behaviour
execution and the erroneous behaviour.

2) Setting: Seven tools were involved in the experimental
setup. These were stove plate, saucepan, wooden spoon, rubber
scraper, measuring cup, tool jar (containing spoons), coaster,
clip board with instructions. Apart from the tools, five ingre-
dients were used: box of milk, paper cups (at least 4), pudding
mix chocolate, pudding mix vanilla, pudding mix farina. 12
test subjects took part in the experiment where each subject
performed one KTA normal run and one KTA erroneous run.

3) Sensor setup: The following sensors were used during
the experiment. For acquiring sensor data we used object
motion sensor from Bosch Sensortec (DIANA-boards). Each
sensor node is 27x17x6.5 mm in size and powered by a
CR1225 button cell. Thus, it provides a very unobtrusive
sensing hardware and makes it possible to instrument even
small tools like for example a knife without influencing its
usability. The sensors were mounted on 37 objects by using
tape (see Figure 2). Each sensor contained accelerometer,
gyroscope, and magnetometer with a sampling rate of 25Hz.
Each participant was equipped with full body motion cap-
ture suite (XSens MVN-Biomch) with 17 sensors with a
sampling rate of 120Hz (see Figure 2). Apart from that the
electrocardiogram and electrodermal activity was recorded
(ECG 1024Hz, EDA 64Hz, Acc 64Hz, Temp 1Hz, Barometric
Pressure 8Hz). Finally, the experiment was recorded with two
cameras: first person video hand interactions were recorded
with a chest mounted GoPro ultrawideangle camera with
resolution 1280x720 and sampling rate of 25Hz. Additional
hand-held camcorder was used to record third person video
full body with resolution 704x576 and sampling rate of 25Hz.
All videos have been annotated frame by frame using ELAN
whenever an object was handled using the instrumented wrist
and also synchronised to the sensor recording.

E. Data preprocessing for object recognition

As the clocks of the wireless sensor nodes may drift, the
effective output data rate of each node is slightly different,
which needed to be compensated by resampling To synchro-
nise and resample the data, the spline method was used. The
method is based on an adjusted similarity measure for vectors



and is related to the Pearson correlation coefficient and cosine
similarity (Equation 1).

(x− x) · (y − y)

V ar(|x− y|) (1)

The sliding window we used considered 128 samples with
75% overlap between samples. For both accelerometer and
gyroscope we calculated the mean, variance, skewness, kurto-
sis, FFT (dominant frequency and its magnitude).

IV. DATASET AND RESULTS

The data collection consisted of 4 days of recording and one
additional day for pretesting. It took ca. 2h of recording per
participant and additional time needed for setup preparation
and post processing of the data.

This resulted in 408GB of raw data and 155GB prepro-
cessed data. 24 runs were recorded, 12 runs with normal
behaviour and 12 with erroneous. Each type of error was
observed in two of the erroneous runs. Apart from the sensor
data, for each run video data from the two different camera
angles was recorded. The video logs were used to produce
semantic annotation for the 24 runs. The sensor data together
with the semantic annotation can be downloaded from [23]2.

A. Annotation

The annotation was produced according to the procedure
proposed in [22]. 22 types of objects were annotated, together
with three additional object types describing the hand occu-
pancy (left, right, and both). The list with object types can be
seen in Table III. Apart from the objects, 17 action classes

TABLE III
OBJECTS USED IN THE ANNOTATION AND THEIR TYPES.

Type Objects
placable object sauce pan, hot plate, measuring cup, paper cups, tool jar, cutting

board
other object saucepan lid, manual, hotplate dial, wooden spoon, rubber

scraper, milk lid, milk seal, pudding seal, plastic spoon
location fridge, sink, table, floor
container paper cup, milk, pudding mix
hand left, right, both

were annotated. These can be seen in Figure 3. The actions
are open, close, walk, wait, turn on, turn off, put, take, stir,
swap, turn, shake, pour, tear, unscrew, screw, scrape, and drop.
On average an annotation sequence consists of 180 steps. Each
step is annotated based on the scheme action object1 object2.
This scheme is then automatically converted in PDDL plans
that can be used to test the causal correctness of behaviour
models (for example, see [24]) An example plan can be seen
in Table IV. The plan describes an execution sequence, which
was not completed due to initialisation error. The first column
is the action’s start time in milliseconds, the second column
indicates whether the action is a new one or the same action as
the previous one, and the last column shows the action being
executed together with the involved objects.

2https://doi.org/10.18453/rosdok id00002605

TABLE IV
A PLAN FOR A RUN WITH INITIATION ERROR.

Time New? Action
0 * (INITIALIZE)
1 * (take manual both)

1961 * (wait)
7161 * (swap manual left)
7361 * (put manual table left)
8921 * (walk table fridge)

16681 * (open fridge right)
18801 * (wait)
23601 * (close fridge right)
25681 * (walk fridge table)
32921 * (wait)
51601 * (FINISHED)

Based on these plans and the underlying model structure one
can infer information such as the most probable object being
currently manipulated, the current location of the object, or the
causal structure of the plan. For example Figure 3 shows the
causal structure for all action classes in the KTA experiment.
There the nodes are the actions while the transitions show
how probable it is to observe a transition from one action to
another. The thicker the line between two actions, the more
probable it is that we will observe a transition.

B. Object recognition

To test the approach’s ability to correctly recognise the
object being manipulated, we used the accelerometer and
gyroscope data. As already explained, the sensor data was syn-
chronised and resampled using the spline method mentioned
before to avoid temporal drift. After data synchronisation, the
cross-correlation between corresponding windows, as well as
mean and variance were calculated for the accelerometers and
the gyroscopes. Based on these the classifier estimated the
most probable object interaction (see Table V) for accelerom-
eters only (acc), gyroscopes only (gyr), or a combination of
both (acc+gyr). Comparing the estimate to the annotation, the
accuracy was calculated as seen in Table V. As no training or
machine learning was utilised, no cross validation is required.

The ROC curve for object usage detection when using
accelerometer or gyroscope can be seen in Figure 4. The
area under the curve for accelerometer data is 0.96, while for
gyroscope it is 0.92. In both cases the results show that using
the sensors attached to objects together with wrist sensors is
a reliable means of object detection.

V. DISCUSSION AND CONCLUSION

In this work we introduced a sensor dataset for the kitchen
task assessment based on accelerometer and gyroscope data
from objects and wearables attached to the hands. The dataset
consists of normal executions of the KTA as well as executions
that contain one of six types of erroneous behaviour exhibited
by people suffering from dementia. The dataset is a valuable
addition to the state of the art in datasets describing the
behaviour of people with dementia as there are not many
publicly available datasets for this domain. What is more,
the accompanying semantic annotation allows the research
community to measure activities being executed, objects being



Fig. 2. During recording of the Kitchen Task setting. Test subject is equipped with Motion Capturing Suit, ECG, EDA, and chest mounted camera (left).
Objects were instrumented with custom BLE wireless motion sensor platform (right).

FINISHED

INITIALIZE

close

drop

open

pour

put

scrape

screw

shake

stir

swap

take

tear

turn

turn_off

turn_on

unscrew

wait

walk

Fig. 3. Causal graph of actions. Apart from the annotated actions, there are two additional actions, one describing the initial condition and one describing
the end condition of the plan. The thicker the line the more probable it is to observe the transition between the two actions.

TABLE V
OBJECT USAGE DETECTION RESULTS

tn fn fp tp sensor object accuracy precision recall specificity
1466097 5937 99938 53870 left acc all 0.9348799 0.3502418600 0.9007307 0.9361841
1453808 5199 112227 54608 left gyr all 0.9277753 0.3273174094 0.9130704 0.9283369
1525781 8233 40254 51574 left acc+gyr all 0.9701773 0.5616369735 0.8623405 0.9742956
1373216 10060 89546 153020 right acc all 0.9387357 0.6308386171 0.9383125 0.9387829
1395116 20224 67646 142856 right gyr all 0.9459542 0.6786443834 0.8759872 0.9537546
1433526 27601 29236 135479 right acc+gyr all 0.9650415 0.8225055399 0.8307518 0.9800132
1305407 12864 99779 207792 both acc all 0.9307171 0.6755903515 0.9417011 0.9289923
1347312 15851 57874 204805 both gyr all 0.9546543 0.7796778578 0.9281642 0.9588140
1374776 24601 30410 196055 both acc+gyr all 0.9661646 0.8657187645 0.8885097 0.9783587

manipulated as well as the semantic relations and underlying
causal relations between activities.

Furthermore, we showed that is is possible to use the

accelerometer and gyroscope data to track the object being
manipulated. Based on these results, in the future we plan
to combine the output from the object recognition with com-
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Fig. 4. ROC plots for Object usage detection accelerometers top (AUC =
0.9593934), gyroscopes bottom (AUC = 0.9210555).

putational state space models [7] to build a model able to
reason in a causal manner about the person’s behaviour and
the underlying causes of the observed errors.
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[3] A. Hein, F. Krüger, S. Bader, P. Eschholz, and T. Kirste. Challenges of
collecting empirical sensor data from people with dementia in a field
study. In 2017 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), pages 22–25,
March 2017.

[4] A. Karakostas, A. Briassouli, K. Avgerinakis, I. Kompatsiaris, and
M. Tsolakir. The dem@care experiments and datasets: a technical report.
Technical Report arXiv:1701.01142, arXiv preprint, December 2016.
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