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Abstract—In this article, we study the scaling up of edge
computing deployments. In edge computing, deployments are
scaled up by adding more computational capacity atop the initial
deployment, as deployment budgets allow. However, without care-
ful consideration, adding new servers may not improve proximity
to the mobile users, crucial for the Quality of Experience of users
and the Quality of Service of the network operators. In this paper,
we propose a novel method for scaling up an edge computing
deployment by selecting the optimal number of new edge servers
and their placement, and re-allocating access points optimally to
the old and new edge servers. The algorithm is evaluated with
two scenarios, using data on a real-world large-scale wireless
network deployment. The evaluation shows that the proposed
method is stable on a real city-scale deployment, resulting in
optimized Quality of Service for the network operator.

Index Terms—edge computing, facility location, service scaling

I. INTRODUCTION

The modern smart devices, from smartphones to home IoT,
from industrial applications to smart cities and smart transporta-
tion, are ushering in an era of pervasive computing. The massive
amounts of data generated by these devices provide a ground
for various novel applications, while also introducing novel
challenges for data processing and connectivity [1]. Indeed,
current cloud computing systems and network infrastructures
may not provide enough computing capacity to manage latency
and performance requirements set by the modern pervasive
computing systems [2].

Edge computing refers to technologies and development
methodologies for distributing and running computations close
to the user devices, ”on the edges of the network”, at the
network infrastructure devices or dedicated local systems
providing computing resources for the user devices. Such
computations typically include the collection and preprocessing
of application-specific multimodal data [3], [4] or facilitating
real-time user interactions such as augmented or virtual reality
applications [5]. The expected advantages of edge computing
include low latency and high bandwidth between user devices
and edge components, crucial for real-time applications [6],
support for user mobility [7], [8], and increased privacy
especially with applications relying on highly personal data
[9].

Edge computing platforms aim to provide location-aware
services and multitenancy of applications at the close physical
and logical proximity. A number of solutions have already been
proposed, e.g. cloudlets [10] and Fog computing [11], or even
Kubernetes-based over-the-air LTE/5G Edge DevOps platforms
[12], that illustrate different technologies and implementation
strategies [13].

In addition to placing data and computations [1], placing
computational resources [14] is a key issue in edge computing.
Edge computing requires a flexible and scalable deployment of
edge servers to support user mobility, the inherent dynamicity
of the operational environment, and the variety of applications,
some requiring real-time responsiveness. The deployments are
often geographically large, spanning entire cities. The edge
servers are often deployed densely, based on observations
on application workload and usage patterns and the resulting
network traffic. Often, the available deployment budgets lead to
homogeneous hardware in the edge servers, which may result in
under- or overused capacity. The simplest approach is to provide
a clustered deployment without initially considering capacity
or proximity constraints. However, the operators are expected
to ensure efficient resource usage as well as a sufficient Quality
of Experience (QoE) for the users, while maintaining overall
QoS (Quality of Service) in their system. Therefore, when
planning the deployment architecture, promixity to the mobile
users is a crucial element.

Edge-based service and functionality availability is constantly
increasing, and the soon-to-come 5G networks will only further
increase their availability. Further, the increased usage of
smartphones, other personal smart devices, connected vehicles,
autonomous devices, and other novel technologies lead to
an unforeseen variety of edge applications and services with
increasing requirements for computation and communication.
As a result, edge server deployments need to be scaled up
to meet the increasing demands. Scaling up an edge server
deployment, the operator needs to find the optimal number of
new edge servers, their optimal locations, and the allocations
of Access Points (APs) to these servers.

In this paper, we present the following novel contributions:

1) We present a novel method for scaling a deployment,
finding the optimal number of new edge servers, placing



them in an existing edge network, and allocating APs
for the edge servers.

2) We evaluate our method with three scenarios which
correspond to real-life use cases for a network operator.
The evaluation indicates that the proposed method results
in optimized QoS for the network operator.

3) We present the results based on a real-world data set of
a smart city Wi-Fi usage, collected over nine years and
comprising hundreds of millions of connections.

II. RELATED WORK

In the previously proposed placement schemes, the best
proximity, with regard to some metric, was often the initial
assumption in the deployment planning [14]. When the aim is to
address minimized proximity, upgrading server capacity to the
existing (co-located) deployment is not sufficient as distances
may not be optimized for the added users and their workload.
Moreover, if server capacity is fixed, the solution prohibits over-
provisioning and QoE cannot be guaranteed. Also, on-demand
provisioning has been considered, e.g. [15], [16], that increases
scalability in response to the online workload. But such efforts
may be difficult to realize by the network operators.

The number of new servers may be dictated by a set budget.
Sometimes it is necessary to determine what is the number
of servers that would produce a best trade-off between the
budget and QoS. To explore this trade-off, some previous work
[17], [18] evaluate the average user latency as a function of
the number of edge servers.

The survey of Lähderanta et al. [14] studies edge server
placement extensively. For example, in the study by Wand
et al. [17] a fixed number of edge servers are placed by
minimizing the geospatial distances while concurrently seeking
for a balanced workload distribution. In [18] a hierarchical tree-
like structures are used to locate fixed number of edge servers
without capacity limits. Yin et al. [19] propose a heuristic
decision-support management system for server placement that
enables the discovery of unforeseen server locations. Guo et
al. [20] place a fixed number of edge servers in a two-step
scheme, where first the servers are located using the k-means
algorithm and then the APs are allocated to the servers with
the aim to minimize the communication delay and to balance
the workload.

The method presented in this paper is based on the ca-
pacitated location allocation method, presented in a previous
study of ours [14]. To the best of our knowledge, however, no
articles have studied the scaling up of an existing edge server
deployment.

III. METHODS

A. Placement model

We base our method for the placement of new edge servers on
the PACK algorithm, proposed in our earlier work [14], detailed
below. The algorithm finds optimal locations for a fixed number
of edge servers, minimizing the geospatial distances to APs
and satisfying the capacity constraints. Such an optimization
problem can be considered as a capacitated location allocation

problem [21]–[24] and more specifically as a capacitated p-
median type problem [24].

In a p-median problem typically the Euclidean distance is
used. However, PACK applies the squared Euclidean distances
producing k-means type clustering with spherical-like clusters
with centralized cluster heads [25]. This results in a star-like
topology with spatially centralized edge servers for both dense
and sparse areas, contributing towards better proximity, i.e.
QoS, particularly in the remote APs. Thus, the approach can
actually be considered as a capacitated k-means clustering,
where the cluster centers are constrained to the data points. Such
a discrete variant of k-means method is generally referred to as
a k-medoid method [26]. Given a data set of n APs, let xi be the
coordinates a for AP i and wi the corresponding workload. In
practice, workload wi is determined by the maximum amount
of simultaneous users in AP i.

Let us denote by cj , j = 1, 2, ..., k, the coordinates for k
edge servers and by yij the membership of AP i to the edge
server j.

Our aim is to optimize the locations of the servers and the
allocations of the APs by minimizing the squared Euclidean
distance between the edge servers and the APs they cater,
weighted by the workload of each AP, while taking into
consideration the capacity constraints of each server.

More specifically, the objective function to be minimized is

argmin
cj ,yij

n∑
i=1

k∑
j=1

wi||xi − cj ||2yij . (1)

The optimization is carried out with the following constraints:

cj ∈ {x1, x2, . . . , xn} ∀j, (2)

yij ∈ {0, 1} ∀i, j, (3)

k∑
j=1

yij = 1 ∀i, (4)

L ≤
n∑
i=1

wiyij ≤ U ∀j. (5)

These constraints correspond to the following assumptions:
An edge server must be co-located with an AP (2), each AP
is connected to exactly one edge server (3), (4), and the total
workload of the APs connected to one edge server can be
uniformly distributed between a lower (L) and an upper (U)
limit (5).

The optimization problem is NP-hard, calling for approx-
imate solutions. PACK [14] is an iterative block-coordinate
descent algorithm, detailed in Alg. 1, consisting of two main
steps: the allocation-step on line 4 and the location-step on line
5. PACK iterates these two steps until the locations of edge
servers cj do not change. However, this type of iteration does
not guarantee that the result is the global minimum. Therefore
PACK runs with N initial values for the server locations, which



Algorithm 1 PACK-algorithm [14]
Input: xi, wi, k,N
Output: Edge server locations c∗j and allocations
y∗ij , j = 1, . . . , k

1: for i = 1 to N do
2: Initialize cj , j = 1, 2, . . . , k using k-means++
3: while cj changes do
4: Allocation-step: minimize (1) with respect to yij
5: Location-step: minimize (1) with respect to cj
6: S ← the value of the objective function
7: end while
8: if S < Smin or i = 1 then
9: Smin ← S

10: c∗j ← cj
11: y∗ij ← yij
12: end if
13: end for
14: return c∗j , y

∗
ij

are obtained using the k-means++ algorithm [27], and selects
the placement obtained with iteration with the best objective
function value.

B. Scaling PACK

We modify the PACK algorithm to support adding new
servers for an existing server network. Consider a deployment
where k1 servers c1, . . . , ck1 are previously placed and the
aim is to optimally place k2 more servers ck1+1, . . . , ck1+k2 .
The placement is optimized by minimizing (1) with respect to
ck1+1, . . . , ck1+k2 and yijall ∀ i = 1, . . . , n, jall = 1, . . . , k1 +
k2, assuming c1, . . . , ck1 fixed. In practice, this means that in
Alg. 1, while the allocation step must still consider all APs,
the location step should update only the locations of the new
servers. The new, scaling PACK algorithm (sPACK) is detailed
in Alg. 2.

C. Selection of the number of servers

We select the number of additional servers based on the
elbow method, often used in clustering analysis for selecting
the optimal number of clusters [28]. In the elbow method,
a curve, referred here as cost-effectiveness curve, is drawn
with the number of clusters in the horizontal axis and the
minimum of the objective function in the vertical axis. The
number of clusters is then selected visually as the ”elbow”
where increasing the number of clusters does not appear to
produce considerable decrease in the value of the objective
function.

D. Measuring the Quality of Service

Following multiple other studies [14], [16]–[18], [20], we
measure QoS by proximity, i.e. the Euclidean distances between

Algorithm 2 sPACK-algorithm
Input: xi, wi, k1, k2, N, cjold , jold = 1, . . . , k1
Output: New allocations for all edge servers y∗ijall

, with jall =
1, . . . , k1 + k2, and locations for the new servers c∗jnew

, where
jnew = k1, . . . , k2

1: for i = 1 to N do
2: Initialize cjnew using k-means++
3: while cjnew changes do
4: Allocation-step: minimize (1) with respect to yijall

5: Location-step: minimize (1) with respect to cjnew

6: S ← the value of the objective function
7: end while
8: if S < Smin or i = 1 then
9: Smin ← S

10: c∗jnew
← cjnew

11: y∗ijall
← yijall

12: end if
13: end for
14: return c∗jnew

, y∗ijall

the APs and their allocated edge servers. The average AP
distance, weighted by the workload, is

Mean =
1

W

n∑
i=1

k∑
j=1

wi||xi − c∗j ||y∗ij ,

where W =
∑n
i=1 wi corresponds to the total workload of all

the studied APs.
Further, following our previous work [14], we take a closer

look at the proximity distributions by the sample quantiles
qα that measure the distance within which α proportion of
the workload is from the associated edge server. Accordingly,
selecting α close to 1 evaluates the worst case QoS, whereas
α = 0.5 corresponds to the median QoS. The quantiles qα can
be obtained by solving F (qα) = α, where F is the empirical
cumulative distribution function of the workload.

IV. EVALUATION

A. Data

We test our methods with a real-world Wi-Fi network data set,
collected from the PanOULU public network access points (AP)
in the city of Oulu, Finland, in 2007–2015 [29]. The raw data
contains the timestamps, durations and source identifications
of all the connections to the APs during the observation period.
Following our earlier work [14], we use only 2014 data, the
last full year in the data set. The number of individual Wi-Fi
connections that year was 257,552,871 on 450 active access
points (AP). The PanOULU APs are shown in Fig. 1.

Each connected user is assumed to introduce a workload
of one to an AP and the edge server that AP is connected
to. The number of concurrently connected users for one busy
AP of a local polytechnic on the first week of September is
depicted in Fig. 2. To make sure the edge servers have capacity
for even the peak hours, we choose the highest number of



Fig. 1: Locations of the PanOULU access points.
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Fig. 2: Connected users on the first week of Sept. 2014 at one of
the panOULU access points.

concurrent users in 2014 for each AP as the relative workload
the APs introduce on the edge server. Fig. 3 shows that the AP
workloads are distributed roughly exponentially, with a small
number of high workloads and a fat tail of low workloads.

Fig. 3: Workload of the PanOULU access points.

B. Scenarios

We evaluate the proposed method in three scenarios. In two
of the scenarios, there is an existing deployment of edge servers,
which is subsequently grown using the proposed method to
find the number of new edge servers to deploy, as well as their

placements. These are compared to a reference scenario which
places all servers and allocates their APs optimally, without
an intermediate scaling step. The scenarios are described in
detail below and summarized in Table I.

TABLE I: EVALUATION SCENARIOS.

Scenario Existing New Capacity

Reference 0 15—25 [300,600]
Small 5 10—20 [300,600]
Large 15 0—10 [300,600]

1) Reference deployment: The reference deployment starts
from a clean slate. 15–25 edge servers are placed and their
AP allocations set using the method proposed in our earlier
work [14]. The capacity ranges for edge servers are chosen
to be [300,600] to accommodate the workloads of the AP
allocations in the range of edge servers: the more edge servers,
the fewer APs need to be allocated to each edge server, and
the smaller their combined workloads. The center point in
the capacity range, 450, divides the total workload of all APs
evenly between 20 edge servers.

2) Small deployment: The first scaling scenario assumes
there are five deployed edge servers. This corresponds to a
small-scale testing deployment in strategic locations, such as
the operator R&D center or a university, which is then extended
towards a commercial service. In this scenario, further, the
operator is assumed to have a flexible budget to add 10 to
20 new edge servers. The capacities are set identical to the
reference scenario.

3) Large deployment: The second scenario assumes a setup
of 15 existing edge servers, placed in optimal locations using
the method proposed by Lähderanta et al. [14], and there
are potentially 0–10 new ones to deploy. This corresponds to
a business-as-usual scenario where the operator periodically
checks if edge application user QoS could be improved by
new edge server deployments. The existing deployment as
well as the range of new servers to add in the Large scenario
are chosen to reflect the other two scenarios to make them
comparable.

C. Results

For the Small Deployment, with 5 edge servers placed by a
domain expert, the cost-effectiveness curve in Fig. 4 shows an
elbow at the midpoint of 15 added servers. The resulting APs
and their allocated edge servers are depicted in panel (a) of
Fig. 5, with the fixed edge servers shown as asterisks, the new
servers as X’s, and the APs allocated to particular server all
colored identically within a convex hull.

For the Large Deployment, with 15 existing edge servers
placed in optimal locations, the cost-effectiveness curve sug-
gests deploying 5 extra servers. These were placed as indicated
in the right panel of Fig. 5.

Table II demonstrates how the QoS measures differ between
the scenarios and a reference deployment of 20 optimally
placed edge servers. The reference scenario, as expected, gives
the best objective function minimum and QoS on all the



(a) Small deployment (5 + [10, 20] edge servers)

(b) Large deployment (15 + [0, 10] edge servers)

(c) Reference deployment ([15, 25] edge servers)

Fig. 4: Cost-effectiveness curves of Small, Large and Reference
deployment scenarios.

measures. The Small deployment scenario performs better than
the Large deployment scenario in terms of the objective function
minimum. However, in terms of QoS, the Small deployment
scenario excels in mean proximity as well as in the 75%
quantile, while the Large scenario has better 25% quantile,
median and worst case behavior, those being equal or nearly-
equal to the reference.

TABLE II: EVALUTION RESULTS FOR THE THREE SCENARIOS.

Proximity (km)

Scenario Obj. function Mean 25% 50% 75% 95%

Reference 15.2e+06 0.556 0.05 0.29 0.65 2.10
Small 15.7e+06 0.571 0.11 0.31 0.62 2.14
Large 15.9e+06 0.593 0.05 0.29 0.75 2.11

V. DISCUSSION

We compared the scaled Small and Large deployment
scenarios with the reference scenario which had no scaling.
The Small deployment scenario turned out to be close to
the reference scenario in terms of the objective function and
the mean proximity, whereas the Large deployment scenario
produced inferior results. However, the results are highly

dependent on the placement of the initial edge servers before
scaling. Indeed, the initial placement affects the placement of
new servers. In this case, both of the scaling scenarios had a
small number of servers placed non-optimally, which overall
causes worse QoS than in the reference scenario.

For all the scenarios, the total number of servers turned out
to be 20, with the number of new servers at the midpoint of
the budget range. This is unsurprising considering the capacity
limits in the scenarios: the midpoint of the capacity range was
450, and the total workload of all AP’s divided by 450 is 20.
Indeed, in clustering, the objective function typically decreases
while the number of clusters (here edge servers) is increased.
However, as we apply both the lower and the upper limits to
the capacity, increasing the number of servers may not always
decrease the objective function: if a high number of servers
is placed, the algorithm has to make spatial compromises for
fulfilling the lower capacity limit, leading to higher (i.e. worse)
objective function values. Similarly, if a low number of servers
is placed, obeying the upper capacity limit is difficult. Due to
these effects, the elbow approach actually appears to have a
tendency to favor the number of servers that divides the whole
workload to the midpoint of the capacity limits.

Scaling up the deployments occasionally produces allocations
which overlap spatially. For example, in Fig. 5, both the
Small and Large deployments have an edge server from the
original deployment (marked with an asterisk) within the north-
easternmost cluster, with some of the nearby APs allocated to
another edge server (marked with an X). Such deployments
are not obvious and are less likely to occur when a domain
expert is placing the servers, and speak in favor of the proposed
method.

On the other hand, spatial overlap seems to occur due to
mistakes made in the original placement. Indeed, in Fig. 7 (a)
and (b), the red boxes illustrate how the edge server placed in
the original deployment is different from the optimal placement
in the reference scenario. In such cases, comparing with the
reference, the network operator could consider the replacement
of some of the original edge servers to further improve QoS.

Typically in the edge server placement literature, the servers
are co-located with APs. However, omitting this constraint
(2) may provide valuable information about new candidate
places where APs may be located. The domain expert could
then detect, close to these optimal locations, new candidate
places where a new server could be set. Then the algorithm
could be re-run with the co-location constraint (2) with the
newly discovered places added to the candidate places, and
the QoS improvement considered. This procedure resembles
the approach taken by Yin et al. [19].

Overall, both scenarios appeared to produce relatively
good QoS compared to the reference scenario. The proposed
algorithm works well both in a case where a small pilot
deployment is extended to an extensive server network, and in
a case where an existing server network is further expanded.

Further, the proposed algorithm provides an important tool
for domain experts to design and analyze different solutions
for edge server deployments. This is illustrated by Fig. 7,



(a) Small deployment (5 + 15 servers). (b) Large deployment (15 + 5 servers).

Fig. 5: Edge server placements and AP allocations with the Small and Large deployment scenarios.

Fig. 6: Edge server placement for Reference deployment (20 servers).

showing the scaled-up Small and Large deployments compared
with the edge server placements of the reference deployments.
Such information is important for making placement decisions
in-situ.

VI. CONCLUSION

Edge server deployments need to scale up along the growth
of edge application usage. In this paper, we presented a novel
method for finding the optimal number of new servers to add,
their optimal locations, as well as the optimal allocations of
the access points for both the old and the new edge servers.
We evaluated the method with a real-world data set of Wi-Fi
access logs, comparing two example scenarios to a reference
setup.

The evaluation showed that the proposed method is stable
in city-wide placement scenarios with small and large initial
edge server deployments, resulting in optimized QoS for the
network operator. As future work we will study, in particular,
the capacity constraints and their effect on the optimization
process.
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