
Device-driven On-demand Deployment of
Serverless Computing Functions

Trang Quang and Yang Peng
University of Washington Bothell, Bothell, WA 98011

{quangt3, yangpeng}@uw.edu

Abstract—Due to its merit of elasticity and scalability, server-
less computing has been accepted as a fundamental technology
block when building the edge-cloud back end of IoT systems.
Though existing edge computing frameworks such as AWS
Greengrass and Azure IoT Edge have enabled the deployment
of serverless computing functions to edge, users must manually
start the deployment process in cloud. Such a user-driven push-
model approach demands heavy user involvement, which makes
it less efficient and sometimes slow to react to dynamic changes
in IoT environments. Considering these limitations, we propose a
novel scheme that enables device-driven on-demand deployment
of serverless computing functions to edge. This solution can
allow a large number of IoT devices to utilize edge computing
resources in a more responsive and scalable manner. Extensive
evaluations have been conducted in AWS, and the obtained
performance results on both end-to-end and step-wise operation
latency demonstrated that the proposed scheme could successfully
and efficiently achieve the desired on-demand deployment with
minimal overhead in various scenarios.

I. INTRODUCTION

Recent growth in edge computing brings the power of cloud
computing to network edges, where advanced data analytics
such as machine learning inference can be performed, and
intelligent decisions can be returned to nearby IoT devices
quickly. When using edge and cloud computing technologies,
modular computing jobs (e.g., stream IoT data processing and
machine learning inference) can be programmed as serverless
computing functions such as AWS Lambda [1] and Azure
Functions [2], and execute in lightweight containers on edge
or in cloud without special configurations.

Existing edge computing frameworks such as AWS Green-
grass [3] and Azure IoT Edge [4] allows deploying server-
less computing functions from cloud to edge, but such a
deployment process is usually initiated via user’s manual
operations in cloud. Although this user-driven push-model
approach permits full control over cloud and edge resources,
it demands heavy user involvement, which makes it inefficient
and sometimes slow to react to large-scale, dynamic changes
in IoT environments. For many emerging IoT applications, in-
time deployment of the needed computing logic – serverless
computing functions to a target edge is highly desirable. This
requirement is particularly important with the trend of moving
AI from cloud to edge.

For example, people who carry cognitive assistance de-
vices [5] may need a nearby edge to help process a large
amount of multimedia data and generate safety-critical guid-
ance. The decision-making edge must be equipped with var-
ious machine learning models to handle incoming data that
varies over time, weather, and other environmental conditions.
When numerous devices are using the same edge, the edge

shall also execute personalized models. However, the lim-
itation of storage space may not allow having all needed
functions pre-loaded in anticipation of a large number of
heterogeneous devices, their generated requests, and dynamic
operating conditions. In the case of autonomous devices such
as surveillance drones, they typically continue moving over a
large area, thus possibly traversing through multiple edges. It
is difficult to accurately predict which edge these drones are
going to interact and seek computing facilitation. Hence, it is
hard to schedule and quickly deploy suitable computing tasks
to the needed edge by an administrator in a push manner.

Considering the limitation of the existing user-driven push-
model approach for deployment of serverless computing func-
tions, we propose a novel scheme that enables device-driven
on-demand deployment of serverless computing functions.
Besides improving the deployment process, this scheme also
allows IoT devices to specify where (on edge or in cloud) to
execute a requested function for efficient utilization of edge
and cloud resources given different computing requirements.
Therefore, such an innovative method can facilitate IoT de-
vices to operate in various situations with the assistance of
pervasive computing power. To achieve a responsive, scal-
able and robust solution, we need to tackle the challenges
on state synchronization between edge and cloud, automatic
configuration of communication channels, and efficient use of
edge/cloud resources during the process of development.

The proposed scheme has been implemented and evaluated
in AWS, and the performance results demonstrated that it
could successfully provide the proposed device-driven on-
demand deployment of serverless computing functions and
remote invocation of desired functions with minimal overhead.

II. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
details of the proposed device-driven on-demand deployment
scheme.

A. System Overview
The system includes three major components.
• End IoT devices. An IoT device generates data but has

limited computing power to process the data. Therefore,
some of the generated data must be processed on a con-
nected edge or in cloud. There is no direct communication
path between an IoT device and the cloud.

• Edge devices. An edge device connects IoT devices and
the cloud, and multiple IoT devices can communicate
with the same edge. Various serverless computing func-
tions run in containers on edge to perform requested



data-processing jobs, and a manager program on edge
schedules these functions.

• Cloud. The cloud can only communicate with edge nodes
directly. The source code of all available serverless com-
puting functions is stored in cloud for deployment.

Fig. 1 illustrates the system’s architecture, which aims to
leverage the state-of-the-art deployment strategies offered by
representative cloud service providers such as AWS and Azure.
In this architecture, IoT devices can initiate a new function
deployment by sending a request function to some edge node.
Upon receiving this request, the edge must first determine if
it contains the demanded function and then reaches out to
the cloud for a new deployment if none could be found on
edge. This design assumes that an IoT device has sufficient
information to decide its next course of data processing jobs,
hence triggers the deployment of missing processing logic
(functions) or invokes them at edge or cloud.

Fig. 1. Overview of system architecture

B. Function Management in Cloud
All functions for on-demand deployment or remote invoca-

tion must be stored and registered in cloud at first. To register a
function, this function’s source code package must be uploaded
to a source code repository in cloud (e.g., an S3 bucket).
An automated system process is designed to create (for the
first time) or update the corresponding function entry. At the
same time, metadata about the created/updated function is also
generated and saved in cloud for later queries of this function.
A system function (to be presented in Section II-C3) can scan
the metadata file to determine a function’s availability based
on its name and version.

C. Function Deployment to Edge
1) Deployment Processes: When an IoT device requests

for a function to be deployed to an edge node, the requested
function may or may not exist on that edge. Fig. 2 shows the
communication sequence between the IoT device, edge, and
cloud when a requested function does not exist on edge at
the point of request. In this case, the function’s availability
needs to be checked in cloud, which maintains the latest
registry information of all available functions. If the cloud
cannot identify the function, a failure message is sent to the
requesting device, and the communication ends. Otherwise,
the function’s definition, together with required invocation
methods (e.g., MQTT topics), will be added to the affected
edge group’s definition. A deployment then can be triggered
with the updated definition information.

Fig. 2. Deployment workflow for a function unavailable on edge

Fig. 3 illustrates the deployment workflow when a function
already exists on edge. In this case, the edge already has the
information of the requested function (i.e., its configuration
and invocation method), which is recorded in the edge group’s
definition file stored on edge locally. The invocation method
to trigger the requested function can then be returned to the
IoT device directly, and regular communication between the
requesting IoT device and edge can proceed afterward to use
the interested function.

Fig. 3. Deployment workflow for a function existing on edge

2) Edge Group Management: To effectively utilize existing
function deployment services provided by AWS Greengrass
or Azure IoT Edge, an edge must be aware of its own
group’s configuration. For each edge group, which includes
an edge node (edge core) and several connecting IoT de-
vices, a definition file such as group.json for AWS and
deployment.json for Azure exists in cloud and is used
by the corresponding cloud deployment services to manage the
deployment process. In the definition file, the list of functions
running on edge and how IoT devices, edge, and cloud services
communicate are specified. Among the configuration sections



in the definition file, Function and Subscription are the most
important ones for the proposed deployment scheme.

In our design, an edge obtains the needed information about
its edge group’s definition from cloud after each success-
ful deployment. When a deployment is requested, the edge
needs to formulate an updated group definition to include
the function under request and other related configuration
as clear messages (e.g., steps 6 and 9 in Fig. 2) and send
them to cloud. A system function in cloud will handle this
request message afterward. Any changes to an edge group’s
definition, for example, adding a new function or a new topic
subscription, results in a new definition version of the edge
group. A deployment job will be built based on such a version
number to help the deployment engine keep track of the correct
group configuration effectively.

3) Supporting System Functions for Deployment: For en-
abling the proposed deployment scheme, seven supporting sys-
tem functions (implemented as serverless computing functions
as well) are developed and deployed to edge and cloud. Along
with these functions, event routing is also configured to help
trigger corresponding communication between cloud services
and these functions correctly. Table I summarizes the locations
and triggering events of these functions.

TABLE I
SYSTEM FUNCTIONS SUPPORTING THE DEPLOYMENT PROCESS

location function name triggering event

cloud createFunction S3 put
cloud validateFunction HTTP request
cloud handleDeploymentRequest MQTT topic match
cloud performDeployment S3 put
cloud getGroupDefinition HTTP request
edge edgeCoreMonitor MQTT topic match
edge handleDeviceRequest MQTT topic match

The following five system functions run in cloud.
• createFunction. This function is responsible for

creating and updating all serverless computing functions
accessible to IoT devices. It is triggered by an S3 put
event when a function’s zip package is saved into a
specific bucket. This zip package must contain a config-
uration file that describes special settings for a function
to run in edge or cloud environment properly.

• validateFunction. This function checks if a re-
quested function is accessible to an IoT device and
executable in a specified location. If the requested
function exists and the execution condition is satisfied,
validateFunction returns a set of detailed con-
figuration information that the edge can use for future
communication and execution.

• handleDeploymentRequest. This function listens
for edge messages on a specific MQTT topic. An
edge device requests for deployment by publish-
ing its updated group definition to this topic and
handleDeploymentRequest writes the updates as
a JSON file into an S3 bucket for deployment activities.
Such a store-first-action-later strategy is to guarantee the
consistency and correctness of the deployment process.

• performDeployment. This function is triggered by
the S3 put event that is generated by the execution of
handleDeploymentRequest. A deployment process

targeting the edge group specified in the corresponding
JSON file will be initiated using cloud service provider’s
deployment engine.

• getGroupDefinition. This function returns an edge
group’s configuration with all its definitions for a specific
group and version.

Fig. 4 shows the complete flow involving the developed
supporting functions and AWS Greengrass to trigger a func-
tion deployment to edge. This process starts from the point
where an updated group definition is sent to cloud (step 1)
and completes when it signals AWS Greengrass of a new
deployment for the newly created group version (step 4). The
actual deployment of function files to edge is controlled and
managed by AWS Greengrass’s deployment engine.

Fig. 4. A deployment flow using AWS Greengrass

In addition to system functions running in cloud, the follow-
ing two system functions run on edge to support the device-
driven on-demand deployment scheme.

• edgeCoreMonitor. This is a long-lived function [3],
so that a single container can be created and maintained
throughout a group version’s life-cycle. Its main purpose
is to monitor the latest configuration of an edge group and
store a local copy of it on edge. Besides, it is responsible
for broadcasting at startup to notify all waiting IoT
devices that the edge is ready for communication after
a new deployment.

• handleDeviceRequest. This is an on-demand func-
tion [3], multiple container instances of which may be
created in response to IoT devices’ concurrent requests.
This function is the first step for handling deployment
and invocation requests from IoT devices.

D. Remote Function Execution
Besides function deployment, our design also enables re-

mote execution of a function, either on edge or in cloud, after
its successful deployment.

1) Remote Function Execution on Edge: In the current de-
sign, functions on edge can be invoked either asynchronously
or synchronously. The asynchronous invocation works for
requests that do not need return values, while the synchronous
invocation returns the results to requesting IoT devices.

To enable asynchronous invocations, a dedicated subscrip-
tion (i.e., an MQTT topic, a publisher, and a subscriber)
for the requested function must exist per the requirement of
either AWS or Azure. This requires updating an edge’s group
configuration to include the dedicated topic for each newly
added function (subscriber) and requesting device (publisher).
Differently, a system function edgeRemoteExecution
acting as a proxy can support generic invocations of other
functions on edge synchronously. Compared to asynchronous



invocations, synchronous invocations only need a common
topic linked to the proxy function. Instead of updating group
configuration for every dedicated topic, this common topic
can be set up at an early stage when an IoT device joins the
edge group. Therefore, it only incurs a one-time update of
an edge group’s definition file. Nonetheless, the asynchronous
invocation has the benefit of being less resource-demanding
compared to the synchronous case, since it only triggers one
dedicated function. Besides, it is more suitable to execute long-
latency data-intensive processing functions in a decoupled
manner and the scenarios where devices may not care about
the result.

Fig. 5 presents a closer look at the different handling meth-
ods to support the asynchronous and synchronous invocation
of a requested function on edge. At the first stage (step 1 –
3), topics for both synchronous and asynchronous invocations
are returned to a requesting device if the requested function
already exists on edge. Later, when a device invokes the func-
tion, the synchronous invocation will return execution results
to the requesting device, while the asynchronous invocation
will discard the execution results if there are any.

Fig. 5. Invoking a remote function on edge

2) Remote Function Execution in Cloud: When a device
requests a function to utilize specific resources in cloud, a
communication channel between the device and cloud shall
be established. With the assumption that IoT devices would
have a better connection with nearby edge nodes, a proxy
function runs on edge to forward requests and responses
between IoT devices and requested functions in cloud. For
the requirement of receiving results from the invoked function,
we choose to use HTTP as the triggering method of remote
functions in cloud. The reason for selecting HTTP over MQTT
is twofold. First, the message exchanging via MQTT requires
mandatory two-way subscriptions between the proxy function
on edge (i.e., edgeRemoteExecution) and the functions
in cloud. Besides, the proxy function in cloud must include the
additional logic of publishing results back to the response topic
on edge when using MQTT. Second, the connection between
cloud and edge is more stable than that between edge and
device, and MQTT’s benefit on tolerance of disconnectivity
between communicating entities is less valuable in this case.

3) Supporting System Functions for Remote Function Ex-
ecution: Two supporting system functions are respectively
deployed to edge and cloud as proxy functions to enable the
remote execution of functions.

• edgeRemoteExecution. This function is configured
as an on-demand function running on edge. Upon receiv-
ing IoT device’s invocation requests through MQTT, it
triggers synchronous execution of a requested function,
either on edge or in cloud.

• cloudRemoteExecution. This function resides in
cloud and is triggered by HTTP request events, after
which it invokes the requested function synchronously.

III. PERFORMANCE EVALUATION

The proposed scheme has been implemented and evaluated
in AWS. Since the design is to support IoT devices’ real-
time computing needs, we primarily evaluated the proposed
scheme’s performance on latency. All the results shown in
this section were obtained over 10 experiment trials, and the
unit is in seconds in all the tables shown in this section.

A. Experiment Setup

Both edge and IoT devices were set up to run on EC2
instances (t2.micro) under the availability zone US West (Ore-
gon). This setup is to minimize the network latency between
device, edge, and cloud services when evaluating the actual
latency overhead introduced by the proposed scheme. The
edge operated on AWS Greengrass Core runtime version 1.7.1,
and its Lambda functions were created with Core SDK version
1.3.0. IoT devices ran in AWS IoT SDK version 1.3.1 for
communicating with the AWS Greengrass Core device.

B. Evaluation Results for Supporting System Functions

We first evaluated the processing latency of each system
function running in cloud, and Table II shows the obtained
performance results. The maximum and minimum latency
values reflect the performance with and without cold-start
effects, respectively.

TABLE II
PROCESSING TIME OF SYSTEM FUNCTIONS IN CLOUD

function name min max avg. std.
createFunction 2.044 2.563 2.189 0.124
validateFunction 0.056 0.636 0.328 0.140
handleDeploymentRequest 0.226 0.523 0.355 0.058
performDeployment 0.675 1.841 1.408 0.241
getGroupDefinition 0.468 1.346 0.698 0.176

From Table II, we can find that the processing latency
introduced by three of the supporting system functions is
within 1 s. However, createFunction needs to read and
write S3 buckets and register a function using AWS Lambda’s
framework. As reported in literature [6], the interaction latency
with serverless storage typically takes a longer time. Though
createFunction may take over 2 s to complete, it is
only triggered when a user uploads a new function. The
latency of performDeployment is primarily introduced by
AWS’s deployment engine, whose performance will be further
revealed in the next section.



C. Evaluation Results for The End-to-End Process of Function
Deployment

When measuring the latency of the end-to-end deployment
process, the following two typical scenarios are considered.

• Case 1. The requested function is available on edge.
• Case 2. The requested function is not yet on edge.
In case 1, the latency includes the device-edge commu-

nication latency through MQTT and the invocation latency
of handleDeviceRequest on edge. Table III shows
the evaluation results with and without the effect of cold
start. From the result, we can tell that supporting function
handleDeviceRequest, as the most frequently used func-
tion in the system, only introduces less than 10 ms delay when
it is invoked in warm-start (i.e., frequent usage).

TABLE III
FUNCTION DEPLOYMENT LATENCY FOR CASE 1

case # cold-start min max avg. std.
1 1 0.386 1.040 0.684 0.292
1 0 0.007 0.007 0.007 0.0001

In case 2, the deployment process can be further divided
into two stages. In stage-I (step 1–7 in Fig. 2), an IoT
device’s request triggers handleDeviceRequest on edge
via MQTT, which further triggers validateFunction
in cloud via HTTP. In stage-II (step 8–14 in Fig. 2),
handleDeviceRequest on edge is triggered again when
an IoT device confirms its request, and the actual deployment
process happens afterward. Table IV shows the evaluation
results for these two stages.

TABLE IV
FUNCTION DEPLOYMENT LATENCY FOR CASE 2

case stage # cold-start min max avg. std.
2 I 2 1.316 2.006 1.671 0.226
2 I 1 0.765 1.017 0.886 0.091
2 I 0 0.073 0.270 0.183 0.086
2 II 0 30.409 37.708 32.588 2.400

It is easy to identify the significant latency in stage-II; thus,
we conducted a further evaluation and comprehensive analysis
of this stage to understand what contributed to the considerable
latency value. In the evaluation, we excluded the network
latency between device and edge and the processing latency
of handleDeviceRequest on edge, which is minimal
according to the results shown in Table III.

Based on our analysis, the operation in the rest of stage-II
can be divided into the following three steps.

• Pre-deployment. This process starts from the time
when edge notifies cloud of a new deployment
(invoking handleDeploymentRequest and
performDeployment) to the time when AWS
Greengrass executes the deployment (calling AWS
Greengrass’s create_deployment API). This
process takes about 6.78 s on average, out of which the
processing latency of handleDeploymentRequest
and performDeployment is about 1.76 s together.

• Actual-deployment. In this step, edge receives the func-
tion files from cloud, configures communication chan-
nels on edge, and restarts edge manager and all resid-
ing serverless computing functions. This process, which
heavily relies on AWS Greengrass’s design, takes about
24.21 s on average.

• Post-deployment. After the actual-deployment process,
edge retrieves the latest group definition via invoking
getGroupDefinition, and it takes less than 1 s.

It is thus clear that AWS Greengrass contributes the most to
the overall deployment latency (about 30 s on average). Still,
our design only introduces minimal additional processing time
(less than 3 s on average). Based on this result, it is imperative
to consider combining multiple deployment requests within a
reasonable time window such that the edge downtime can be
reduced, and so does the overall deployment latency.

D. Evaluation Results for The End-to-End Process of Func-
tion Invocation

When evaluating the end-to-end latency for invoking func-
tions remotely, we implemented two test functions edgeTest
and cloudTest, which share the same simple logic. This
way, the processing latency caused by code logic can be
minimal. The following two scenarios are considered.

• Case 3. IoT device invokes a function on edge.
• Case 4. IoT device invokes a function in cloud.
In case 3, the end-to-end latency includes both com-

munication latency through MQTT and the invocation la-
tency of edgeRemoteExecution and edgeTest on
edge. In case 4, the end-to-end latency includes commu-
nication latency through MQTT, the invocation latency of
edgeRemoteExecution, communication latency through
HTTP, invocation latency of cloudRemoteExecution and
cloudTest in cloud. From the evaluation results shown in
Table V, we can tell that the usage of a proxy function, on
edge and in cloud, introduces insignificant additional latency.

TABLE V
FUNCTION INVOCATION LATENCY

case # cold-start min max avg. std.
3 2 1.409 1.587 1.526 0.052
3 0 0.011 0.0162 0.012 0.001
4 3 0.774 0.926 0.854 0.050
4 0 0.055 0.150 0.074 0.028

E. Summary of Performance Evaluation

The evaluation results demonstrated that the proposed de-
sign introduces minimal delay to the end-to-end function
deployment or invocation. However, the utilized AWS services
such as S3, Lambda Framework, and deployment engine
contributes a major portion of the overall delay. It is thus
necessary to explore alternative solutions to further improve
the performance of the on-demand deployment process.

IV. RELATED WORK

Recently, serverless computing has drawn considerable
attention within both industrial and research communities.
Among many applications that can be supported by serverless
computing, IoT has been identified as a suitable use case
in survey literature on serverless framework [7] and fog
computing [8]. Because serverless computing depends on a
cloud provider’s internal controls, such as load balancing,
many research studies have explored various directions aiming
to reduce the overall latency when using serverless computing.
Among them, there are container or process migration schemes
[9], [10], middleware to support orchestration of computing



resources [11], automated management of resource pool and
optimal placement of serverless functions [12].

Identified as one of the system level challenges in serverless
computing [13], the cold-start problem poses a significant risk
in the performance of these serverless systems in latency-
sensitive applications. The most straightforward approach to
address this problem is keeping the container warm or ready
when the event is dispatched for the next invocation. This is
illustrated as frequent function pinging suggested [14], in a
notable open-source serverless project Zappa [15] or a pool of
warm containers as proposed by [16]. There have been many
researchers attempting to quantify/evaluate the performance of
serverless functions in cold-start vs. warm-start execution [14].

Specifically, to mobile devices and offloading issues, many
studies performed an extensive evaluation of stringent latency-
constraint applications following the Mobile Edge Computing
model [17], [18]. Among these, Cicconetti et al. [19] took an
approach similar to our project in the sense of using devices
other than edge and cloud to coordinate the serverless func-
tion execution. However, their approach emphasized efficient
request routing via networking devices operating in different
network topologies, while our project focuses on supporting
IoT devices’ real-time needs in general. Their similarity to our
project is the recognition of the limitation when a traditional
locally centralized entity could not optimally/responsively
dispatch (or deploy) tasks to a set of executors. However, they
used networking devices as main drivers of the orchestration
process where fast-changing load and network conditions
can be gauged/detected on participating edge nodes. Pinto et
al. [20] proposed a similar solution where a proxy package,
which was distributed at the fog layer (a local network of IoT
devices), intercepted requests from IoT devices to determine
the best route to forward those requests. The difference is in
their design of using the proxy package to decide on where
functions should be executed, as compared to our approach of
allowing IoT devices to specify the location.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the design and implementation
of a device-driven on-demand scheme to deploy serverless
computing functions to edge. Compared to the current user-
driven push-model deployment method offered by major cloud
service providers, this new approach avoids the user’s heavy
involvement in the deployment process and enables edge
and IoT devices to react to dynamic environment changes
promptly. It is anticipated that various emerging IoT systems,
such as personal cognitive assistance and autonomous drones,
can benefit from this scheme to utilize pervasive computing
power in real-time needs. Extensive evaluations have been
conducted in AWS, and the performance results for both end-
to-end and step-wise operation latency demonstrated that the
proposed scheme could successfully and efficiently enable the
desired on-demand deployment and invocation with minimal
overhead in various scenarios.

The current implementation is fully based on the AWS
technology stack, which suffers the vendor lock-in problem. In
the future, Azure IoT Edge and other Azure technologies can
be integrated into the on-demand deployment scheme. An IoT
device thus can not only select what functions to deploy and

run, but also decide which provider’s resources to use for both
performance and data security considerations. Furthermore, we
will also investigate strategies that can aggregate multiple de-
ployment requests arriving at the same time window and thus
save the deployment latency on average. Another important
direction for future work is to avoid the service interruption
when deploying new functions, and we plan to develop new
schemes for swapping services between edges and/or clouds.

REFERENCES

[1] AWS, “What Is AWS Lambda? - AWS Lambda,” https://docs.aws.
amazon.com/lambda/latest/dg/welcome.html, (Accessed: 10-15-2019).

[2] Micorsoft, “Azure functions documentation,” https://docs.microsoft.com/
en-us/azure/azure-functions, (Accessed: 10-15-2019).

[3] AWS, “What Is AWS Greengrass? - AWS Greengrass,” https://docs.
aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html,
(Accessed: 10-15-2019).

[4] Microsoft, “What is Azure IoT Edge,” https://docs.microsoft.com/en-us/
azure/iot-edge/about-iot-edge, (Accessed: 10-15-2019).

[5] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
internet of things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439–449, Feb 2018.

[6] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar, J. E. Gonzalez,
R. A. Popa, I. Stoica, and D. A. Patterson, “Cloud programming
simplified: A berkeley view on serverless computing,” arXiv:1902.03383
[CoRR], 2019.

[7] H. Lee, K. Satyam, and G. Fox, “Evaluation of Production Serverless
Computing Environments,” in IEEE 11th International Conference on
Cloud Computing, 2018, pp. 442–450.

[8] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira,
M. Curado, L. Villas, L. DaSilva, C. Lee, and O. Rana, “The internet of
things, fog and cloud continuum: Integration and challenges,” Elsevier
Internet of Things, vol. 3-4, pp. 134 – 155, 2018.

[9] M. Horii, Y. Kojima, and K. Fukuda, “Stateful process migration for
edge computing applications,” in IEEE Wireless Communications and
Networking Conference, 2018, pp. 1–6.

[10] P. Karhula, J. Janak, and H. Schulzrinne, “Checkpointing and Migration
of IoT Edge Functions,” in ACM 2nd International Workshop on Edge
Systems, Analytics and Networking, 2019, pp. 60–65.

[11] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen,
“Orchestration of Microservices for IoT Using Docker and Edge Com-
puting,” IEEE Communications Magazine, vol. 56, no. 9, pp. 118–123,
Sep. 2018.

[12] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, “A Serverless
Real-Time Data Analytics Platform for Edge Computing,” IEEE Internet
Computing, vol. 21, no. 4, pp. 64–71, 2017.

[13] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
“Serverless computing: Current trends and open problems,” in Research
Advances in Cloud Computing, S. Chaudhary, G. Somani, and R. Buyya,
Eds. Springer Singapore, Dec. 2017, pp. 1–20.

[14] D. Bardsley, L. Ryan, and J. Howard, “Serverless Performance and
Optimization Strategies,” in IEEE International Conference on Smart
Cloud, 2018, pp. 19–26.

[15] R. Jones, “Serverless Python. Contribute to Miserlou/Zappa development
by creating an account on GitHub,” https://github.com/Miserlou/Zappa,
(Accessed: 10-15-2019).

[16] P.-M. Lin and A. Glikson, “Mitigating Cold Starts in Serverless Plat-
forms: A Pool-Based Approach,” arXiv:1903.12221 [cs], 2019.

[17] S. Maheshwari, D. Raychaudhuri, I. Seskar, and F. Bronzino, “Scala-
bility and Performance Evaluation of Edge Cloud Systems for Latency
Constrained Applications,” in IEEE/ACM Symposium on Edge Comput-
ing, 2018, pp. 286–299.

[18] X. Zhang, H. Huang, H. Yin, D. O. Wu, G. Min, and Z. Ma, “Resource
provisioning in the edge for iot applications with multilevel services,”
IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4262–4271, 2019.

[19] C. Cicconetti, M. Conti, and A. Passarella, “An Architectural Framework
for Serverless Edge Computing: Design and Emulation Tools,” in IEEE
International Conference on Cloud Computing Technology and Science,
2018, pp. 48–55.

[20] D. Pinto, J. P. Dias, and H. S. Ferreira, “Dynamic Allocation of
Serverless Functions in IoT Environments,” in IEEE 16th International
Conference on Embedded and Ubiquitous Computing, 2018, pp. 1–8.


