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Abstract—Human pose estimation is an important task. Tra-
ditional human pose capturing systems are based on images or
videos, which may suffer from bad light and raise the concerns
of privacy. In this paper, we proposed an accurate human pose
estimation system using the 77GHz millimeter wave radar. It
is the first time that people use off-the-shelf millimeter wave
radar to complete such a task. Our system requires no camera or
specific sensors on the body to estimate the human skeleton. The
system first uses two radar data to generate heatmaps and then
adopts CNN to transform two-dimensional heatmaps into human
pose. We use coordinated heatmaps from radar and visual inputs
extracting from camera together to train the designed network.
Based on our dataset and system, the proposed method achieves
an average OKS value of 0.705 and 0.877 in AP 50.

Index Terms—sensing, mmwave radar, skeleton, neural net-
work

I. INTRODUCTION

Capturing human pose is a long-standing problem and plays
an important role in human-computer interaction. It mainly
concerns about locating and recognizing different parts of the
human body, such as ankles, shoulders, wrists and so on.
With the location of each part, system can generate dynamic
skeletons of human bodies. This technique can be widely used
in intelligent surveillance, gaming, activities analysing, smart
home, etc.

Recently, we have witnessed many great improvements in
human pose capturing technique using traditional computer
vision methods [1], [2]. However, those methods require
cameras, which may raise people’s concern on privacy and are
limited to light condition. To overcome the above problems,
researchers start to investigate wireless sensing system by us-
ing Wi-Fi or audio signal. Compared to camera-based system,
the wireless sensing system can protect the privacy issue and
is robust to light conditions. However, the wireless signal like
Wi-Fi is not born to achieve such a goal. Some may require
people to carry certain equipment, like cell phones. Most of
time, the wireless signal can only achieve a rough estimation
for position. They can not capture an accurate human pose
like we intend to do.

Recently, researchers have developed an RF-based human
pose capturing system [3]. They use self-designed RF gen-
erating device to do human localization and human skeleton
capture. The device is quite large and hard to deploy. In the
past few years, the improvement of millimeter wave radar
makes them cheaper and smaller. We adopt those advantages
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and propose our human pose capture system using mmWave
radar.

This paper presents a human pose capturing system us-
ing millimeter wave radar. We aim to achieve human pose
capturing by using off-the-shelf commercial radar devices.
The system is free of privacy concern, independent to light
condition and easy to deploy. Our millimeter wave radar works
on a much higher frequency (77GHz) and the device is quite
small due to the smaller wave length. We intend to leverage the
information we can extract from the wireless signal to design
the human pose capturing system by using neural network. If
well trained, our system can achieve human skeleton capturing
in both indoor and outdoor scenarios.

Challenges: Firstly, the features extracted from radar de-
vices are not as intuitive as images. Generally, people are
not able to read information directly from radar signal while
our system should only take radar information as input and
estimate human skeleton. Secondly, using the off-the-shelf
radars means there is no place for customizing. To achieve
such goal, only one radar is not enough because the mmWave
radar devices sold in the market mostly contain one radar array
only. They can only extract information from two dimensions
while we need at least three to rebuild human skeleton.

To overcome these challenges, we design our system in the
following ways. First, we use two radar devices simultaneously
in both horizontal and vertical direction and combine two
signal together in features extraction. In order to realize two-
radar capturing, we solve the coordination problems. Then,
in order to leverage the radar signal, we design a CNN
network to build the relationship between radar extracting
features and human pose. An additional camera-based human
pose capturing method is used to supervise the learning. If
well trained, our system can only take in radar generated
information and produce the human skeleton. The paper has
the following contributions:

• We develop a human pose capturing system using
mmWave radar, the first system to obtain human skeleton
by using off-the-shelf 77GHz radar devices.

• We leverage the signal processing algorithm and deep
learning technique to ensure our proposed system is able
to learn to capture the human pose.

• We conduct the whole experiment and evaluation by
establishing our own dataset and prototype.



II. RELATED WORK

Recent years we have witnessed many great improvements
in estimating human pose and people tracking technique using
both and computer vision methods and wireless sensing.

(a) Computer Vision: Recognizing human pose is a fun-
damental task in computer vision. They often take ordinary
RGB images or RGB-Depth photos [4] as input. There are
two main approaches to solve this problem: top-down [2], [5],
[6] and bottom-up [7], [8] methods. The top-down methods
first use a human detector and then perform pose estimation.
The other is the bottom-up method, which means the system
detects every keypoint in the image and later connect them in
a certain way.

(b)Wireless Sensing: The past decades have seen many
processes made in tracking human and detecting behaviors
using wireless systems. Some device-based system requires to
carry some certain wireless devices, like their mobile phones
[9], which make their system limited by many situations. Some
existing works use combined WiFi and cell phone to do multi-
person localization [10]. Their accuracy limitations make that
system unable to do tasks like skeleton capturing. The other
device-free system can achieve such a goal by only analyzing
the radio signal reflected from the human body. Recently, there
is a new approach to estimate human pose using RF signal [3],
[11]. They can also detect some specific behavior, like falling
[12]. In such implementation, it uses great more antennas and
larger equipment by customizing RF transmitting device.

(c) mmWave Radar: The millimeter wave radar is often
used in autopilot, material recognition [13] or hand gesture
recognition [14]. Recently, several papers have demonstrated
its application in detecting human behaviors, like sleeping
condition, or activities like falling, walking and so on [15].
Those works are detecting human behaviors at a high level,
which is fundamentally different from ours.

III. THE METHODOLOGY OF MMWAVE RADAR
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A. Radar Primer

A common radar equipment can transmit and receive radio
signal in one single board. Due to the time delay during
the reflection, information like distance, velocity and angle
can be detected. We choose FMCW (Frequency Modulated
Continuous Wave) radar in our system, because in order to
capture the human skeleton, we need the accurate spacial
information of each part of the human body, that is, the
distance and angle. In order to coordinate the two radars, the
velocity of the object is required. This task can be completed
by sending multiple chirps in one frame by FMCW radar.
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Fig. 2. FMCW wave

Those algorithms will be explained one by one in the following
section.

B. Distance Estimation

The FMCW radar transmits signal called chirp. Each chirp
is a sinusoidal wave whose frequency changes linearly with
time, as the black line shown in Figure 2. The sweeping range
of frequency is known as bandwidth B.After transmitting a
chirp by TX antenna, the RX antenna will obtain a chirp
reflected from an object, as the red line shows in Figure 2.
The reflected wave is a delayed signal of the original one.
The delay τ is proportional to the frequency difference ∆f .
Thus we can estimate the distance d between the radar and
detected the object by the equation:

d =
τc

2
. (1)

C. Angle Estimation

In FMCW radar, we use multiple antennas to estimate the
angle of the detected object, see Fig.1. The differential distance
caused by the location on two RX antennas, see ∆d in Fig.1,
results in a phase change ω between two receiving chirp:

ω =
2π∆d

λ
, (2)

where λ is the wave length. The phase difference ω can be
calculated by 2D-FFT, see Figure 3 and Figure 4. We can
use calculated phase difference ω to estimate the angle of the
detected object by

θ = sin−1(
λω

2πd
). (3)
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D. Velocity Estimation

The velocity of the detected object can be estimated by
transmitting two separate chirps consecutively. The measured
phase difference ω calculated by FFT is caused by a moving
distance vTc of the object. So the velocity of the object can
be estimated by the following equation:

v =
λω

4πTc
. (4)

IV. SYSTEM DESIGN

A. System Overview

This section presents an overview of the system, see Figure
5. The overall target of our system is to take radar information
as input and use them only to estimate human pose. The
system consists of:

• The radar front end—– two fixed indentical radar. The
radar takes in reflected FMCW chirp and stores them for
processing in the next component. A camera is needed
when collecting training data.

• A signal processing and heatmap generation component,
which processes raw data stored from the radar front end
and generates heatmaps for the input of CNN network.

• A coordination component to coordinate two radars. It
also works for the camera in the training stage.

• A CNN network that takes range-angle heatmap as input
and produces confidence map for each component of the
human body. If in the training stage, openpose is used to
supervise the learning.

• A skeleton generation component to locate keypoint
position from confidence map and link them to produce
the human skeleton.

B. Radar Front End

The radar front end is a two-radar system which generates
FMCW chirps and stores reflected signal data. Due to the
arrangement of antenna array, the radar is only sensitive
to one specific dimension. However, the necessary informa-
tion needed to rebuild human pose should contain three-
dimensional information, while one radar only gives two. To
solve the problem, we use two identical radars in a fixed
coordinate to obtain information from both horizontal and
vertical. This component will store the original data sampled
from FMCW chirp. In the training stage, this component will
add one more fixed camera to collect photos for labelling.

C. Signal Processing and Heatmap Generation

The signal processing component takes stored signal data
as input and produces distance-angle heatmaps as output.
Firstly, we perform static cluster removal on original raw data
before 2D-FFT in order to remove noise and achieve a better
result in moving targets. In order to get spatial information
of reflected human parts, we first perform FFT in range
dimension and followed by another FFT in antenna dimension.
This algorithm is also known as 2D-FFT, see section III. The
heatmap represents the reflected signal strength in both range

and angle. For example, a dominant peak in a specific point
means a main object. We use two radar separately to obtain
range and angle information in horizontal and vertical views
(x, y and y, z respectively), see Figure 6. The result is stored
in a two-dimensional matrix in order to store complex values.

D. Coordination

One of the main challenges of implementing such a system
is coordination because we need to use two identical radars
at the same time. If collecting training data, we should
use one more camera. Bad coordinated data may cause the
network unable to learn from the radio signal.To deal with the
coordination problem within the three devices, we use a quick
hand waving movement as a landmark at the beginning of
every data collection. The direction of hand waving is towards
the radar to achieve a vivid max speed, see Figure 7. Another
camera is placed on the right side of the subject to record the
hand movement and we can find the same max speech from
video. The side camera can be coordinate with the main front
camera using time stamp.

E. CNN Network Design

The designed network will take range-angle heatmap gener-
ated from signal processing components as input. Our network
will encode useful information from the two-dimensional
heatmaps and later decodes them into the view of the camera.

The CNN network needs supervision while training. La-
belling all the data by hand is a heavy and almost impossible
job. Inspired by the work in [3], we can use CV model to
produce labels for our dataset. We use a pre-trained COCO
model in [16] to supervise the training of our network. Our
network is designed to predict 14 keypoints of the human
body, including nose, shoulders, elbows, wrists, hips, knees
and ankles.

The network structure is mainly illustrated in Figure 8. At
the beginning of our model, we firstly perform 3D convolution
on both horizontal and vertical heatmaps. The reason to use
3D convolution is that the reflection of the human body may
not always occur in one heatmap, so it is necessary to take
the spatiotemporal information to predict all the keypoints.
The system later uses a 3D fractionally strided convolutions
to decode the features into the confidence map generated from
the camera. To supervise the decode network, we generate the
confidence maps Cp from the detected keypoint location. We
apply a Gaussian filter to each point to produce confidence
maps. The value at location p for keypoint k in position xk
in the confidence map is defined as

Ck(p) = exp(−‖p− xk‖
2
2

σ2
). (5)

The surpervise process is minimizing the loss between its
prediction and the prediction of openpose network. The loss
function L(G,P ) is defined as the summation of binary cross
entropy of ground truth G and prediction P for each point the
confidence maps:
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Fig. 5. System Structure

Fig. 6. Radar Deployment

Fig. 7. Speed of waving hands from radar

L(G,P ) = −
∑
c

∑
i,j

P c
ij logGc

ij + (1− P c
ij) log (1−Gc

ij)),

(6)
where Gc

ij and P c
ij are the confidence scores for the pixel value

at the position i, j on the confidence map Ck.
CNN Network: The encoding network takes 60 frames (2

seconds) of radar heatmaps from both horizontal and vertical
dimensional as input. It uses 5 layers of 9*5*5 3D convolution.
We use batch normalization in every layer and no max pooling.
As for the activation functions, we use ReLU at the end of
every layer.

Fractionally Strided Convolution Network: After the
CNN, the rest of network takes in the concatenated features.
We use 3D fractionally strided convolution [17] to decode the
features into the human pose. The decoding network includes
4 layers of 3*6*6 deconvolution with a stride of 1*2*2.
Specially, we use sigmoid activation in the last layer and the
loss function is binary cross entropy. The other layers use
Parametric ReLU (PReLU) [18].

TABLE I
RADAR CONFIGURATION

Parameter Value Unit
Frequecny 77 GHz
Slope 64.019 MHz/us
Chirp 16 per TX in a frame
Samples 512 per chirp
Frame Duration 33.333 ms
Range resolution 0.0458 m
Velocity resolution 0.7417 m/s

F. Human Pose Generation

The output of the designed network produces confidence
maps for all keypoints of people. In the post-processing
component, we detect the exact location of each keypoint.
Inspired by traditional ways in the computer version, we
perform non-maximum suppression (NMS) on the confidence
maps to get the exact location of keypoint candidates. Since in
our implementation, we only consider there will be only one
person in the scene, so after we obtain the keypoint candidates,
we can simply line them up to get the skeleton.

V. SYSTEM IMPLEMENTATION

The radar we used is produced by Texas Instruments [13].
The IWR1642 radar we used can generate an initial 77GHz
FMCW wave with a maximum bandwidth of 4GHz. We use a
DCA1000 to connect IWR1642 to perform raw data capture,
see Figure 9. The radar is set to 2TX and 4RX modes
to generate 8 virtual antennas. Both radars we use in this
experiment are initialized with the same parameters. During
the whole experiment, we fix two radars and mobile phone
in a certain relative position to make sure our network can
learn a proper relationship between heatmaps and the human
skeleton.

Our networks training are implemented in Keras using
Tensoflow backend. The batch size is 8 and we use Adam
optimization algorithm .

VI. SYSTEM EVALUATION

A. Experimental Setup

We present how we collect our dataset in this section. To
collect data from different environments, we place the two
connected AWR1643 and DCA1000 EVM and camera in



Fig. 8. CNN network

Fig. 9. mmWave Radar Device (AWR1642 (Red) and DCA1000 (Green))

Fig. 10. Experimental Scenario

a relatively fixed position. For the video recording device,
we use a XIAOMI 8 to record the video. We collected
coordinated radar and vision data in different environments
around the campus, which includes hall, gym, and so on, see
Figure 10. The dataset contains 2 hours data from 5 different
environments. Six single people are walking when collecting.
The whole data is split into training and testing sets. We make
sure the testing set wouldn’t be used while training.

B. Experimental Results

The output of the system can be seen in Figure 11. For eval-
uation, like many tasks in object detection, we report object
keypoints similarity (OKS) and the mean average precision
(AP) over different OKS thresholds. The OKS is defined as:

OKSp =

∑
i exp {−d2pi/2S2

pσ
2
i }δ(vpi = 1)∑

i δ(vpi = 1)
, (7)

Fig. 11. Experiment results

where p is id for a person in ground truth, i for id of keypoint,
dpi represents for the Euclidean distance of keypoints between
prediction and ground truth. Sp is the root of area of ground
truth and σi is the normalization factor of the i keypoint.
δ(vpi = 1) determines whether to use this keypoint to
calculate.

Fig. 12. System Performance

Overall Evaluation: To evaluate the performance of the
system and compare our system with the baseline, we manu-
ally label around 3000 pictures as the testing set. The result
is can be seen in Table II and Figure 12. Particularly, we give



TABLE II
EVALUATION

System Average OKS mAP AP50 AP75
Openpose 93.3 92.0 98.8 93.3

Our System 70.5 50.0 87.7 47.1
Leave One Out 66.6 42.4 83.8 34.8

TABLE III
DIFFERENT PARTS EVALUATION

Head Neck Sho Elb Wrist Hip Knee Ank
OKS 42.5 73.2 61.1 55.5 47.1 69.1 70.9 65.5
AP50 47.8 83.9 67.4 60.6 51.7 79.5 80.0 73.5
mAP 29.6 59.3 48.1 41.6 32.3 58.4 58.7 50.2

the AP and OKS result of leaving one person out in training
and evaluating system performance on his data only.

Difference Between Body Parts: There is a big difference
within OKS values of different body parts, see table III.
Mainly, it is because that the radar can not always receive the
reflection of every part of human body. The lack of reflection
information leads to a worse result of the parts like wrists.
Result of parts like hips and shoulders is better due to a larger
reflection area.

VII. DISCUSSION

The capture of our system depends on radar signal, which
leads to some limitations: In our implementation, we only con-
sider one person situation this time. Secondly, the performance
of our system highly depends on the training set. Thirdly, the
detecting range of the mmWave radar is limited to its power.
This time we focus on a range of 4 to 13 meters. Furthermore,
we find the accuracy of the system highly relys on the number
of antennas.

VIII. CONCLUSION

In this paper, we proposed a human pose capturing system
using mmWave radar, which is a novel application of 77GHz
radar device. The devices we use are much smaller than ever
and it is off-the-shelf. We use a new coordination method
to align two-radars devices and label-used camera, which is
the key to use two radars to realize the two-radar system.
Then, we implement the system and create our own dataset to
complete evaluation. With our neural networks well trained,
we can transform radar producing heatmaps into the human
skeleton. The system can achieve human pose capture while
protecting the privacy and it is still valid in bad light condition.
It can be potentially used in healthcare, smart homes or other
applications.
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