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Abstract—Smiling and laughter are typically associated
with amusement. If they occur under negative emotions,
systems responding naively may confuse an uncomfortable
smile or laugh with an amused state. We present a passive
text and video elicitation task and collect spontaneous
laughter and smiles in reaction to amusing and negative
experiences, using standard, ubiquitous sensors (webcam
and microphone), along with participant self-ratings. While
we rely on a state-of-the-art smile recognizer, for laughter
recognition our transfer learning architecture enhanced
on modest data outperforms other models with up to
85% accuracy (F1 = 0.86), suggesting this technique as
promising for improving affect models. Subsequently, we
analyze and automatically predict laughter as amused vs.
negative. However, contrasting with prior findings for acted
data, for this spontaneously elicited dataset classifying
laughter by emotional valence is not satisfactory.

Index Terms—smiles and laughter under amused vs.
negative emotion, spontaneously elicited reactions, affect
capture and modeling, human-centered systems

I. INTRODUCTION

Systems need to better understand human behavior
and desires in order to provide more considerate user
experiences [1]. Currently, commercial affect recogni-
tion systems such as FACET and AFFDEX distinguish
between anger, contempt, disgust, fear, joy, sadness, and
surprise. However, more complex emotional reactions
remain less well-studied. For example, smiles are typ-
ically associated with amusement, but prior work has
noted that people also smile in frustration [2].

With this challenge in mind, this study examines
whether laughter and smiles can be elicited under
spontaneously-induced amusement and non-amusement,
specifically in reaction to negative frustration or discom-
fort. We investigate three primary research questions:

1) Can laughter and smiles be elicited passively
under genuine amusement vs. negative emotions
(frustration/discomfort)?

2) Can transfer learning improve laughter detection?

†Both authors contributed equally to this research.

TABLE I
PARTICIPANT EMOTIONAL SELF-REPORT FORM.

Q1: Which face best describes your reaction
to the previous item?

Q2: Please rate the degree to which (1 = not at all and
5 = extremely) the previous item made you feel:

Inspired, Frustrated, Amused, Uncomfortable

3) What differences, if any, can characterize people’s
laughter and smiles when they experience genuine
amusement vs. negative frustration/discomfort?

Riesberg et al. define frustration as an increase in
negative arousal when something uncontrollable im-
pedes the individual’s progress toward a goal [3]. While
past studies have focused on eliciting frustration by
creating games or surveys which deliberately obstruct
users’ completion of an established goal, we develop
a methodology to elicit negative emotions passively
(only requiring a browser, a standard webcam, and a
microphone for data capture).

To sum up, the contributions include:

• Experimentation with a data collection task engag-
ing observers in viewing text and video content to
elicit laughter and smile reactions under genuinely
amused vs. negative emotional conditions;

• Demonstration of transfer learning as a viable
method to make affect recognition more nuanced
when faced with modest data, with laughter detec-
tion as a use case;

• Use of participant self-report data to analyze in-
terpretation of laughter and smile reactions when
people are genuinely amused vs. negative.



II. SELECT PRIOR WORK

A. Active vs. Passive Emotion Elicitation

Data in affect recognition research often take three
forms: acted/posed, induced, and naturalistic [4]. Acted
data are acquired by asking individuals to act out a
particular affective state; while straightforward to obtain,
acted data are the least ecologically valid [2]. Naturalis-
tic data are obtained from real, experienced emotions.
These data are reliable but difficult to retrieve [4].
Induced emotional data are produced using a controlled
task using active or passive elicitation.

Active elicitation methods ask study participants to
perform activities [4], while passive elicitation methods
can ask participants to view stimuli. Passive methods
tend to include emotional images and emotional film
clips, with film clips eliciting stronger emotional re-
actions than images [4]. Schaefer et al. [5] and Gross
et al. [6] presented a database of film clips and films,
respectively, that effectively elicited a range of emotions
in participants. These resources motivated us to use
a visual task. We used videos reported to be highly
amusing [7], and selected frustrating and uncomfortable
videos to complement the stimuli by consensus between
two researchers.

B. Emotion Self-report

Accurately reporting on emotional reactions is another
challenge. Third party emotion labeling often does not
align with participant self-reported labeling [8]. Often,
self-report questionnaires are used to guarantee accu-
rate emotional labels [9]. It is important to record the
intensity of emotion and to measure against a baseline
neutral affect [10]. Individuals who are high in social
desirability may be less willing or capable of reporting
negative emotional states [11], [12]. Furthermore, wait-
ing too long before gathering emotional response data
leads to systematic biases in respondent recall [13].

C. Automated Smile Detection

While spontaneous smiles are characteristic of amuse-
ment, they are also induced by pain or frustration
[2], [14]. Prior research has begun to examine the
distinguishing characteristics between smiles elicited
under different emotional contexts. For example, Hoque
et al. found that people smile in 90% of frustrating
interactions [2]. McDuff et al. investigated whether
features extracted from a time series produced by a smile
detector could predict whether a user would want to
rewatch an online video [15].

D. Automated Laughter Detection

Previous work has shown that laughter detection
can be achieved with high accuracy using deep neu-
ral networks. Ryokai et al. trained a 3-layer neural
network to detect instance of laughter with 88% per-
frame accuracy [16]. Szameitat et al. demonstrated that
laughter can be an expression of many emotions beyond

just joy [17], additionally finding that laughter from
four specific emotions—joy, schadenfreude, tickling,
and taunt—can be differentiated based on 12 acoustic
parameters, achieving a mean classification accuracy
of 84%. In contrast, humans were able to distinguish
between these four laughter types only 44% of the time
[18]. Furthermore, laughter was always found to be
correlated with positive valence [7].

III. METHODS

We conducted an experiment on a university campus
in the Eastern US with 30 subjects including 12 male, 17
female, and 1 non-binary, aged 18-29. According to our
pre-experiment demographic questionnaire, our subjects
were 34% White (non-Hispanic), 30% Asian/Pacific Is-
lander, 20% Hispanic or Latino, 13% African-American
or Black, and 3% other. Subjects watched a series of 48
videos lasting 18-86 seconds each, with stimuli selected
to elicit amusement, frustration, or discomfort. After
watching each video, participants filled out a post-clip
survey and then completed an affect palate cleanser
[7]. The post-clip survey, as seen in Table I, recorded
users’ valence, inspiration, frustration, amusement, and
discomfort on a 5-point scale. We used a condensed and
modified short-form version of the Positive and Negative
Affect Schedule (PANAS) [19]. We opted to use this
condensed instrument over PANAS and SAM [20], in
order to reduce the risk of participant fatigue. We
recorded data on inspiration to equalize positive and
negative survey questions and understand whether we
managed to primarily induce the emotions that we
were interested in. Each palate cleanser task involved
answering a simple multiple choice question about an
image (e.g. How many dinner plates at the table contain
spaghetti?). These quick tasks were intended to bring
the subject’s emotional state back to neutral. Participants
also filled out a pre-experiment survey which collected
demographic information.

Videos included intermittent simulated buffering for
up to 60% of the video duration in order to explore
buffering’s impact on eliciting passive frustration. Most
videos with buffering were intended to be emotionally
neutral to understand the effect of buffering without the
influence of strong emotions. Participants were asked
whether they suspected that the buffering was simulated.

As a second task, we selected 10 texts that were
intended to elicit amusement, frustration, or discomfort.
This second task was used to explore whether text
stimuli could elicit these emotional experiences. Each
text was one to three paragraphs long and was similarly
followed by a post-clip survey and a palate cleanser task.

A. Data Collection Experiment
We collected video and audio recordings of partic-

ipants as they completed the experiment. Video was
collected using a Logitech C922x Pro Stream Webcam
recording at a resolution of 1080p. Audio was col-
lected using a TASCAM DR-100MKIII recorder with a



Fig. 1. Model evaluation protocol.

Shure SM31FH-TQG microphone worn by the subject.
Participants wore headphones to isolate stimulus audio
from participant audio. The experiment was carried out
in iMotions [21] which recorded survey and cleanser
responses. We also used iMotions to extract facial data
from raw participant video. We synced the beginning of
the first study task with the audio and repeated for the
second task.

B. Model Evaluation Protocol

Our evaluation protocol is depicted in Figure 1. To
evaluate each modeling task, we split the participants
into a training and a test set. The size of the training
and test sets varies for each modeling task. These
sets serve as the outer folds. In the first outer fold,
we conducted a computationally expensive leave-one-
subject-out cross-validation on the training set in order
to tune hyperparameters for the model. The test set
of this first fold is a completely held-out test set. We
include accuracy on it as a metric of model accuracy
on never-before-encountered data. However, to account
for possible bias given modest data size, we also include
the model’s average accuracy when trained (on the same
hyperparameters) and tested on all outer folds as a
second metric. We randomly re-select our held-out test
set for every training condition we run unless otherwise
specified.

C. Laughter Detection Experiment

Understanding the less canonical nuances of an af-
fective phenomenon often involves exploring modest
data. Therefore, we investigated transfer learning (TL),
a technique in which a model’s weights trained to solve
one problem are used to initialize a solution to a different
but related problem or domain, to develop an improved
laughter detection model. To determine the merits of
this approach, we compared laughter detection mod-
els produced under three training conditions. The first
condition applied a pre-trained three-layer feedforward
neural network trained to detect laughter by Ryokai et
al. [16], without any further training. In the second
condition, we initialized an identical architecture with
random weights and trained a model using training data
from our modest dataset. Finally, in the third training

condition, we used a TL approach in which we began
with Ryokai et al.’s [16] pre-trained weights and fine-
tuned them using training data from our audio data. In
all three training conditions, we trained and evaluated
according to the model evaluation protocol described
above.

In order to create a dataset of laughter vs. non-
laughter instances from our study, we applied Ryokai
et al.’s [16] laughter detection model on our raw au-
dio data with a 20% confidence threshold to identify
potential laughter instances in our data. This resulted
in 1584 potential laughs. Two researchers then listened
to these potential laughs and hand-annotated them as
either laughter or non-laughter with an agreement rate of
over 96%. Adjudication resolved inter-annotator discrep-
ancies. Mel-Frequency Cepstrum Coefficients (MFCCs)
were computed for the laughter and non-laughter in-
stances and used as input data for the modeling task.
MFCCs are compact feature representations of short
frames (i.e. 10-25ms) of audio that are commonly used
in speech signal processing.

Using an open-source implementation by Ryokai et al.
[16], we obtain 74 consecutive 10ms frames of audio,
each represented by a 39-dimensional vector for a total
of 2886 features per data instance.

Twenty one participants laughed in the study, so we
split participants into groups of 18 for training and 3
for training, for each of the outer folds described in
Section III-B. Our final dataset had approximately 87000
feature vectors, evenly balanced between laughter and
non-laughter noise (the non-laugher class was undersam-
pled to provide a balanced dataset).

D. Valenced Laughter Prediction Experiment

For our second modeling task, we examine the ef-
fectiveness of using Ryokai et al.’s [16] architecture
initialized with random weights and trained using only
our dataset, as well as a TL approach with MFCCs
as features. For this task, only laughter instances from
the laughter detection task were used, with each laugh
labeled as one of two classes that capture emotional
valence. Laughs that received a 3 or above for frustration
or discomfort were labeled as negative and the rest were
labeled as amused (positive).

Ten participants had instances of negative laughter,
so we split training and test data into sets of size
8 and 2 participants, respectively. We proceeded to
evaluate the model using the strategy described above
in Section III-B. For each participant, we undersampled
the laughter class that had more vectors.

IV. RESULTS

A. RQ1: Can laughter and smiles be elicited passively
under genuine amusement vs. negative emotions (frus-
tration/discomfort)?

1) Self-reported Amused and Negative Emotional Re-
actions: Active methods have typically been used to



Fig. 2. Comparison of text and video stimuli self-report distributions. Both elicited a range of positive and negative reactions. Non-valence
reactions were skewed towards the lower end of the self-report spectrum. Valence appears normally distributed because participants typically
remain neutral (n = 1440 for video and n = 300 for text).

Fig. 3. Aggregated distribution of all participants’ self-report ratings
on a 5-point scale considering both video and text stimuli (n =
1740), with relative frequency on the left y-axis and frequency on
the right y-axis. Stimuli elicit all rating levels for each of the ratings
tasks (inspired, frustrated, amused, uncomfortable, and valence), with
similar emotional distributions for negative and positive emotions.
Valence spans negative to positive and as such is not skewed leftwards.

elicit frustration and discomfort. In contrast, we ex-
plore passive methods. The main elicitation strategy
was content selection; roughly half of the video stimuli
were intended to elicit amusement, and roughly half
were intended to elicit frustration or discomfort. Of
the videos intended to elicit frustration, some explored
adding buffering to relatively emotionally neutral videos.

The results support prior research indicating videos’
ability to passively elicit amusement behaviors [7], [22],
including smiles and laughter. Using participants’ self-
report as our assessment standard (Table I) we found
that 25% of the video stimuli were rated as 4 or above
for amusement, and 39% were rated as 4 or above for
valence. In contrast, inspiration (included for rating as
a control) scored low, suggesting that we successfully
induced the target emotion.

Our results show that the study’s stimuli were also
effective in passively eliciting frustration and discomfort
(see Figure 3). In response to video stimuli, participants
self-reported high frustration (responding with 4 or 5
frustration on the post-clip survey) 15% of the time,
high discomfort (a 4 or 5 self-report value) 18% of the
time, and negative valence (a 1 or 2 valence reaction)
38% of the time.

2) Text Stimuli: Unlike previous studies, we explore
whether text stimuli can trigger amusement. We found
that 13% of our texts were rated as 4 or above for
amusement, 20% were rated 4 or above for valence,
whereas only 2% were rated 4 or above for inspiration.

Moreover, in reaction to texts, participants reported
high frustration 7% of the time, high discomfort 13%
of the time, and negative valence 30% of the time.

Thus, we managed to elicit genuine amusement re-
actions from both video and text stimuli (Figure 2).
Nonetheless, the self-ratings for text stimuli were less
intense. This may have been affected by the fact that
the text task came after the viewing task.

3) Impact of Buffering: Results show that buffering
is not indicative of increased frustration or discomfort.
This may be because buffering was primarily added to
neutral videos.

4) Presence of Smiles under Negative Emotion: Our
results show that smiles were present across all valence
ratings, and for highly amusing, highly frustrating, and
highly uncomfortable content. Figure 4 contrasts smiles’
self-report ratings against valence scores generated by
iMotions, equally binned into five levels.

The right panel of Figure 4 shows a clear relationship
between iMotions’ smile confidence and its outputted
valence metric, but this is not supported by our self-
report data. Our data show more spread in the confidence
of smiles at very high valence (5), with some smiles
with confidence above 70 (of 100) at all self-reported
valence values. In fact, there is a cluster of smiles with
confidence around 75 at a valence of 1. In stark contrast,
the iMotions valence metric shows that stimuli viewings
with a valence of 4 or 5 as reported by iMotions
never have a mean smile confidence below 20 or 50,
respectively, and stimuli with an iMotions valence of
1 or 2 never have a mean smile confidence above 30.
This suggests that iMotions is unduly relying on smiles
as a direct indicator of positive emotion, which does not
align with the users’ self-reported valence.

To study this further, we observed how iMotions de-
tects smiles with reported confidence levels ranging from
0 to 100 by participants’ self-reported rating category.
Figure 5 shows that while there is a more substantial
spread of high confidence smiles detected for amusing
stimuli, there are also plenty of smiles detected with



Fig. 4. These graphs compare mean smile confidence output from
iMotions to two different valence metrics. The left panel has as its
x-axis self-reported valence by each participant for each stimulus,
whereas the right panel’s x-axis is valence as estimated by iMotions.
Each point represents a user engaging with one stimulus (n = 1740).
The iMotions software outputs a valence between -100 and 100, so
scores are binned equally into five bins for the comparison.

Fig. 5. Average iMotions smile confidence during stimulus viewings
self-reported to be highly frustrating, amusing, or uncomfortable (rated
4 or 5) (n = 206 for frustrated, n = 352 for amused, and n = 302 for
uncomfortable). Other viewings were below the 4-5 range.

confidence above 50 for highly negative content.
5) Presence of Laughter under Negative Emotion:

Laughter occurred when participants self-reported both
negative and positive emotions. We identified 207 total
occurrences of laughter and extracted these via hand-
annotation. Most instances occurred when participants
reported high valence and high amusement: 74% of
laughter reactions occurred in stimuli where subjects
rated their experience high (4 or 5) for amusement,
and 82% occurred during similarly highly rated valence
reactions. Only 16% occurred when subjects reported
high inspiration. In contrast to previous studies, we
found participants also laughed during negative emotion:
5% occurred when highly uncomfortable, 6% when
feeling highly frustrated, and 6% when reporting a 1
or 2 on the valence rating scale.

B. RQ2: Can transfer learning improve laughter detec-
tion?

1) Laughter Detection using Transfer Learning: We
computed performance results on two test conditions
for laughter detection models trained under the three
conditions described in Section III-C.

Table II shows the results (and Table III shows the
confusion matrix for one test condition). The pre-trained
laughter detection model [16] reached 61% accuracy on

TABLE II
PERFORMANCE ACCURACY FOR THE LAUGHTER DETECTION

MODEL TRAINED UNDER THREE TRAINING CONDITIONS.

Laughter Detector Single Acc. Rotating Acc.
Pre-Trained 61% 67% (σ = 3.3)

Newly Trained 48% 70% (σ = 17.1)
Transfer Learning 83% 85% (σ = 5.6)

TABLE III
CONFUSION MATRIX FOR SINGLE HELD-OUT TEST SET FOR

LAUGHTER DETECTION UNDER TL CONDITION (n = 17489). 83%
ACCURACY, AND 0.9 RECALL FOR THE LAUGHTER CLASS.

Pred. Non-laugh. Pred. Laughter
True Non-laugh. 6737 2066
True Laughter 864 7822

the held-out test set and 67% accuracy on the rotating
test set, with a standard deviation of 3.3. Ryokai et
al.’s [16] architecture trained only on our data reached
48% accuracy on the held-out test set and 70% accuracy
on the rotating test set, however with a large standard
deviation of 17.1. We also noted that single test set
accuracies varied widely.

Using TL to fine-tune Ryokai et al.’s [16] pre-trained
network weights using training data from our experiment
yielded 83% accuracy on the held-out test set and
85% accuracy on the rotating test set, with a standard
deviation of 5.6. These results indicate that TL is an
effective strategy when only modest data is available
for affect recognition.

C. RQ3: What differences, if any, can characterize peo-
ple’s laughter and smiles when they experience genuine
amusement vs. negative frustration/discomfort?

We treat amusement and frustration/discomfort as two
distinct classes, under the assumption that the associated
valence is a viable proxy. This decision is supported by
our findings that self-reported frustration and discomfort
were positively correlated (Spearman’s correlation: 0.82)
and were each negatively correlated with amusement
(Spearman’s correlations: -0.81, -0.86). Furthermore, we
also found that frustration and discomfort were nega-
tively correlated with valence (Spearman’s correlations:
-0.58, -0.63), while amusement was positively correlated
with valence (Spearman’s correlation: 0.79).

Classifying Laughter as Genuinely Amused vs. Neg-
ative: As shown in Table IV neither the newly-trained
nor the TL conditions effectively classified laughter as
elicited under amusement vs. negative emotion (confu-
sion matrices are in Table V). The held-out test sets
for this experiment are randomly selected using the

TABLE IV
AMUSED VS. NEG. LAUGHTER CLASSIFICATION.

Classifier Single Acc. Rotating Acc.
Newly Trained 43% 54% (σ = 16.2)

Transfer Learning 67% 59% (σ = 10.1)



TABLE V
LAUGHTER CATEGORIZATION CONFUSION MATRIX FOR A SINGLE

HELD-OUT TEST SET IN NEWLY TRAINED CONDITION AND TL
CONDITION ON THE LEFT AND RIGHT OF EACH CELL,

RESPECTIVELY (n = 7536).

Pred. Negative Pred. Amused
True Negative 2057 | 4455 3404 | 1006
True Amused 881 | 1451 1194 | 624

same random seed to enable better comparison between
training conditions.

V. DISCUSSION AND CONCLUSION

We hypothesized that affect recognition systems, like
iMotions, can misconstrue smiles and laughter experi-
enced during negative emotions as signals of positive
emotion. To begin to test this, we compared partici-
pants’ self-reported valence and the iMotions’ estimated
valence to the smile confidence outputted by iMotions.
We found that iMotions indeed assumes a strong posi-
tive relationship between smile confidence and valence,
whereas we find no clear relationship between smile
confidence and participants’ actual self-reported valence.

We introduce a method to scalably induce these
emotional reactions passively. Short videos and text
stimuli, coupled with readily available webcams and
microphones, can be used to gather human laughter and
smile data under both positive and negative emotions.

Additionally, we demonstrate the utility of TL in
improving affect modeling on modest data, showing that
using a TL strategy could improve the average efficacy
of a pre-trained laughter detection model. This can be
leveraged to enhance recognition models of affective
behaviors in settings where new, more varied data is
difficult to obtain.

We found it a challenge to classify positive vs.
negative laughter, suggesting that exploring features
capable of distinguishing spontaneous laughs induced
under amused and negative emotion remains an open
problem. A possible extension would be to explore other
features like those considered in Szameitat et al. [17]
with our naturally elicited dataset.

ACKNOWLEDGMENTS

This material is based upon work supported by the
National Science Foundation under Award No. IIS-
1851591. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] M. O. Riedl, “Human-centered artificial intelligence and machine
learning,” Human Behavior and Emerging Technologies, vol. 1,
no. 1, pp. 33–36, 2019.

[2] M. E. Hoque, D. J. McDuff, and R. W. Picard, “Exploring
temporal patterns in classifying frustrated and delighted smiles,”
IEEE Transactions on Affective Computing, vol. 3, no. 3, pp.
323–334, 2012.

[3] J. Riseberg, J. Klein, R. Fernandez, R. W. Picard et al., “Frus-
trating the user on purpose: Using biosignals in a pilot study to
detect the user’s emotional state.”

[4] J. Kory and S. D’Mello, “Affect elicitation for affective comput-
ing,” in The Oxford Handbook of Affective Computing.

[5] A. Schaefer, F. Nils, X. Sanchez, and P. Philippot, “Assessing
the effectiveness of a large database of emotion-eliciting films:
A new tool for emotion researchers,” Cognition and Emotion,
vol. 24, no. 7, pp. 1153–1172, 2010.

[6] J. J. Gross and R. W. Levenson, “Emotion elicitation using
films,” Cognition & Emotion, vol. 9, no. 1, pp. 87–108, 1995.

[7] M. Saraf, T. Roberts, R. Ptucha, C. Homan, and C. Oves-
dotter Alm, “Multimodal anticipated versus actual perceptual
reactions,” in 21st ACM International Conference on Multimodal
Interaction, October 2019.

[8] M. Muszynski, L. Tian, C. Lai, J. Moore, T. Kostoulas, P. Lom-
bardo, T. Pun, and G. Chanel, “Recognizing induced emotions
of movie audiences from multimodal information,” IEEE Trans-
actions on Affective Computing, 2019.

[9] L. F. Barrett, “Feelings or words? understanding the content in
self-report ratings of experienced emotion.” Journal of Person-
ality and Social Psychology, vol. 87, no. 2, p. 266, 2004.

[10] J. Rottenberg, R. D. Ray, and J. J. Gross, ser. Series in affective
science. New York, NY, US: Oxford University Press, 2007,
ch. Emotion elicitation using films., pp. 9–28.

[11] R. D. Lane, G. L. Ahern, G. E. Schwartz, and A. W.
Kaszniak, “Is Alexithymia the Emotional Equivalent of
Blindsight?” Biological Psychiatry, vol. 42, no. 9, pp. 834–844,
Nov. 1997. [Online]. Available: https://doi.org/10.1016/S0006-
3223(97)00050-4

[12] D. L. Paulhus and O. P. John, “Egoistic and moralistic biases in
self-perception: The interplay of self-deceptive styles with basic
traits and motives.” Journal of Personality, vol. 66, no. 6, pp.
1025–1060, 1998.

[13] T. R. Mitchell, L. Thompson, E. Peterson, and R. Cronk, “Tem-
poral adjustments in the evaluation of events: The “rosy view”,”
Journal of Experimental Social Psychology, vol. 33, no. 4, pp.
421–448, 1997.

[14] M. Kunz, K. Prkachin, and S. Lautenbacher, “Smiling in
pain: Explorations of its social motives,” Pain Research
and Treatment, vol. 2013, p. 8, 2013. [Online]. Available:
http://dx.doi.org/10.1155/2013/128093

[15] D. McDuff, R. el Kaliouby, D. Demirdjian, and R. Picard,
“Predicting online media effectiveness based on smile responses
gathered over the internet,” in 2013 10th IEEE International
Conference and Workshops on Automatic Face and Gesture
Recognition (FG), April 2013, pp. 1–7.
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