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Abstract—Ground truth is essential for activity recognition
problems. It is used to apply methods of supervised learning, to
provide context information for knowledge-based methods, and
to quantify the recognition performance. Semantic annotation
extends simple symbolic labelling by assigning semantic meaning
to the label and enables reasoning about the semantic structure
of the observed activity. The development of semantic annotation
for activity recognition is a time consuming task, which involves
a lot of effort and expertise. To reduce the time needed to develop
semantic annotation, we propose an approach that automatically
generates semantic models based on manually assigned symbolic
labels. We provide a detailed description of the automated
process for annotation generation and we discuss how it replaces
the manual process. To validate our approach we compare
automatically generated semantic annotation for the CMU grand
challenge dataset with manual semantic annotation for the same
dataset. The results show that automatically generated models
are comparable to manually developed models but it takes much
less time and no expertise in model development is required.

Index Terms—activity recognition, annotation, ground truth,
model generation

I. INTRODUCTION AND MOTIVATION

The quality of annotation of sensor datasets describing
human behaviour plays a central role in the performance of the
recognition system. The annotation serves as a ground truth
both for training data-driven models for activity recognition
and for evaluating the performance of the activity or plan
estimation procedure. It also provides the context information
needed for developing knowledge-based activity recognition
systems [27]. In a previous work we presented a model-based
approach to semantic annotation of human behaviour [24],
[26]. In model-based annotation the labels assigned to the
data provide an underlying semantic structure that contains
information about the actions, goals, and plans being executed.
This semantic structure is represented in the form of a model
of the behaviour’s state in terms of collection of state variables.
Actions are then defined as effects that change the state of the
model. This form of annotation provides structured knowledge
of the concepts in the data being annotated and enables the
reasoning over underlying behaviour changes, their causal
relations, and contextual dependencies. Such annotation is im-
portant for evaluating activity and plan recognition approaches
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that aim to recognise the actions being executed, the goal of
the plan as well as the context and causes behind the observed
actions.

A serious drawback in providing semantic annotation is that
it is very time consuming and requires many iterations before
a causally correct annotation is developed. For example, an-
notating the Carnegie Mellon University Multi-Modal Activity
Database (CMU-MMAC) with semantic annotation took about
two years of work [26]. To address this problem, in this work
we propose an automated method for generating semantic
model-based annotation. The approach makes use of natural
language processing techniques to generate semantic models
based on the textual labels provided by the annotator. In that
manner, the annotator only needs to provide textual labels and
the semantic structure of the labels is automatically generated.
Additional checkins ensure that the annotation is causally
correct and that errors in the textual labels are not transferred
to the automatically generated model. The approach seriously
reduces the time needed for annotating a sensor dataset. It also
allows generating a semantic structure that can be manually
extended by the annotator in case additional implicit context
needs to be embedded in the models.

The paper is structured as follows. Section II discusses the
state of the art in semantic annotation and automatic model
generation. Section III describes the manual process for se-
mantic annotation and the test dataset. Section IV provides de-
tailed information about the proposed approach for automatic
generation of semantic annotation. In Section V we discuss
the results of comparing automatically generated models for
semantic annotation with manually developed models. Finally
we conclude the paper with discussion about the results and
the future work in Section VI.

II. RELATED WORK

A. Types of annotation

Annotation can roughly be divided into three types: label-
based annotation, plan-based annotation and semantic annota-
tion [26]. In label-based annotation the annotator assigns a
string as a label to each observation. This string does not
have any underlying meaning beside the equality between
two strings. This is the most common annotation in activity



recognition because even providing a string as a label requires
a lot of effort.

The second type of annotation is plan annotation and it
is divided into goal labelling and plan labelling [5]. In goal
labelling, a label is assigned to each goal the user is pursuing
through his or her actions [1], [4]. In plan labelling, apart from
the goal, also the steps towards achieving it are annotated (in
other words, the sequence of actions) [2]. Goal labelling is
usually preferred to plan labelling as it requires less time and
effort. In the case of plan labelling, often synthetic data is used,
so that the annotation is automatically generated together with
the data [13], [17].

The third type of annotation is the semantic annotation [14].
The semantic annotation is divided into algebraic and model-
based annotation [26]. The algebraic annotation provides a
semantic meaning for each label. This structure is usually
in the form of ontology with the corresponding properties,
concepts and relations between the different elements of the
annotation [8], [18]. In difference to the algebraic annotation,
model-based annotation provides a model of the world and
how it changes with the execution of new actions. This is
achieved through a collection of state variables that describe
the state space of the model [24]. Model-based annotation is
very important for reasoning about properties of the world
but also how and why the world and the observed behaviour
changes. It is, however, the most complex type of annotation,
which requires a lot of resources and time. To address this
problem, we look at approaches for model generation from
textual descriptions.

B. Model generation

The idea behind model generation is to substitute the manual
development of behaviour models with models generated from
textual sources [21]. The goal of grounded language acqui-
sition is to learn linguistic analysis from a situated context
[7], [19]. In other words, texts (often instructional texts) are
analysed to discover the action semantics and relationships
between actions and the surrounding context.

This could be done in different ways: through grammatical
patterns that are used to map the sentence to a machine un-
derstandable model of the sentence [6], [29]; through machine
learning techniques [3], [11], [15]; or through reinforcement
learning approaches that learn language by interacting with an
external environment [6], [7], [11], [15], [19].

Models learned through model grounding have been used
for plan generation [6], [23], for learning the optimal sequence
of instruction execution [7], for learning navigational direc-
tions [19], and for interpreting human instructions for robots
to follow them [15]. To our knowledge, model generation
has not been used for building semantic models for model-
based annotation. The very structured text representation of
annotation sequences, however, makes them ideal candidate
for automatically generating semantic models from the labels.
In what follows we adapt a model generation approach initially
applied to textual instructions in order to obtain model-based
annotation.

III. METTHODS AND MATERIALS

Before presenting the approach for automated generation of
semantic annotation, below we describe the manual process
presented in [24] as well as the Carnegie Mellon University
Multi-Modal Activity Database dataset and the manual se-
mantic annotation, with which we empirically compare the
automated approach to the manual one.

A. A process for providing semantic annotation

Most activity recognition experiments such as the CMU-
MMAC [9] could be considered as goal oriented. In other
words, the participants in the experiment are performing a
sequence of actions that lead to a certain goal (for example,
preparing a certain meal [28]). To ensure comparability of
different repetitions, usually identical experimental setup is
chosen for each trial. This results in an action sequence that
resembles a plan, leading from the same initial state (described
by the same starting setting of the experiemnt) to a set of goal
states (for example the completion of different meals). In the
domain of automated planning and scheduling, plan sequences
are generated from domain models, where actions are defined
by means of preconditions and effects. For example, Figure
1 gives an example of an action in the Planning Domain
Definition Language (PDDL) notation.

(:action take
:parameters (?what - takeable ?from - loc)
:precondition (and
(= (is-at ?what) ?from)
(not (= ?from hands))
...
:effect (and
(assign (is-at ?what) hands)
(increase (objects_taken) 1)
(when
(not (is-clean ?what))
(not (is-clean hands)))))

Fig. 1. An example of an action scheme for the take action in terms of
preconditions and effects in PDDL notation. Figure adapted from [26].

A plan is then a sequence of actions generated by grounding
the action schemas of the domain leading from an initial state
to the goal state. An example of how the execution of one
action changes the state can be seen in Figure 2. After the
execution of the action take, the values of the functions change,
so that the knife is no longer at a specific location and the
taken objects are increased with one. After the execution of
the action put, now the knife is at the location board and the
number of taken objects is decreased.

In the manual annotation process, we manually create plans
that reflect the participants’ actions, then we define a planning
domain, which describes the causal and semantic connections
of the actions to the state of the world. Figure 3 shows the
steps in the manual annotation process. The first step is the
definition of a dictionary containing all possible actions and
entities that describe the given problem. In the second step
the action relations are defined. This includes defining the



init s1 s2

take(knife,drawer)

is-at (knife) 7! ¬drawer
is-at (knife) 7! board

objects taken () 7! 0

is-at (knife) 7! ¬drawer
is-at (knife) 7! ¬board
objects taken () 7! 1

is-at (knife) 7! drawer

is-at (knife) 7! ¬board
objects taken () 7! 0

put(knife,board)

Fig. 2. Change in the state space after the execution of the actions take and
put. Figure adapted from [24].

role and type of involved objects as well as how they are
related to the action. In the third step the state properties are
defined. Basically, we define a set of state properties as a
function of a tuple of entities to an entity of the domain. The
state space is then defined by each combination of possible
mappings of entity tuples. In the fourth step we define the
preconditions and effects for each action as shown in Figure
1. In step five we manually annotate the video logs of the
sensor dataset according to the dictionary we have defined in
step one. Finally, in the sixth step we validate the annotation
by comparing the validity of the annotation sequence against
the manually developed model. The detailed procedure is also
described in [24].

B. The CMU-MMAC

The Carnegie Mellon University Multi-Modal Activity
Database (CMU-MMAC) is a collection of kitchen activities
[10]. 55 subjects were recorded by multiple sensors such
as cameras, accelerometers, and RFID sensors. The CMU-
MMAC consists of five sub datasets. These are Brownie,
Sandwich, Eggs, Salad, and Pizza. Each dataset contains data
from one food preparation task. Annotation for 16 subjects can
be downloaded from the CMU-MMAC website1. This label
sequence is missing semantics, which if present would allow
reasoning about context information such as object locations
and relations between actions and entities. To address this
problem, in a previous work we newly annotated three of
the five datasets (Brownie, Sandwich, and Eggs) following
the manual annotation process described above. The annotator
identified the action classes (11 for the Brownie, 12 for the
Eggs, and 12 for the Sandwich), entities (30 for the Sandwich
dataset, 44 for the Brownies, and 43 for the Eggs), and all
valid action instantiations (119 unique labels where identified
for the Sandwich dataset, 187 for the Brownies, and 179 for
the Eggs). All in all, 90 action sequences were annotated. The
complete annotation can be downloaded from [25]. In this
work, we use the manually created model for the “Brownie”
dataset to compare it with the model generated through our
automated approach.

IV. APPROACH

In a previous work, we showed that our approach to
semantic annotation provides a high quality annotation with
an interrater reliability of about 80% overlapping [24]. To

1http://www.cs.cmu.edu/∼espriggs/cmu-mmac/annotations/

produce such high quality, however, it takes a lot of time and
effort not only for the annotators, but also for the annotation
designers who have to manually build the semantic model
used for validating the annotation. To address this problem,
we extend the approach so that it automatically generates
the underlying semantic model needed for validating the
annotation. The method adapts the idea of learning planning
operators from textual instructions proposed in [23]. It differs
from existing works for model generation in the source of data
from which the model is learned. While existing works use
textual instructions written by persons, the proposed approach
uses such instructions only for the initial model generation. To
update the model with newly discovered elements, the model
is automatically updated based on the produced annotation.
Novelty is also the iterative extension of the model based on
newly annotated data. The proposed method automates steps
two to four in the manual annotation process.

Step one from the annotation process (actions and entities
dictionary definition) is extended so that in addition to the
dictionary definition, the domain experts provide a step by step
description of the executed action in natural language using the
names of the actions and entities from the dictionary. These
textual instructions are then parsed as proposed in [24] in order
to obtain the relations between the model elements such as
relations between entities and actions and entities (Step two
from the annotation process). Figure 5 shows an example of a
sentence being parsed in order to extract the relations between
actions and entities. Furthermore, the identified properties in
the sentences are used to generate the state properties of
the model. For example, from the sentence in Figure 5 we
extract the state properties is-clean (bowl) and is-at (bowl) →
cupboard. This procedure replaces Step three in our annotation
process.

The next step of our process (Step four) deals with the
manual definition of preconditions and effects. We automate
this step by first automatically obtaining the implicit causal
relations between the actions in the textual instructions. This
is done by converting the textual instructions into time series
and then performing a time series analysis to discover any
causal dependencies between the series as proposed in [20],
[23]. We start by representing each unique action in a text
as a time series. Each element in the series represents the
number of occurrences of the action in the sentence. We then
apply the Granger causality test, which is a statistical test for
determining whether one time series is useful for forecasting
another. It performs statistical significance test for one time
series, “causing” the other time series with different time lags
using auto-regression [12]. First, we estimate the regression
yt = ao + a1yt−1 + ... + apyt−p + b1xt−1 + ... + bpxt−p.
Then we use an F-test to evaluate whether the lagged x terms
are significant. For example, we generate time series for the
words “take” and “put” and after applying the Granger test, it
concludes that the lagged time series for “take” significantly
improve the forecast of the “put” time series, thus we conclude
that “take” causes “put” [23].

Then based on the semantic structure of the textual descrip-
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Fig. 3. The manual annotation workflow for model-based annotation as proposed in [24]. Figure adapted from [24].

Open the cupboard.
Take the clean bowl form the cupboard.
Put the bowl on the counter.
Take the measuring cup from the cupboard.
Put the measuring cup on the counter.
Take the measuring cup from the cupboard.

Fig. 4. Extract of the textual instructions describing the execution sequence
of actions in the “Brownie” dataset.

Take the clean bowl from the cupboard. 

VB DT NN IN DT NN

dobj prep_from

Action Entity 
(object)

Entity 
(location (from))

JJ

Property
(object)

amod

take       -          bowl      -       cupboard 

take       -        object      -     location (from) 

Sentence

Dependencies

POS-tags

Relations

Ground label

Label template

Fig. 5. Parsing a sentence in order to obtain the relations between actions
and entities as well as their properties.

tion, the properties necessary to describe the preconditions and
effects of the actions are identified (see Figure 5). Furthermore,
based on the identified objects and existing language tax-
onomies the object hyperonyms are identified. They represent
the abstraction hierarchy of the objects and are later used to
define the object types in the planning operators. This is done
by identifying all hyperonyms of a given object that are defined
in a language taxonomy. In our case we use WordNet [16],
which is the taxonomy of English language. As some words
have different meaning, we take the most often used meaning
of a given word.

All information identified until now is then consolidated

in a single situation model. This model contains all semantic
information needed to build the precondition-effect rules of our
model (actions, objects, various causal, spatial and locational
relations). Figure 6 shows the situation model generated for
the instruction of preparing brownies. For more information
about the procedure of generating situation models see [22].

The situation model is then used to define the precondition-
effect rules for the set of actions we have identified. Figure 7
shows an example of a generated rule for the action “take” for
the Brownie dataset. The name of the action template is the
same as the action name. The parameters are then taken from
the abstraction hierarchy. In other words, the concrete objects
on which the action is applied are replaced with their abstract
representations. The precondition is defined through different
predicates: default predicates are used to define the execution
of the action. Apart from that, any state properties and causal
relations are also added to the preconditions and effects. For
more details on the procedure see [23].

The generated model is then used in the same manner
as the manually built one: each newly annotated video is
validated using the model (see Step six in our process). Any
new entities or actions discovered during the annotation are
then automatically added to the list of actions and entities and
the model is automatically extended in order to incorporate the
new semantic knowledge. This is done by extending the textual
instructions used for the initial model with generated from the
annotation instructions. The textual instructions are generated
by automatically exporting the annotation from ELAN and
converting it to natural language where each sentence corre-
sponds to a label in the annotation. Then the model generation
procedure is repeated and any actions, entities, state properties,
or relations that do not appear in the model are added to it.

V. RESULTS

To evaluate the ability of the approach to generate models
for model-based annotation, we first compared the number
of action classes, objects, and action templates manually
modelled against generated for the “Brownies” dataset. To
evaluate the size of the state space model, we compared a
model manually built for the CMU “Brownies” dataset with
automatically generated one according to our procedure. Table
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Fig. 6. Extract of the situation model for the brownies instruction. Blue circles indicate actions, grey – objects, lila – properties, white taxonomy of objects.
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from discovered label template 
  and abstraction hierarchy

(:action take 

:parameters (?o - object ?from - location)

:precondition (and
(not (executed-take ?o ?from))

                        (is-clean ?o)
                        (is-at ?o ?from)
                        (executed-put ?o ?from))

:effect (and
(executed-take ?o ?from)

                        (not (executed-put ?o ?from)))
)

default predicates

discovered causal relations 

identified state properties 

Fig. 7. An example of automatically generated precondition-effect rule for
the action “take”.

TABLE I
COMPARISON BETWEEN A GENERATED MODEL FOR THE BROWNIE
DATASET (PDDLg ) AND THE HANDCRAFTED MODEL PDDLh .

OPERATORS INDICATES NUMBER OF GROUND OPERATORS IN THE MODEL;
PREDICATES NUMBER OF GROUND PREDICATES; BR. FACTOR IS THE

BRANCHING FACTOR OF THE MODEL (I.E. HOW MANY STATES CAN BE
REACHED FROM A GIVEN STATE IN THE MODEL); AND STATES INDICATE

THE SIZE OF THE STATE SPACE WHEN USING ITERATIVE DEEPENING
DEPTH FIRST SEARCH WITH MAXIMUM DEPTH OF 5.

Metrics PDDLg PDDLh

actions 10 11
objects 28 44
operators 421 257
predicates 339 89
min/mean/max br. factor 1/231.19/421 5/30.82/55
states (depth 5) 10 000 227 1 785 896

I shows comparison between the manual model (PDDLh)
used for validating the annotation of the Brownie dataset in
[24] and a model, generated from description of the Brownie
experiment (PDDLg). On the one side, the generated model
identified less actions and objects than the manual one. The
one missing action in the generated model is the “other”
action, which the approach does not recognise as an action.
Regarding the smaller number of objects, it is due to the fact
that the manual model contains many composite objects such
as “empty egg shell”. The generated model will consider the
object to be “shell” with properties “empty” and “egg”.

On the other hand, when we look at the state space
model, the generated model produces more elements than the

handcrafted one and it has a larger state space and branching
factor. This is in part because of lack of common sense
knowledge in the instructional text. The manually developed
model contains implicit knowledge, the model designer used
to reduce the model complexity. The automatic approach did
not have access to this knowledge, thus it was not encoded
into the model. Nevertheless, as the purpose of the model is
not activity recognition but rather encoding and validating the
semantic structure of the annotation, the branching factor is not
a serious issue (i.e. we still can validate the annotation even
with a model that contains many possibilities). Another option
is interactively asking for the designer’s input to optimise the
generated model.

VI. DISCUSSION

In this work we presented an approach for automatic
generation of models for model-based annotation of activity
recognition datasets. We compared the automatically generated
models with manual models. The results showed that the
model is comparable to the handcrafted but that it does not
encode a common sense knowledge that we humans might
include in the manual model. On the one hand, this removes
some context information we might be interested in. On the
other hand, thinking about the time required to develop a
manual model, the automatically generated one saves months
of manual work. The model can be used as initial model,
which is later extended with additional context information.
Even if input from the designer is required, the automatic
generation of the semantic model seriously reduces the time
needed for manual model development. It also reduces the
effort required to produce high quality semantic annotation
as the annotator is automatically provided with the semantic
structure and validation tool without the need to wait for the
model designer to develop or extend the model.

In the future we plan to integrate the proposed approach in
the ELAN annotation tool, which is often used for annotation
of video logs. We also plan to include different automated
tests such as checking for gaps, ensuring that the label is part
of the dictionary, and ensuring that the sequence of labels is



possible in the model. In case the sequence is not possible, the
intervention of the annotator is required either by adapting the
annotation sequence, so that it is causally valid according to
the model or by adjusting the structure of the model to allow
the annotation sequence.

REFERENCES

[1] D. W. Albrecht, I. Zukerman, and A. E. Nicholson. Bayesian models
for keyhole plan recognition in an adventure game. User Modeling and
User-Adapted Interaction, 8(1-2):5–47, 1998.

[2] M. Bauer. Acquisition of user preferences for plan recognition. In
Proceedings of the Fifth International Conference on User Modeling
(UM96, pages 105–112, 1996.

[3] L. Benotti, T. Lau, and M. Villalba. Interpreting natural language
instructions using language, vision, and behavior. ACM Trans. Interact.
Intell. Syst., 4(3):13:1–13:22, Aug. 2014.

[4] N. Blaylock and J. Allen. Statistical goal parameter recognition. In
4th International Conference on Automated Planning and Scheduling
(ICAPS’04), pages 297–304, June 2004.

[5] N. Blaylock and J. Allen. Hierarchical goal recognition. In G. Suk-
thankar, R. P. Goldman, C. Geib, D. V. Pynadath, and H. H. Bui, editors,
Plan, activity, and intent recognition, pages 3–32. Elsevier, Amsterdam,
2014.

[6] S. R. K. Branavan, N. Kushman, T. Lei, and R. Barzilay. Learning high-
level planning from text. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long Papers - Volume
1, ACL ’12, pages 126–135, Stroudsburg, PA, USA, 2012. Association
for Computational Linguistics.

[7] S. R. K. Branavan, D. Silver, and R. Barzilay. Learning to win by
reading manuals in a monte-carlo framework. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies - Volume 1, HLT ’11, pages 268–277,
Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[8] H.-S. Chung, J.-M. Kim, Y.-C. Byun, and S.-Y. Byun. Retrieving and
exploring ontology-based human motion sequences. In O. Gervasi, M. L.
Gavrilova, V. Kumar, A. Laganà, H. P. Lee, Y. Mun, D. Taniar, and
C. J. K. Tan, editors, Computational Science and Its Applications –
ICCSA 2005, volume 3482 of Lecture Notes in Computer Science, pages
788–797. Springer Berlin Heidelberg, 2005.

[9] F. de la Torre, J. Hodgins, J. Montano, S. Valcarcel, R. Forcada,
and J. Macey. Guide to the carnegie mellon university multimodal
activity (CMU-MMAC) database. Technical Report CMU-RI-TR-08-
22, Robotics Institute, Carnegie Mellon University, July 2009.

[10] F. de la Torre, J. K. Hodgins, J. Montano, and S. Valcarcel. Detailed
human data acquisition of kitchen activities: the CMU-Multimodal
Activity Database (CMU-MMAC). In Workshop on Developing Shared
Home Behavior Datasets to Advance HCI and Ubiquitous Computing
Research, in conjuction with CHI 2009, 2009.

[11] D. Goldwasser and D. Roth. Learning from natural instructions. Machine
Learning, 94(2):205–232, 2014.

[12] C. W. J. Granger. Investigating Causal Relations by Econometric Models
and Cross-spectral Methods. Econometrica, 37(3):424–438, August
1969.

[13] L. M. Hiatt, A. M. Harrison, and J. G. Trafton. Accommodating
human variability in human-robot teams through theory of mind. In
Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, IJCAI’11, pages 2066–2071, Barcelona, Spain,
2011. AAAI Press.

[14] A. Kiryakov, B. Popov, D. Ognyanoff, D. Manov, A. Kirilov, and
M. Goranov. Semantic annotation, indexing, and retrieval. In D. Fensel,
K. Sycara, and J. Mylopoulos, editors, The Semantic Web - ISWC 2003,
volume 2870 of Lecture Notes in Computer Science, pages 484–499.
Springer Berlin Heidelberg, 2003.

[15] T. Kollar, S. Tellex, D. Roy, and N. Roy. Grounding verbs of motion
in natural language commands to robots. In O. Khatib, V. Kumar, and
G. Sukhatme, editors, Experimental Robotics, volume 79 of Springer
Tracts in Advanced Robotics, pages 31–47. Springer Berlin Heidelberg,
2014.

[16] G. A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):39–41, Nov. 1995.

[17] M. Ramirez and H. Geffner. Goal recognition over pomdps: Inferring
the intention of a pomdp agent. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence, volume 3 of
IJCAI’11, pages 2009–2014, Barcelona, Spain, 2011. AAAI Press.

[18] S. Saad, D. De Beul, S. Mahmoudi, and P. Manneback. An ontology
for video human movement representation based on benesh notation.
In Multimedia Computing and Systems (ICMCS), 2012 International
Conference on, pages 77–82, May 2012.

[19] A. Vogel and D. Jurafsky. Learning to follow navigational directions.
In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, ACL ’10, pages 806–814, Stroudsburg, PA,
USA, 2010. Association for Computational Linguistics.

[20] K. Yordanova. Discovering causal relations in textual instructions.
In Recent Advances in Natural Language Processing, pages 714–720,
Hissar, Bulgaria, September 2015. RANLP 2015 Organising Committee.

[21] K. Yordanova. From textual instructions to sensor-based recognition
of user behaviour. In Companion Publication of the 21st International
Conference on Intelligent User Interfaces, IUI ’16 Companion, pages
67–73, New York, NY, USA, 2016. ACM.

[22] K. Yordanova. Automatic generation of situation models for plan
recognition problems. In Proceedings of the International Conference
Recent Advances in Natural Language Processing, pages 823–830,
Varna, Bulgaria, September 2017. INCOMA Ltd.

[23] K. Yordanova. Extracting planning operators from instructional texts
for behaviour interpretation. In German Conference on Artificial
Intelligence, pages 215–228, Berlin, Germany, Sptember 2018.

[24] K. Yordanova and F. Krüger. Creating and exploring semantic annotation
for behaviour analysis. Sensors, 18(9), 2018.
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