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Abstract—Detecting social interactions among people repre-
sents a challenging task. In this study we evaluate the perfor-
mance of the ReD-HuP algorithm. We study a real-world and
useful experimental dataset and we provide a comparison with
some classification methods. Interactions are inferred from co-
location of people by exploiting Bluetooth Low Energy (BLE)
beacons. Our analysis investigates how the different transmission
powers affect the overall performance, we also analyze the results
by varying the width of the time window used to analyze BLE
beacons. Results obtained with the ReD-HuP algorithm have been
compared against two well known and wide adopted machine
learning classification methods.

Keywords-Social Interactions, Bluetooth Low Energy, Proxim-
ity

I. INTRODUCTION

The possibility of monitoring interactions among people
is increased with the adoption of unobtrusive sensing units
able to sense the environment. With the term interaction, we
refer to the all-human tendency of establishing social ties with
others. The nature of a tie varies according to the multiple
factors, e.g. friends, colleagues or couples are all engaged
in different kinds of ties. Moreover, the strength of a tie is,
commonly, determined by a combination of several markers,
as reported in [1]. Among them, we cite the duration, the
intimacy and the emotional intensity, all of them determine
the strength of such interaction.

Being able to detect and to study the evolution of the social
interactions among people is a challenging task. The typical
tools adopted for such task include questionnaires, diaries
or interviews that subjects monitored are asked to fill. The
information collected, in turn, are analyzed by experts in order
to detect and to study several features of the interactions.
Such tools provide an essential source of information, but
we consider that the recent sensing technologies can extend
the accuracy and the acceptability in this research domain.
In particular, we experienced with the use BLE beacons in
order to detect interactions among people. We rely on the
observation that co-location of people can be used as ”proxy”
for a face-to-face social interaction, as discussed in [2].

In this work, we analyze the performance of the ReD-HuP
(Remote Detection of Human Proximity) algorithm originally
presented in [3] by using a real-world dataset that reproduces
social interactions indoor at realistic conditions [4]. ReD-HuP
is a distributed algorithm running on multiple stations, each of
which collects and analyzes the BLE beacons emitted by tags.

Differently from existing some notable solutions for detecting
social interactions [5], [6], [7], nodes running the ReD-HuP
algorithm detect an interaction by only listening for beacons
emitted by wearable tags. Therefore, the user’s devices are not
used to analyze the proximity with another users, rather they
are only used to emit a signal. The fixed wireless receivers,
deployed in the environment, are designated to declare if a
social interaction occurs.

ReD-HuP has been originally tested with small but signif-
icant dataset, we now aim at further testing its performance
with a more challenging set of scenarios and to compare the
results obtained with some classification methods. Differently
from our previous work, the ReD-HuP is used with BLE
beacons collected at different powers of emission, raging from
-18dBm, +6dBm and +3dBm and by considering more com-
plex patterns of interactions. More specifically, we test ReD-
HuP with dyads interacting while resting and walking indoor.
Moreover, we also further explore how the width of the time
window used to collect BLE beacons affects the overall results.
We measure the accuracy of ReD-HuP in detecting social
interactions and we compare the results against the Logistic
Regression and Random Forest classification methods. In all
the tested scenarios, we observe that ReD-HuP obtains values
of the accuracy always comparable and higher with respect
to the selected classifiers, shewing a robustness the solution
proposed but without the need of a traditional training.

The current literature reports several works addressing the
problem of automatically detecting social interactions with
sensing devices. Some relevant works are based on the use of
infrared radio communications and in particular of the use of
smart badges as done in [8], [9]. In such works, the hardware
adopted relies on a badge emitting RFID sensors and on a
receiving device. The emitter sends signals in a range of 1 to
1.5 meters, while the receiver is, commonly, installed on the
environment (e.g. on the ceiling). The Copenhagen Networks
Study [10], [11] is an interesting project aimed at studying the
social interactions of people by means of data collected with a
mobile app for smartphone. The application captures multiple
signals, including WiFi and Bluetooth scans. More recently,
authors of [5] adopt BLE Beacons to infer friendships ties
among people. The authors deploy a number of beacons indoor
and they exploit some context information in order to classify
interactions along the time. Finally, authors of [12], [13], [14]
use commercial mobile devices to detect interactions among
people. More specifically, in [12] authors use Android Wear



and Tizen smartwatches and they present results related to
the use of BLE advertising and scan operations implemented
on a customized device (developed by the authors) and on
two commercial smartwatches. Whereas, the proposed solution
exploits the natural feature of the wearable device of emitting
beacons. In this way, no specialized hardware is necessary.
Moreover, the proposed solution is also energy preserving
from the point of view of wearable devices, since the only
requirement is to emit and not receive beacons like in all the
referenced works.

The rest of the paper is structured as follows. Section II
describes the ReD-HuP algorithm Section II-A and the dataset
used Section II-B. Finally, Section III provides the experimen-
tal results with a comprehensive comparison between ReD-
HuP and two other classification methods.

II. THE EXPERIMENTAL SETTINGS

A. The ReD-HuP Algorithm
The ReD-HuP algorithm [3] is designed to detect social

interactions among people by detecting their proximity with
a voting strategy. The algorithm is based on the analysis of
the RSSI (Received Signal Strength Indicator) estimated by the
receiving devices. RSSI is basically a measurement of a power
expressed in decibel-milliwatts (dBm) and it can be correlated
with the distance between the transmitter and the receiver [15].
A social interaction happens if a dyad lies for a certain period
at a relative short distance, that we estimate in the range 0.5 to
1.5 meters. Such range is defined according to the definition
of social distances proposed by [16]. In real-wold settings, the
RSSI varies according to multiple factors. Among them, we
cite the human’s body orientation, the presence of other people
in the nearby, any physical obstacle in between the emitting
and the receiving device as well as the interference caused
by other radio interfaces. However, as a general rule, we can
consider that the higher the RSSI the closer the emitting and
receiving device. ReD-HuP is a distributed algorithm running
on multiple receiving devices. We refer to such devices with
the term anchor. Each anchor collects beacons and it analyzes
the beacon’s RSSI on demand, in order to asses the presence
or absence of an interaction between a pair of users. Users
are supposed to wear a BLE tag emitting beacons at fixed rate
with a certain power of emission. More precisely, ReD-HuP
is based on a voting strategy, With the term voting, we refer
to a collaborative process through which all the anchors are
asked to vote for the presence or absence of an interaction.

The algorithm is characterized by two phases. Firstly, given
the dyad (i, j) each anchor analyzes the beacon’s RSSI emitted
by tags of users (i, j). The analysis resulting from each station
allows to vote for (i, j): 1 for the presence of the interaction,
-1 for absence of the interaction or 0 if the anchor is not able
to provide a result. Secondly, all the votes provided by the
anchors are combined together in order to produce the final
output. Basically, ReD-HuP performs the sum of all the votes:

• if the sum results greater than 0, then the majority of
the anchors voted for the interaction. In this case, the
ReD-HuP detects an interaction for (i, j);

• if the sum results less than 0, then ReD-HuP detects
absence of an interaction for (i, j);

• if the sum is equal to 0 than the majority of the anchors
is not able to provide a final vote. In this case, ReD-
HuP gives priority to the anchor with an higher channel
stability. This last case is introduced in order to allow the
anchor with the highest quality to provide the final result
for (i, j).

In order to produce a vote, the beacon’s RSSI are analyzed
by each anchor by collecting sequences of beacons in a time
window of duration τ . Each anchor also sets two thresholds,
namely σRSSI and ∆RSSI . σRSSI is expressed in dBm and
it is used in order to exclude those anchors listening beacons
with RSSI lower than a threshold. In other words, an anchor
returns a vote only if it listens for beacons with a certain
quality. The ∆RSSI value is used in order to decide if dyad
is interacting or not. ∆RSSI measures the absolute value
of the difference between the mean values of RSSI of the
dyad (i, j). In particular, anchor x records beacons emitted
by i and j, if the difference between the mean value of i’s
beacons and j’s beacons is lower than ∆RSSI , than the dyad
(i, j) close enough to interact. In other words, increasing
the ∆RSSI value, the range defined in [16] to identify the
social interaction increases. At the end of the two phases,
ReD-HuP is able to estimate the time intervals during all the
dyads interact. A more detailed description of the ReD-HuP
algorithm can be found in [3].

B. The Dataset in Brief

We are interested in assessing the performance of the ReD-
HuP algorithm with a real-world dataset reproducing social
interactions in an indoor environment at realistic conditions.
To this purpose, we adopt the dataset described in [4].

The dataset is produced by using a number of stationary
anchors deployed in the environments and a set of mobile
devices. The BLE beacons are emitted and received by both
anchors and mobile devices.

The dataset has been designed by collecting RSSI data with
two orthogonal settings:

• Self Positioning: what the mobile devices collect.
• Remote Positioning: what the anchors collect.

Anchors are based on Raspberry Pi 3 platform equipped
with a programmable Bluetooth dongle, namely the BLED112
by Bluegiga. Dongles are able to advertise and to collect
beacons. The mobile receiving devices we adopted are Honor
8 by Huawei Technologies, while the mobile emitter we used
are RadBeacon Dot produced by Radius Networks. Devices
have been configured to transmit advertisements by using the
iBeacon1 protocol at the frequency of 10Hz. Three different
experimental campaigns have been performed by varying the
transmission power of the emitting devices: -18dBm, -6dBm
and +3dBm, respectively. Such variety of settings allows
to analyze the performance of the ReD-HuP algorithm at
very different conditions. Moreover, the dataset includes six

1https://developer.apple.com/ibeacon/
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Fig. 1: Map of the testing area.

TABLE I: Overview of the dataset concerning the four social
scenarios.

Session Number of Number of Duration () Collected beacons
Actors Meetings [min] -18dBm -6dBm +3dBm

1 2 1 14.1 (9) 2237 12137 21192
2 2 1 15.9 (6.6) 2046 14012 20463
3 3 3 36 (18) 9678 71041 104620
4 3 3 33 (18) 10822 63338 87349

reference scenarios designed to mimic some common patterns
of interaction among people in an indoor environment: survey,
indoor localization and four different socialization scenarios.
In total, 18 data collection campaigns have been performed
with a result of about 4 millions of beacons collected. We
show in Figure 1 the map of the indoor environment used
for all the data collection campaigns. The indoor environment
is composed of 7 contiguous rooms, a corridor and a small
adjacent area housing coffee and vending machines. The
testing spans for about 185m2 with a maximum vertical span
of approximately 16.6m and maximum horizontal span of
approximately 14.3m. The whole sensing area is covered
by 8 anchors as shown in Figure 1. For what concerns the
social interaction scenarios, four different sessions have been
performed. As reported in Table I each session varies the
number of involved actors, the number of meeting, the session
and the meeting duration, and, finally, the number of collected
RSSI values for each transmitting power. More specifically, the
four sessions have the following features:

• Session 1, S1: actor 1 moves from her workstation in
room 1070 to interact with actor 2 in room 1062. Two

actors perform a static face-to-face interactions and, at
the end, actor 1 walks back to her room.

• Session 2, S2: the same two actors carry out initially
a static standing face-to-face meeting in the coffee area
(1080). Then, they walk together through the corridor and
then they walk back to their respective rooms, 1070 and
1062 for actor 1 and 2, respectively.

• Session 3, S3: the first meeting occurs in the corridor and
it involved actor 1 and 2. Later, actor 1 walks in room
1069 in order to meet actor 3. In the meanwhile, actor 2
walks back to her office. Thirdly, actor 1 walks back to
her office and then actor 3 moves in room 1062 in order
to meet actor 2. Finally, each actor returns to their rooms,
1070, 1062 and 1069 for actor 1, 2 and 3, respectively.

• Session 4, S4: in this final session, different kinds of
meetings involving two and three actors were performed.
At first, a meeting between actor 1 and actor 2 is
performed in room 1062. Then, actor 3 joins the meet-
ing that therefore becomes an interaction between three
individuals. Afterwards, the three actors walk together in
the corridor and split up with actor 1 coming back to his
office while the other two actors go together to the coffee
area carrying out the last meeting.

The dataset also provides a ground-truth annotation, ob-
tained by annotating the starting and ending time of each of
the social interactions collected. The annotations are recorded
by the users involved with the data collection.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We now evaluate the performance of the ReD-HuP algo-
rithm (see Section II-A) with the experimental dataset. We
first introduce the metrics we used as well as two classification
methods for a comparative analysis.

A. Classification Methods and Metrics

Machine learning techniques provide several advanced
methods to classify observations according to a number of
well-known classes or categories. More specifically, a classifi-
cation task consists in assigning a class from a set of possible
classes to a given observation. For the purpose of this work,
we aim to classy the beacons readings obtained from the
dataset (see Section II-B) according to two simple classes:
0 = interaction between a dyad or 1 = no interaction between
a dyad.

The classification methods generally require to be trained on
a set of labelled observations. Labels specify to which of the
classes each observation belongs to. The higher the number
of labels, the more accurate the classification result. After the
model is trained, the model can be used on new observations.
In this work, in order to validate our system, two different
machine learning models have been applied for automatically
detecting interactions, namely Logistic Regression and Ran-
dom Forest [17], [18]

Logistic regression is a well–known technique based on
linear regression in order to produce probabilities. When linear
regression is applied for binary classification, a linear function



employing regression is calculated and, then, a threshold is
applied to decide a 0 or a 1 response. Differently, Random
Forest is built on the simple idea to build a tree of decisions in
which each internal node is labelled with an input feature. The
arcs from a node representing a particular feature are labelled
with each of the possible values of that feature. Each leaf of
the tree is labelled with a class or a probability distribution
over the classes.

We select Logistic Regression and Random Forest because
they are representative parametric and non-parametric models
respectively. Furthermore, in literature, the efficacy to apply
these two models for binary classification was already inves-
tigated [19]. If the target variable (i.e., a meeting is occurring
or not), is not linearly separable then a more complex model
may achieve higher prediction scores. Instead, non-parametric
models (e.g., Random Forest) are more complex models and,
as a consequence, they can predict through decision boundaries
with high variability. However, they have low bias and often
they suffer from the overfitting problem. On the other hand,
the parametric models (e.g., logistic regression) are generally
less complex model resulting in a linear decision boundary.
As a consequence, these models can suffer from an higher
bias and can led to an under fitting problem. In this work, we
show the performances of both models and we compare their
performances with the proposed Red-HuP algorithm.

For each of the algorithms we use (classifiers and ReD-
HuP), we compute the accuracy metric given by the proportion
of correct answers of the algorithm with respect to the total
amount of observations. For the purpose of this work, we only
focus on the accuracy metric, however other metrics such as
precision and recall can be further analyzed.

B. Performance of the ReD-HuP Algorithm

Our analysis starts with a performance assessment of the
ReD-HuP algorithm by computing the accuracy in all the
experimental sessions described in II-B (S1 · · ·S4). More
specifically we consider the BLE beacons collected with the 3
different power of transmission (-18dBm, -6dBm and +3dBm),
and we compute the accuracy score by varying τ , σRSSI

and ∆RSSI . The parameter τ determines the width of the
time window during which anchors analyze the BLE beacons
received. It ranges from 16 to 30 seconds (with a step of
2 seconds), with a total of 8 different time windows. The
parameter σRSSI ranges from -94dBm to -76dBm (with a step
of 2dBm) while the parameter ∆RSSI from 3dBm to 8.4dBm
(with a step of 0.2dBm). We experienced that values outside
those ranges are not meaningful and do not affect significantly
the accuracy metric. As a result, we show the distribution of
the accuracy for each of the previous settings (a total of 279
settings), as shown in Figure 2. The figure shows for each step
of τ a box plot reporting how the accuracy varies as a function
of σRSSI and ∆RSSI . Each box plot shows the median, the
25th and 75th percentile of the accuracy as well the max and
min. Moreover, we also shows for clarity each of the accuracy
values as a dots.

The transmission power set to -6dBm represents our worst
case from the point of view of performance variability. More
specifically, we measure a median value of accuracy with all
values of τ = [16, 30] of 75.14% and a standard deviation
of 5.64. As shown by the box plots, we observe a higher
dispersion of the accuracy values with respect to the other
two settings (-18dBm and +3dBm). As for example, values
of accuracy obtained with τ = 22s span from 82.9% to
57.84% with an difference of 25.11%. Similar considerations
also apply for other values of τ such as 26s, and 28s. In all
of such cases, we observe a high variability of the accuracy
values. In this case, we observe that ReD-HuP more often
fails to correctly detect a social interaction. More specifically,
tags are set to an intermediate power of emission that lead
to a high number of false positive/negative answers from the
voting station. In particular, this negative effect is evident for
those anchors located far from the tags but still listening for
beacons. Such anchors are mole likely to fail in detecting
presence/absence of interaction with such an intermediate
power of emission.

Values of accuracy obtained with -18dBm provide an inter-
mediate performance. Generally, box plots obtained with such
setting show a lower dispersion of points with respect to other
settings. The median accuracy obtained with all values of τ is
74.73% (lower than the -6dBm settings) but with an increasing
stability of the measured performance (standard deviation of
3.73). Differently from the setting -6dBm, the low power of
transmission of tags reduces the number of wrong answers
from anchors placed far or at mid-distance from the interaction
point. In fact, such anchors do not analyze beacons because
the RSSI values are too low (see Section II-A) or they provide
abstain from voting.

Finally, the values of accuracy obtained with 3dBm provide
our optimal case (better accuracy and low standard deviation).
In this setting, we experienced a median accuracy of 79.62%
and a standard deviation of 4.89. From the box plot it is
possible to observe that the median of the accuracy with all the
values of τ is generally higher than that the other settings. As
discussed previously, high power of transmission of tags allow
anchors to take the correct decision more often. Anchors more
easily detect presence or absence of an interaction by limiting
those doubtful conditions.

We then compare the performance of ReD-HuP against the
two classifiers introduces in Section III-A. To this purpose,
adopt the following approach:

• Sessions S1 and S2 for calibrating the algorithms;
• Session S3 and S4 for evaluating the performance.
By splitting the calibration sessions from the experimental

ones, we avoid to use the same data both training and
validating even without any cross-validation technique. We
simply use different data for the two phases. The training of
the two classifiers is performed by providing them as input the
average value of the beacon’s RSSI grouped every τ seconds.
Each of the inputs is labelled with the ground truth, namely
presence or absence of an interaction. For what concerns the
calibration of ReD-HuP we exploit sessions S1 and S2 to
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Fig. 2: Distribution of the accuracy metric as a function of τ , σRSSI and ∆RSSI .

find the optimal configuration of the parameters σRSSI and
∆RSSI . We consider that, such approach, allows to compare
the 3 algorithms at similar conditions.

The comparison of the algorithms is shown in Figure 3. We
observe that in all of the settings of τ , Red-HuP obtains values
of the accuracy generally higher than that the two classifiers.
We also report for each setting, the optimal value of accuracy
obtained with the ReD-HuP algorithm. More specifically, with
-18dBm and τ= 26s ReD-HuP obtains 77.78% , with -6dBm
and τ = 26s 85.45% while with 3dBm and τ = 21s 89.08%.
Therefore ReD-HuP performs better with a time window
ranging from from 21s to 26s. Differently, small or high values
of τ do not provide optimal results of accuracy.

IV. CONCLUSIONS

Social interaction can be detected and analyzed by exploit-
ing wearable sensing units, able to detect proximity among
subjects. Under this context, we study in this work the
performance of the ReD-HuP [3] algorithm with a real-world
dataset. Red-HuP relies on the analysis of BLE beacons by
adopting a voting strategy, so that to combine the analysis
made by all the receiving devices. ReD-HuP is compared
against two common classification methods, namely Logistic

Regression and Random Forest. Experimental results show that
ReD-HuP algorithm outperforms the selected techniques. We
believe that the design of ReD-HuP opens to new perspectives
for monitoring human behaviours. In fact, BLE beacons are
expected to be even more diffused on most of the commercial
devices and their analysis can reveal dynamics of the social
interactions with high resolution. We consider that ReD-HuP
implements an effective and simple strategy to detect social
interactions. However, as reported in Section III, there exist
some conditions in which ReD-HuP might fail to correctly
reveal the existence of an interaction. In order to mitigate
such conditions, we consider as a future line of investigation,
the use of a self-calibration procedure, able to re-compute the
thresholds used by the algorithm. In this way, ReD-HuP can
re-adapt to different conditions, by reducing false positive and
negative answers from the voting stations.
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