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Abstract—Human activity recognition targets identifying 

different classes of human movements using data gathered from 

various types of sensors. Deep learning approaches, such as 

Recurrent Neural Networks, are gaining interest in the 

classification of human activities using time series data. Long-

Short Term Memory is a recurrent neural network approach 

that is well suited for the classification of time series data where 

it handles the vanishing gradient and the long-term dependency 

problems efficiently.  In this paper, we compare the human 

activity recognition accuracy of the unidirectional and 

bidirectional Long-Short Term Memory models on two 

different datasets that represent accelerometer data. The results 

show that the bidirectional approach slightly enhances the 

recognition quality over the unidirectional approach. However, 

the bidirectional approach spends more time during the 

training, which may hinder its applicability on large datasets. 

Keywords—Accelerometers, Deep Learning, Recurrent 

Neural Networks (RNN), Classification 

I. INTRODUCTION 

Human activity recognition (HAR) aims to identify the 
types of human actions and movements. The accuracy of HAR 
is a major concern, and if applied properly, will have a direct 
impact on people’s welfare [1][2][3]. HAR uses modern 
artificial intelligence techniques on data collected from 
different types of sensors. The wide use of smartphones and 
their support for different types of sensors, such as 
accelerometers, make them suitable and practical for the 
collection of human activity data.  

HAR is a classification problem where it targets the 
recognition of specific movements and actions such as 
walking, running, and falling. Recently, HAR has been widely 
studied and gained more attention for its applicability in 
different domains such as security, transport, traffic 
management, and healthcare [4]. Classical classification 
approaches have been used for human activity recognition [5]. 
The problem with these approaches is their reliance on 
heuristic handcrafted feature extraction techniques that affect 
their generalization.  

Deep learning is a branch of machine learning that is based 
on artificial neural networks [6]. It can work on supervised, 
semi-supervised, or unsupervised problems. Several deep 
learning approaches, such as recurrent neural networks 
(RNN), have been applied to different fields such as computer 
vision, speech recognition, natural language processing, 
bioinformatics, and medical image analysis.  

Deep learning approaches proved to provide similar, and 
in some cases, superior results to existing AI approaches. They 
overcome the constraints of classical classification approaches 
as they succeed in dealing with time-sequential data that 
embody correlations between close data points in a sequence 
[7]. However, using RNN for time series classification can be 

challenging as performance is highly dependent on the 
availability of trained data. 

Recent studies proposed to use Long-Short Term Memory 
(LSTM) [8][9], an RNN approach, which is useful for the 
classification of time series data. LSTM is a modified version 
of RNN, which improves the handling of long-term 
dependency problems, as it is easier to remember past data in 
memory. Moreover, LSTM resolves the vanishing gradient 
problem found in the original RNN approach [10][11]. It is 
capable of handling complex serial information with long 
dependencies since it utilizes a gating scheme for data 
representation.  

The purpose of this work is to study the accuracy and 
performance of the unidirectional and the bidirectional LSTM 
models for HAR on time series data gathered from mobile 
accelerometer sensors. We run these two different LSTM 
models for the classification of several daily life activities and 
fall states on two different datasets with different classes of 
movements. The first dataset is the UniMiB SHAR  dataset 
[12] that contains 17 different classes of activities and fall 
states. The second dataset is provided by the Wireless Sensor 
Data Mining (WISDM) Lab [13], which contains six classes 
of human motions collected under controlled laboratory 
conditions. 

The paper is organized as follows. In Section II, we discuss 
some recent studies that used different machine learning 
approaches for human activity recognition and time series 
analysis. In Section III, we explain the LSTM architecture.  
Section IV presents our approach followed by an evaluation 
in Section V. Finally, we conclude our paper in Section VI 
with a highlight on future directions. 

II. RELATED WORK 

HAR utilizes feature extraction methods using supervised 
classification techniques [14][15]. An early study proposed by 
Foerster et al. [16] demonstrated the usefulness of 
accelerometer data for human activity recognition. Ravi et al. 
[17] presented a deep learning approach that combines 
extracted features learned from sensor data with 
complementary information from a range of shallow features, 
which led to accurate and real-time activity classifications. 
Husken et al. [18] used dynamic RNN for time series. The 
results showed that the inclusion of a prediction task during 
learning strongly supports the learning process. Moreover, the 
generalization ability was significantly improved. 

Hassan et al. [19] proposed to use Deep belief networks 
for HAR on data gathered from inertial sensors in 
smartphones. Their approach outperformed traditional 
machine learning approaches such as SVM and ANN. Jiang et 
al. [20] used Deep Convolutional Neural Networks for HAR, 
where they combined sequences of accelerometers and 
gyroscopes into a novel activity image. Their model 



 

 

automatically extracts and learns the optimal features from the 
activity image for the recognition task. 

Mehdiyev et al. [21] proposed a multi-stage deep learning 
approach for multivariate time series classification. The 
authors used the stack LSTM Autoencoder Network model 
that extracts features in an unsupervised or self-supervised 
manner. Then, the forward neural network performs the 
classification on the time series data from the stack LSTM 
Autoencoder network. The neural network consists of three 
hidden layers, where each layer has 200 neurons. The training 
of the network took almost 100 epochs, which included 
changing some parameters such as activation functions, 
number of layers and neurons, and the type of optimization 
function to improve the accuracy. They used the average 
accuracy and recall as classification metrics. Their model 
achieved an average accuracy of 87.49%. 

Graves et al. [22] proposed the bidirectional long short-
term memory (BLSTM). BLSTM applies the concept of 
incremental learning and handles long-range contextual 
processing. The authors tested BLSTM on two large 
unconstrained handwriting databases where its recognition 
accuracy reached 79.7%.  

Veeriah et al. [23] proposed a differential gating scheme 
for the LSTM neural network (dRNN). They tested dRNN on 
the KTH 2D action recognition and the MSR Action3D 
datasets. The results showed that the dRNN model 
outperformed the conventional LSTM approach. 

Chung et al. [8] proposed a combination of RNN and 
LSTM models for Lexical Utterance Classification. They 
compared their approach to the ngram-based language models 
(LMs), feed forward neural network LMs, and boosting 
classifiers. The proposed approach outperformed the 
approaches mentioned above, and the results showed that the 
RNN worked well for short utterance series while LSTM 
worked efficiently for long series. 

Studies showed that LSTM models performed well with 
long sequence applications [24][9]. Vu et al. [25] proposed to 
use Self-Gated RNN for human activity recognition on data 
gathered from wearable sensors. The results showed that their 
approach outperformed standard RNN and maintained 
comparable results to those of LSTM.  

Finally, Karim et al. [26] proposed an approach to 
transform univariate time series classification models into a 
multivariate time series classification model. They augment 
the fully convolutional block with a squeeze-and-excitation 
block in order to enhance the accuracy. They applied their 
approach to activity recognition and action recognition, where 
they achieved good accuracy. The proposed model uses 
minimum memory requirements, which makes it efficient to 
work on constrained environments. Even though their 
proposed model outperformed existing models, it requires an 
additional preprocessing step for the raw data. 

III. LONG-SHORT TERM MEMORY ARCHITECTURE 

In this section, we explain the Long-Short Term Memory 
(LSTM) architecture and the unidirectional and bidirectional 
structures. 

Hochreiter [27] introduced LSTM to avoid the long-term 
dependency problem by adding the gating mechanism. LSTM 
is an RNN with an enhanced function to calculate the hidden 
state. Figure 1 depicts the building block (cell) of LSTM. This 

cell determines which data to keep in memory and which data 
to ignore using the concept of gating, where the latter 
selectively transfers needed information. 

 

Figure 1. LSTM Cell Architecture 

The LSTM cell consists of the input gate, the forget gate, 
and the output gate. The forget gate is responsible for selecting 
which data to remember and which data to erase. The sigmoid 
layer is responsible for this decision as shown in Equation 2. 

𝑓𝑡 =  𝜎(𝑥𝑡𝑈𝑓 +  ℎ𝑡−1𝑊𝑓)       (2) 

The output is 0 or 1, where 0 means forget and 1 means 
keep. The second gate is the input gate. This gate uses another 
sigmoid layer that determines which values to update as 
shown in Equation 3. 

𝑖𝑡 =  𝜎(𝑥𝑡𝑈𝑖 + ℎ𝑡−1𝑊𝑖)       (3) 

The tanh function creates a vector of new candidate values 
that could be added to the cell state as shown in Equation 4. 

Ĉ𝑡 =  tanh(𝑥𝑡𝑈𝑔 +  ℎ𝑡−1𝑊𝑔)       (4) 

The cell state is then ready for the update by concatenating 

both ƒt and Ĉt. The LSTM updates the old cell state (Ct-1) to be 
(Ct) as shown in Equation 5.  

𝐶𝑡 =  𝜎(𝑓𝑡 × 𝐶𝑡−1 +  𝑖𝑡 × Ĉ𝑡)       (5) 

Equation 6 calculates the output of the sigmoid gate ot.  

𝑜𝑡 =  𝜎(𝑥𝑡𝑈𝑜 +  ℎ𝑡−1𝑊𝑜)       (6) 

When multiplying ot with tanh (Ct), we implicitly 
determine which part to take out as seen in Equation 7.  

ℎ𝑡 =  tanh(𝐶𝑡) × 𝑜𝑡       (7) 

The output gate, using a sigmoid function, determines 
which part of the cell state will come out, where tanh of the 
cell state is used to make values between -1 and 1. 

 

Figure 2. Unidirectional LSTM Layer Structure 

This LSTM cell makes the building blocks of the RNN. 
Figure 2 shows the unidirectional LSTM structure. This 
architecture resembles the RNN architecture with LSTM cells 
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instead. It shows how each LSTM cell’s output is being 
inputted to the next LSTM cell in the same layer. 

 

Figure 3. Bidirectional LSTM Layer Structure 

Figure 3 shows the bidirectional LSTM structure where 
the forward layer is responsible for a positive time direction, 
and the backward layer is responsible for a negative time 
direction. The outputs from each LSTM cell in the two layers 
are concatenated in the output yn. 

IV. APPROACH 

We study the usefulness of two LSTM models in 
recognizing human activities of data gathered from mobile 
phone sensors. 

The human activity recognition task is a multiclass 
classification problem. Thus, we classify the activity samples 
into one specific class among different candidate classes. 
Activities are recorded as time series data using accelerometer 
sensors. Given a series of triaxial accelerometer data, the 
LSTM model is supposed to generate hypotheses ў of the 
actual set of labels y. An advantage of LSTM is that it can 
handle long-term dependencies. Accordingly, it has the ability 
to remove or add information to the cell state, carefully 
regulated by the gating scheme. Thus, LSTM cells are able to 
remember important information about the received input. 
This enables them to be very precise in the prediction of the 
next input.  

We divide the data into training and testing sets (80% for 
training and 20% for testing [28]). Our model determines the 
first 80% of the samples as training data while the remaining 
20% as testing data. Furthermore, we randomize the data 
using shuffling to ensure that the training and the testing sets 
contain all the possible cases defining the problem. The data 
samples of n dimensional patterns obtained by concatenating 
the m acceleration values (x, y, z) recorded along each 
Cartesian direction. For example, if the sampling rate is 20 Hz 
and the window size is 3 seconds. Then, the vector will include 
180 acceleration values where each dimension contains 60 
samples. 

Classification problems require using a loss function for 
describing the model accuracy. The loss function determines 
the deviation of the results from the true values. The smaller 
the loss is, the more accurate the results are. We used the cross 
entropy loss (log loss function) as a cost function, which 
measures the inaccuracy of the model by determining the 
model’s ability to find a relationship between input data and 
output labels.  

We chose the Adam optimization function, a widely used 
optimizer, for the training of the model [29]. Adam is an 

adaptive version of the stochastic gradient descent. The 
criteria for selecting the optimizer depend on how fast and 
efficient the optimizer is when updating the network 
parameters (weights and biases).  

A common problem in machine learning is model 
overfitting. If the model is over-fitted, the resulting model is 
almost useless. This problem is observed when the loss 
function of the model is small in the training data while it is 
large in the testing data. Model overfitting causes a large 
difference between the training accuracy and the testing 
accuracy.  

Our model tries to restrain the overfitting by using the 
Dropout function, which is a formalization method that is 
widely used in modern deep learning environments [30]. It 
randomly selects some of the cells (neurons) in the neural 
layer and temporarily hides them. Then, it performs the 
training and the optimization process of the neural network in 
a certain loop. In the next loop, it will hide some other cells 
(neurons) until the end of the training. Thus, it randomly skips 
some neurons at training to force the other neurons to pick up 
the slack. For the bidirectional model, we applied the Dropout 
in both LSTM layers. Dropout is a smart way for 
regularization. It reduces the network tendency to become 
over-dependent on some neurons as they may not be available 
all the time. 

Figure 4 presents the training process of the model. The 
first step after inputting the raw data to the LSTM model is the 
initialization of the learning parameters. Then, we compute 
the LSTM cell states, followed by computing the model 
prediction. After calculating the cross entropy loss, we train 
the model using Adam optimizer, followed by adjusting the 
training parameters accordingly. We repeat this process until 
the model achieves the maximum accuracy level. 

 
Figure 4. Training Process 

 
We tuned the hyper-parameters to discover the values that 

acquire the best prediction results. We used the following 
training hyper-parameters for classification. 

1. Number of Epochs: an epoch represents one full pass 
on the entire dataset. 

2. Number of iterations: number of batches required to 
perform one epoch. 
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3. Batch size: number of training examples in a single 
batch. 

4. Optimizer function: minimizes the error function in a 
specific model. 

5. Hidden units: hidden neurons in LSTM structure. 
6. Learning rate: how fast weights are changed. 

We used the training accuracy and the testing accuracy as 
a measure of recognition quality. We measure the accuracy 
using Equation 8. 

accuracy = 
  The amount of correct classifications

The total amount of classifications
     (8) 

We calculate the training accuracy when we apply the 
model to the training data, while we calculate the testing 
accuracy when we apply the model to the testing data. Both 
accuracies are important to identify the overfitting of the 
model. 

V. EVALUATION 

We conducted the experiments on a Windows 10 
workstation where the code is written in Python 3 using Keras 
v2.2.2 and TensorFlow v1.10.0. The CPU is a 4-core Intel(R) 
Core(TM) i7-6700HQ, 2.60 GHz, and 8 GB of RAM. We 
tested the models using two different datasets. The UniMib 
Shar [12] and the WISDM dataset [13]. In the following, we 
present the accuracy of the two models on the two datasets as 
well as the training times. 

a. UniMib Shar Dataset 

The dataset contains 11771 data samples for daily life 
activities, and fall states acquired using smartphones. Data 
collection is performed by 30 persons (24 females and six 
males) ranging from 18 to 60 years old [12]. The different 
characteristics of the subjects in the UniMiB SHAR dataset 
are shown in Table 1.  

TABLE 1. THE CHARACTERISTICS OF SUBJECTS 

 Female Male Total/Range 

Subjects 24 6 30 

Age 18-55 20-60 18-60 

Height (cm) 160-172 170-190 160-190 

Weight (kg) 50-78 55-82 50-82 

 
Samsung Galaxy Nexus I9250 with the Android OS 

version 5.1.1 was used in the experiments that aimed to build 
the dataset using its Bosh BMA220 acceleration sensor. This 
triaxial low-g acceleration sensor allows measurements of 
acceleration in three perpendicular axes (x, y, and z). For each 
activity, the accelerometer data vector is made of three vectors 
of 151 values (total vector size is 151 x 3 = 453), one for each 
acceleration direction where each activity spans 3 seconds 
with a sampling rate is 50Hz. Overall, the main feature used 
from this dataset is the acceleration value in the x, y, z axes. 

Samples are divided into 17 fine-grained classes and 
grouped into two coarse-grained classes. The first class (A) 
contains samples of nine types of daily living activities (ADL), 
and the second class (F) includes samples of eight types of 
falls. The dataset contains 7579 ADL states and 4192 fall 
states. 

We used four different classification tasks for the 
evaluation (AF-2, F-8, A-9, and AF-17).  

AF-2 consists of two classes obtained by considering all 
the ADLs as one class and all the fall states as another class. 
It allows evaluating the classifier’s robustness in 
distinguishing between ADLs and fall states.  

F-8 consists of eight classes obtained by considering all 
the classes of fall states. It allows evaluating the ability of the 
classifier to differentiate among different types of fall states.  

A-9 consists of nine ADL classes. It determines the ability 
of the classifier to distinguish among different types of ADLs.  

Finally, AF-17 consists of 17 classes (nine classes of 
ADLs and eight classes of fall states). It evaluates the ability 
of the classifier to determine the type of movement regardless 
of being an ADL or a fall state.  

Table 2 shows the results obtained from running the 
unidirectional and the bidirectional LSTM models on the raw 
data for the four tasks along with the values of the hyper-
parameters. These results were achieved after several 
experiments and tuning of the parameters. 

TABLE 2. UNIMIB SHAR TRAINING ACCURACY AND TIME 

Parameter AF-2 F-8 A-9 AF-17 

Epochs 50 100 70 50 

Iterations 45 13 12 148 

Batch size 200 256 512 64 

Learning rate 0.001 0.001 0.001 0.001 

Hidden units 200 200 200 200 

Dropout 0.5 0.5 0.5 0.5 

Accuracy 

Unidirectional 98.87% 73.46% 90.25% 80.59% 

Bidirectional 99.25% 74.89% 91.2 % 83.31% 

Training Time (minutes) 

Unidirectional 48 10 9 310 

Bidirectional 101 17 15 685 

Figure 5 shows the confusion matrix for the AF-17 task 
using the unidirectional approach. 

 

Figure 5. AF-17 Confusion Matrix for Unidirectional Approach 

 

For the binary classification (AF-2), the accuracy was 
98.87% for unidirectional and 99.25% in the case of the 
bidirectional model. However, we only reached 74.89% 
accuracy in the case of F-8. The misclassification usually 



 

 

occurs in some fall states due to the similarity between some 
pairs such as Syncope and Falling leftward, Generic falling 
backward, and Falling backward-sitting-chair. For A-9, the 
accuracy was up to 91.2%, while for AF-17, it reached 80.59% 
in the case of unidirectional and 83.31% for bidirectional. 
Finally, the training time for the bidirectional approach was 
considerably higher than that of the unidirectional model with 
only minor accuracy enhancement. 

 
Figure 6. AF-17 Confusion Matrix for Bidirectional Approach 

Figure 6 shows the confusion matrix for the AF-17 task 
using the bidirectional approach. 

b. WISDM Dataset 

The second dataset in our experiments, the activity 
prediction dataset v1.1 [13], is from the Wireless Sensor Data 
Mining (WISDM) Lab. It was collected through controlled 
laboratory conditions in 2010. The dataset contains 36 users 
with 1,098,207 labeled samples of six classes.  The sampling 
rate of data collection is 20Hz, which means one sample every 
50 milliseconds. The classes are distributed in the dataset as 
walking (38.6%), jogging (31.2%), Upstairs (11.2%), 
Downstairs (9.1%), sitting (5.5%), and standing (4.4%). 

We processed the data to make a labeled activity every 
three seconds. Each labeled activity should belong to the same 
user and the same activity from the raw data. Thus, each data 
vector is made of three vectors of 60 values. The total number 
of data points is 18210, where each point contains 60 samples 
in 3D format (total vector size is 60 x 3 = 180). Since each 
window contains 60 samples, we used 1092600 samples from 
the dataset. 

TABLE 3. WISDM TRAINING ACCURACY AND TIME 

Parameter WISDM (A-6) 

Epochs 50 

Iterations 228 

Batch size 64 

Learning rate 0.001 

Hidden units 200 

Dropout 0.5 

Model Accuracy Training Time (minutes) 

Unidirectional 97.68% 375 

Bidirectional 98.11% 794 

 

Table 3 shows the parameter values used in the training 
phase. Also, it shows the accuracy and the training time for 
both unidirectional and bidirectional LSTM. The difference in 
accuracy was less than 0.05%. However, the training time for 
the bidirectional model was more than double the training time 
of the unidirectional model. This observation shows that using 
the bidirectional approach for this dataset could be an 
overhead and not necessary. 

Figure 7 and Figure 8 show the confusion matrix for 
WISDM using the unidirectional approach and the 
bidirectional approach, respectively. 

 

Figure 7. WISDM Confusion Matrix for Unidirectional Approach 

 

 

Figure 8. WISDM Confusion Matrix for Bidirectional Approach 

 

 

VI. CONCLUSION 

In this paper, we presented a comparison of the 
unidirectional and bidirectional LSTM models for human 
activity recognition. We used two different datasets for the 
comparison. The results showed that using the bidirectional 
LSTM slightly improves on the training accuracy for these 
two datasets. Moreover, we achieved an accuracy of up to 
99% for the UniMiB SHAR dataset and 98.11% for the 
WISDM dataset. In the future, we intend to train the two 
models on more datasets. Additionally, we intend to use 
various machine learning and neural network approaches in 
the classification of human activity recognition. This 
enhancement will provide more generalization for the 
behavior of the two LSTM approaches. 

 

 



 

 

REFERENCES 

[1] V. Osmani, S. Balasubramaniam, D. Botvich, “Human activity 
recognition in pervasive health-care: Supporting efficient remote 
collaboration,” Jo. of Net. and Comp. App., 31(4), 2008, pp. 628–655.  

[2] P. Woznowski, R. King, W. Harwin, I. Craddock, “A human activity 
recognition framework for healthcare applications: ontology, labelling 
strategies, and best practice,” In Proc. of the International Conference 
on Internet of Things and Big Data (IoTBD) INSTICC, 2016, pp. 369–
377.  

[3] N. Bidargaddi, A. Sarela, L. Klingbeil, M. Karunanithi, “Detecting 
walking activity in cardiac rehabilitation by using accelerometer,” 
Proc. 3rd Int. Conf. Intell. Sensors Sensor Netw. Inf., pp. 555-560, Dec. 
2007. 

[4] J. Wang, Y. Chen, S. Hao, X. Peng, L. Hu, “Deep learning for sensor-
based activity recognition: A survey,” Pattern Recognition Letters, 
2018. 

[5] Z. Chen, Q. Zhu, Y. C. Soh and L. Zhang, "Robust Human Activity 
Recognition Using Smartphone Sensors via CT-PCA and Online 
SVM," in IEEE Transactions on Industrial Informatics, vol. 13, no. 6, 
pp. 3070-3080, Dec. 2017. 

[6] Y. Bengio, A. Courville, P. Vincent, "Representation learning: a review 
and new perspectives," IEEE Transactions on Pattern Analysis, 
Machine Intell. 35, 1798–1828 (2013). 

[7] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, 
H. Schwenk, Holger, Y. Bengio, “Learning Phrase Representations 
using RNN Encoder-Decoder for Statistical Machine Translation,” 
10.3115/v1/D14-1179. 

[8] S. Ravuri, A. Stolcke, “Recurrent neural network and LSTM models 
for lexical utterance classification,” In INTERSPEECH-2015, 135-
139. 

[9] F. Gers, N. Schraudolph, J. Schmidhuber, “Learning Precise Timing 
with LSTM Recurrent Networks,” Journal of Machine Learning 
Research, 3:115–143, 2002. 

[10] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, K. 
Saenko, “Translating videos to natural language using deep recurrent 
neural networks,” arXiv preprint arXiv:1412.4729, 2014. 

[11] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. 
Monga, G. Toderici, “Beyond short snippets: Deep networks for video 
classification,” arXiv preprint arXiv:1503.08909, 2015. 

[12] D. Micucci, M. Mobilio, P. Napoletano, “UniMiB SHAR: A new 
dataset for human activity recognition using acceleration data from 
smartphones,” IEEE Sens. Lett. 2016, 2, 15–18. 

[13] J. R. Kwapisz, G. M. Weiss, S. A. Moore, "Activity Recognition using 
Cell Phone Accelerometers," Proceedings of the Fourth International 
Workshop on Knowledge Discovery from Sensor Data KDD-10, 2010. 

[14] M. Uddin, M. Hassan, A. Almogren, M. Zuair, G. Fortino, J. Torresen, 
“A facial expression  recognition system using robust face features 
from depth videos and deep learning,” Comput. Electr. Eng., 2017. 

[15] G. Hinton, S. Osindero, Y. Teh, “A fast learning algorithm for deep 
belief nets,” Neural Comput. 18(7):1527–1554, 2006. 

[16] F.  Foerster,  M.  Smeja,  and  J.  Fahrenberg,  “Detection  of  posture  
and  motion  by  accelerometry:  a  validation  study  in  ambulatory  
monitoring,” Computers in Human Behavior,  vol. 15,no. 5, pp. 571–
583, 1999. 

[17] D. Ravi, C. Wong, B. Lo, G. Yang, “A deep learning approach to on-
node sensor data analytics for mobile or wearable devices,” IEEE 
Jornal of Biomedical and Health Informatics. 21(1): 56–64, 2017. 

[18] M. Husken, P. Stagge, “Recurrent neural networks for time series 
classification,” Neurocomputing, 50 (2003), pp. 223-235. 

[19] M. Hassan, M. Uddin, A. Mohamed, A. Almogren, “A robust human 
activity recognition system using smartphone sensors and deep 
learning,” Future. Gener. Comput. Syst. 81:307–313, 2018. 

[20] W. Jiang, Z. Yin, “Human activity recognition using wearable sensors 
by deep convolutional neural networks,” In Proc. of the 23rd Annual 
ACM Conference on Multimedia Conference. pp. 1307–1310, 2015. 

[21] N. Mehdiyev, J. Lahann, A. Emrich, D. Enke, P. Fettke, P. Loos, “Time 
Series Classification using Deep Learning for Process Planning: A 
Case from the Process Industry,” Procedia Comput. Sci. 2017, 114, 
242–249. 

[22] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. 
Schmidhuber, “A Novel Connectionist System for Unconstrained 
Handwriting Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., 
vol. 31, no. 5, pp. 855-868, 2009. 

[23] V. Veeriah, N. Zhuang, G.-J. Qi, “Differential recurrent neural 
networks for action recognition,” In Proceedings of IEEE International 
Conference on Computer Vision (ICCV), pages 4041–4049, 2015. 

[24] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, “Empirical Evaluation of 
Gated Recurrent Neural Networks on Sequence Modeling,” arXiv 
preprint arXiv:1412.3555, 2014.  

[25] T. Vu, A. Dang, L. Dung, J-C. Wang, “Self-Gated Recurrent Neural 
Networks for Human Activity Recognition on Wearable Devices,” In 
Proceedings of the on Thematic Workshops of ACM Multimedia 2017 
(Thematic Workshops '17). ACM, New York, NY, USA, 179-185. 

[26] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate 
lstmfcns for time series classification,” Neural Networks, Volume 116, 
Pages 237-245, August 2019. 

[27] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural 
computation, 9(8):1735-1780, 1997. 

[28] K. Dobbin and R. Simon, “Optimally splitting cases for training and 
testing high dimensional classifiers,” BMC Medical Genomics, vol. 4, 
no. 1, p. 31, 2011. 

[29] D. Kingma, J. Ba, “Adam: A method for stochastic optimization,” 
arXiv preprint arXiv:1412.6980, 2014. 

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. 
Salakhutdinov, “Dropout: a simple way to prevent neural networks 
from overfitting,” J. Machine Learning Res. 15, 1929–1958 (2014). 

 

 

 

 


