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Abstract—Electroencephalography (EEG) signals contain oc-
ular artifacts which degrades the overall performance of any
neuro-engineering based analysis or applications like brain com-
puter interfaces. In general, independent component analysis
(ICA) is used for removing blinks. However, that requires expert
intervention. This paper aims at cleaning the eye blink related
artifacts automatically without any manual interventions. We
propose a novel approach based on multivariate extension of
variational mode decomposition (VMD), called MVMD, for the
said purpose. The mode-alignment property of MVMD has been
utilized to align the joint/common oscillations across multiple
channels of a given single mode. The detection of blinks is found
to be better in the components of MVMD over the raw EEG
signal. The proposed approach is first validated on synthetically
generated EEG data and then it is tested on two publicly available
real EEG datasets. Results confirm usability of the proposed
approach over ICA technique. An average correlation of 0.938
(±0.0221) and 0.9869 (±0.0094) are obtained for the synthetically
generated and high end EEG data, respectively, in the non-blink
regions. We obtained approximately 90% classification accuracy
in detecting fatigue on CogBeacon dataset. This accuracy is
comparable with that obtained using state of the art approach,
with the added advantage of not requiring manual interventions
of experts.

Index Terms—EEG, MVMD, eye blink, EOG, ICA

I. INTRODUCTION

Electroencephalogram (EEG) is a non-invasive technique
for recording the conglomeration of electric potential gener-
ated in neurons. Currently, this technique is being used for
various medical and non-medical applications such as brain-
computer interfaces [1]. However, EEG signals are easily
contaminated by other signals like electromagnetic radiations
or power line noise that creates inductive currents in the cables
which are connected to the participant. With the knowledge of
the signal characteristics, such noise can be easily eliminated
[2]. Another major artifact source is the electrophysiological
responses of other organs like eye, heart, muscles and so
on. Presence of these artifacts degrades the performance of
EEG-based applications and analysis. Eye-blinks and eye
movements are the most problematic artifacts that affects EEG
signals. Removal of blink artifacts is challenging as these are
non-stationary and non-linearly mixed with EEG. In some
cases, the electroocculography (EOG) signal has been used
as the reference for detecting the blink artifacts in the EEG
data. However, this requires a separate sensor for recording
the horizontal and vertical eye movements. In this paper, we
have proposed a novel approach for removing the eye blink
related artifacts without using any EOG sensor. The proposed

method is an extension of the multivariate variational mode
decomposition (MVMD) [3] which aligns the decomposed
signals with common frequencies across modes.

The techniques used for EEG blink removal can be broadly
classified into regression-based, wavelet-based, filtering, blind
source separation (BSS) and empirical mode decomposition
(EMD)-based [4]. Various hybrid models involving fusion of
these techniques have been explored [4]. Regression-based
approaches are easier to use, however, the decision to chose
appropriate model orders, reference channels, limits their
usage. Wavelet-based methods fail in identifying the artifacts
completely that gets overlapped with the spectral properties
of the signal. Conventional filtering fails to effectively remove
the undesired blink components from the EEG signal as they
are oscillated with time-varying frequency and are non-linearly
generated [5]. Most widely used BSS approach is independent
component analysis (ICA) [6]. The method is well-suited for
EEG data with large number of channels and samples. A
major shortcoming here is the manual intervention required
for identifying the noisy components. Approaches involving
decomposition methods like EMD lack proper mathematical
grounding and its performance gets degraded when the input is
noisy [7]. Various multivariate extensions of mode decomposi-
tion algorithms have been used recently in [5], [2]. However,
they fail to properly align the modes in terms of common
frequencies across modes [3].

The authors in [3] have used MVMD to separate out the
alpha rhythms (8-12 Hz) from a multi-channel EEG. The
mode-alignment property of MVMD has been utilized for
the said purpose. This motivated us to systematically extend
this approach for detecting the low-frequency blink artifacts.
Results show that the proposed approach can be used to detect
blinks automatically and successfully. Hence, the main novelty
lies in the automated detection and removal of blink artifacts
from EEG signals based on the intrinsic mode functions
(IMFs) generated by MVMD algorithm. The detection of
blink related peaks using specific IMFs is found to be an
advantage over directly detecting them from the raw EEG
signals. Moreover, the EEG related information in the non-
blink region is relatively unaffected as compared to ICA-
based approach resulting in higher correlation between the
raw and processed signals. The proposed method does not
affect the important frequency bands in EEG signal after the
blink removal, whereas ICA alters the signal in some places.
Also, proposed method can be used on low resolution devices



Fig. 1. Blink removal processing pipeline

and on any number of channels without compromising the
performance unlike ICA which requires many channels to
work effectively.

II. METHODOLOGY

Our proposed blink removal approach along with that using
ICA (state of the art approach) has been depicted in Fig. 1.
The raw EEG signal has been processed for:

1) blink removal using ICA: the steps involved
are- a) decomposition of time series EEG signal
into independent components using EEGLAB toolbox
(https://sccn.ucsd.edu/eeglab/index.php; b) Identification
of components corresponding to eye blinks. This is done
manually by an EEG expert by analysing scalp topology
plots and the corresponding power spectrum.

2) blink removal using MVMD (Proposed approach):
The steps involved in our proposed approach are: a) de-
composition of time series EEG signal into intermediate
modes/IMFs; b) detection of blink regions in the IMFs.

In case of ICA, the blink components are removed whereas in
our proposed method, the detected blink regions are processed.
Next the signal is reconstructed to get the blink-free EEG
signal. Finally, we have compared the blink-free EEG signals
obtained by our proposed method and that obtained using ICA.

A. Multivariate Variational Mode Decomposition

Multivariate Variational Mode Decomposition (MVMD) [3]
is an extension of variational mode decomposition (VMD) [8]
algorithm. In VMD, a one dimensional signal is decomposed
into K number of modes uk(t) as, x(t) =

∑K
k=1 uk(t),

so that, the sum of the bandwidths of all the modes is
minimized and the signal gets reconstructed at least in least
square sense or ideally fully, by summing up the K modes
together. MVMD [3] extends this approach of VMD to
multivariate data x(t) = [x1(t), x2(t), x3(t), ..., xm(t)] by
extracting K multivariate modulated oscillations uk(t) with
uk(t) = [u1(t), u2(t), u3(t), ..., um(t)]. The resulting cost
function is given by,

minimize
{uk,m},{ωk,m}

{
∑
k

∑
m

||∂t
[
ejωktuk,m+ (t)

]
||22} (1)

Algorithm 1 Blink artifact removal using MVMD
Input: Raw EEG data: C channels each at sampling rate fs.
Let each channel last from time-index n = 0 to n = N − 1.
Output: EEG data, vc[n], c ∈ {0, . . . , C − 1}, of the same
dimensions as input without blink artifacts
Procedure:

1: Decompose the given multi-channel EEG data into K
IMFs using MVMD. Denote the cth channel’s kth IMF by
uk,c[n].

2: b[n]← 0, n ∈ {0, . . . , N − 1}
3: for k = 0 to K − 1 do
4: if φ(uk,1[·]) > δ and φ(uk,1[·]) ≤ ∆ then
5: b[n] = uk,1[n], n ∈ {0, . . . , N − 1}
6: break
7: end if
8: end for
9: Detect peaks and peak-widths in b[n]

10: I ← {}
11: for each detected peak (location p, width w) do
12: I ← I ∪ {p− w, . . . , p+ w}
13: end for
14: for c = 0 to C − 1 do
15: for k = 0 to K − 1 do
16: if φ(uk,c[·]) ≤ ∆ then
17: uk,c[n], n ∈ I ← Data interpolated from

uk,c[n], n /∈ I
18: end if
19: end for
20: vc[n] =

∑K−1
k=0 uk,c[n], n ∈ {0, . . . , N − 1}

21: end for

where uk,m+ is a complex valued signal with single frequency
(ωk) component across M channels, subject to the constraint
that

∑
k uk,m(t) = xm(t) with m = 1, 2, 3, ...,M . The

algorithm is beneficial due to i) mode alignment property,
ii) quasi-orthogonality across modes iii) separation of mul-
tivariate modulated oscillations inherent in the data and iv)
robustness to noise.



B. Proposed extension of MVMD

Algorithm 1 details the proposed blink artifact removal
approach using MVMD. The algorithm uses two thresholds
δ = 2 Hz and ∆ = 4 Hz based on the observations made in
Fig. 2. The function φ(u[·]) returns the dominant frequency of
a signal (or IMF), u[·]. The square brackets indicate that the
algorithm is applied on digital signals.

Our proposed Algorithm 1 works as follows. First, the
EEG signals are decomposed into K IMFs per channel using
MVMD. The length of each IMF is equal to the original signal
length N . The number of IMFs should be large enough so
that each IMF occupies only a small band of frequencies and
consequently blink detection becomes easier. Empirically, we
found that 10 IMFs are sufficient (although 20 also yields
similar results). Normally, ocular artifacts like eye blinks and
eye movements are represented as low frequency (below 4Hz)
signals [9]. Hence a straightforward approach would be to re-
ject all IMFs having dominant frequency below that. However,
this would also remove some low frequency and slow-varying
useful components of the EEG signal. Thus, we have tried to
identify the blink regions from IMFs. Eye blinks have higher
amplitude compared to normal EEG signal but conventional
peak-detection algorithm on the raw EEG signal produces
many false alarms. However, the IMFs that correspond to
blinks are smoother due to the band-limited spectral content.
As a result, peak-detection works better on these IMFs. Due
to the mode-alignment property of MVMD, the dominant
frequency for a given IMF is similar across channels and hence
it is sufficient to consider the first channel’s IMFs. Fig. 2 shows
a raw EEG data along with few example IMFs. We note that
IMFs having lower dominant frequency are smoother than the
original signal, hence, peak-detection algorithms works better
in this case. It is evident from Fig. 2 that blinks are most
prominent in IMFs having dominant frequency closer to 4
Hz (i.e. Fig. 2 (c)). Thus, we propose that IMFs that have
the dominant frequency in the range (δ = 2,∆] are chosen
for peak detection. In our implementation, the findpeaks
function in Matlab is used to detect peaks and their widths.
This procedure is explained in Steps 2 to 9 in Algorithm
1. For each detected peak, the corresponding width is used
to determine the duration of the blink region as explained
in steps 10 to 13 in Algorithm 1. All IMFs that have the
dominant frequency below ∆ Hz are modified as follows:
samples outside the blink regions are linearly interpolated to
replace the samples inside the blink regions. The reconstructed
blink free EEG signal is obtained by adding the modified IMFs
with unmodified ones. This procedure is explained in Steps 14
to 21 in Algorithm 1.

C. Datasets used

We have used 3 different datasets in our present work.
1) Synthetically generated EEG data: We generated syn-

thetic EEG signal using the tools provided in [10]. First a
clean EEG data is generated and then blinks are added at
known locations. 10 such 4-channel EEG data is created with
a sampling frequency of 220 Hz and various SNR values.

Thus, in this dataset, we have information about blink start
and end locations. This effectively helps in the validation of
blink removal algorithms.

2) High end EEG: Covert Shift Dataset: This dataset [11]
aims to study whether visual attention shifts in different pairs
of directions can be differentiated via alpha wave activity
in the brain. 8 healthy subjects were asked to fixate and
covertly shift attention alternately. A 60-channel actiCAP EEG
device is used to record brain activations at a sampling rate
of 1000 Hz, along with 2-channel EOG. We have used this
dataset to compare the performance of the proposed method
for blink removal taking EOG channels as ground truth for
blink positions.

3) CogBeacon Dataset: CogBeacon1 is a publicly available
multimodal dataset [12] consisting of 76 sessions of EEG data
collected from 19 male and female users performing different
versions of the Wisconsin Card Sorting Test (WCST) [13],
[14] for testing the ability to display flexibility in thinking.
The system provides feedback on whether a particular match
is right or wrong. The matching rule changes frequently, and
the user has to figure out the rule based on the feedback given.
Researchers also created two modified versions (V1 and V2),
based on the number of available options for the user to choose
the cards, in each turn of this game, so as to increase the
computational demands of the task. The raw EEG data was
captured using a consumer grade Muse headset 2, sampled
at a frequency of 220 Hz; from 4 EEG electrodes placed at
locations AF7, AF8, TP9, and TP10 respectively, as per
the International Standard 10-20 system of EEG electrode
scalp locations. This is accompanied by fatigue self report
- indicated by a push button placed in front of the subject
while performing the task. The dataset also contains facial key-
points captured using a camera and user performance statistics
during the task. Authors used these information to classify the
FATIGUE and NO-FATIGUE states of a subject with fatigue
self-report taken as ground truth. We have used our proposed
approach on this dataset to remove blink and compare the
overall classification accuracy afterwards.

D. Evaluation metrics

We have used following metrics for quantitative evaluation
of our proposed approach with respect to ICA-based approach.
Signal-to-error ratio (SER) [15]: SER is a measure of how
much the non-blink EEG regions are getting altered by the
noise cleaning technique and is expressed as,

SER =
1

M

M∑
i=1

pi × 10 log10

E{(x2i )}
E{(d̂2i )}

(2)

where M denotes the number of EEG channels, x is the raw
EEG data and d̂ is the error in processed EEG data in the non-
blink region given by d̂ = (raw EEG - filtered EEG). Ideally,
in the non-blink regions, the processed EEG should be same

1https://github.com/MikeMpapa/CogBeacon-
MultiModal Dataset for Cognitive Fatigue

2https://choosemuse.com/what-it-measures/



Fig. 2. (a) Original EEG signal for channel AF3, and example IMFs with different dominant frequencies (φ): (b) to (d)

as the raw EEG giving a value of d̂ = 0. E{·} is the power
of the signal and p is the weight obtained from each channel
defined as,

pi = E{(x2i )}|corruptedsegments − E(x2i )|cleansegments (3)

Higher values of SER indicates better noise cleaning perfor-
mance.

Correlation: the correlation between the raw EEG and the
processed EEG in both blink and blink-free segments are also
considered as a metric.

Variance-based metric (V ): it is defined as the ratio of
variance in the processed blink segment to the variance in the
blink segment. Lesser the value of V , better is the performance
of the noise cleaning approach.

Percentage change in band power: this is calculated
for theta, alpha and beta bands. Theoretically, these bands
are devoid of blink artifacts and hence, any blink removal
approach should not alter these band powers.

Classification accuracy: finally we computed the classifica-
tion accuracy of detecting fatigue and non-fatigue states using
CogBeacon dataset. This helps to establish the importance of
blink removal and its contribution in the overall assessment of
cognitive states from EEG signal.

III. RESULTS AND DISCUSSIONS

This section details the outcomes of our proposed approach
on various datasets.

A. Performance on simulated dataset

In synthetically generated EEG signal, the exact blink start
and end locations are known. Hence, certain metrics defined
in section II-D can only be calculated on synthetic EEG
data. Fig. 3 shows a sample plot of a raw EEG signal and
the corresponding blink-free signals obtained by ICA and
proposed method. It is observed that the signal obtained by
our method correlates well with the raw signal. Kindly note

Fig. 3. Raw and processed EEG signals after removing blink artifacts by
proposed approach and ICA. The blink region is circled

Fig. 4. Performance metrics for the proposed approach on synthetic data

in the figure that the ICA constructed signal alters the non-
blink portions, whereas, the proposed method corrects only the
blink portions. Similar plots are obtained for all the datasets
and are avoided for the sake of brevity.

Fig. 4 and 5 show various evaluation metrics calculated
on the simulated data. SER is high for our proposed method
compared to ICA which indicates better performance of our



Fig. 5. Percentage change in powers from blink-free EEG to the processed
EEG

approach. The correlation values obtained for both blink and
non-blink regions are also shown in Fig. 4. It is to be noted
that for both the regions, correlation is higher in case of our
approach compared to that in ICA-based method. Lesser value
of variance-based metric (V ) in Fig. 4 for the proposed method
is indicative of better performance in comparison to ICA.

The percentage change in the powers of theta, alpha and beta
bands from raw EEG and the filtered EEG in the non-blink
regions using the proposed and the ICA methods is depicted
in Fig. 5. It is observed that the change is less in the proposed
method in comparison to ICA. This can be attributed to the
fact that ICA rejects the whole component identified as blink
component and hence leads to loss of valuable data in the
frequency bins outside of the blinks also.

B. Performance on high end EEG dataset

Fig. 6 shows the boxplot of correlation values (across partic-
ipants) obtained in the non-blink EEG segments using ICA and
proposed method. The correlation values are averaged over 57
channels. The blink regions are identified using the vertical
EOG data. As the EOG data is affected by other surface
EMG signals and EEG, the exact start and end positions
of blink portions cannot be determined using EOG. Hence,
in this case, we have evaluated the blink removal approach
using correlation coefficient metric only. It is seen that the
correlation obtained is good in both the cases; however, the
proposed technique performs slightly better than ICA (ICA:
0.9788 (±0.0133) Max: 0.9954, Min: 0.9546 and Proposed:
0.9869 (±0.0094) Max: 0.9989, Min: 0.9690).

C. Performance on CogBeacon dataset

The raw EEG data is processed using our method and ICA
separately. The raw EEG data consists of 4 channels, with
average duration (mm:ss) 04:53 ± 01:43, giving 4 independent
components using ICA. Hence, we have decided to remove
a maximum of 2 components to avoid loss of valuable data
during the reconstruction phase. In the proposed method
IMFs are calculated and peaks are detected as explained in
Algorithm 1. Post reconstruction of the blink-free signal, non-
overlapping windows of duration 2 seconds is used to compute
a total of 80 features (20 features per channel). These features

Fig. 6. Correlation in the non-blink regions for high-end EEG

consisted of 9 morphological features such as 5 EEG band
powers (delta, theta, alpha, beta and gamma) along with 4
band power ratios of alpha, beta and theta bands. Remaining
11 are statistical features such as mean, variance, standard
deviation, kurtosis, skewness, maximum, minimum and three
Hjorth parameters [16]. In total 4749 NO-FATIGUE and 2193
FATIGUE instances were obtained. A total of 3 such feature
sets were generated using 3 different processing pipeline i.e.
a) Without blink removal method; b) Blink removal using
ICA; c) Blink removal using proposed approach. It is to be
noted that ICA method is applied on the whole dataset for
blink removal and then it is divided into windows for feature
extraction. Class imbalance is then handled using Synthetic Mi-
nority Over-sampling Technique (SMOTE) [17] on the whole
dataset prior to cross-validation. After performing SMOTE,
the new feature set consisted of 9135 instances of which 4386
are FATIGUE instances (about 48% of total instances). This
feature set is then used to learn a Random Forest classifier and
different metrics are calculated for performance evaluation.
Table I reports the classification accuracy and f -score obtained
using various approaches, using a 10-fold cross validation
technique averaged over 10 times. The upper half of the table
corresponds to the original, unbalanced dataset and the bottom
half to the balanced dataset obtained through SMOTE algo-
rithm. Without any blink removal, we obtain a classification
accuracy of 84.94%, which is quite high compared to that
reported in the state of the art [12] (i.e. 67%). One major
difference is that the authors in [12] have used band power
values provided by MUSE device itself, whereas, we have
derived beta, delta and gamma band powers from the raw
EEG. From Table I it is evident that blink removal using ICA
performs well in all cases, where as our proposed method is
also at par in all respects. The precision/recall values are in the
same range as the corresponding accuracy values and hence,
we have reported only the f -score.

D. Discussions

Results show that our proposed approach is able to suc-
cessfully clean the eye blinks from the raw EEG data. Our ap-



TABLE I
COMPARATIVE CLASSIFICATION ACCURACY ON COGBEACON DATASET

Approach Accuracy f -score

Without Blink Removal 84.94±0.95 0.89±0.01
Blink Removal using ICA 89.94±0.92 0.93±0.01
Blink Removal using proposed approach 87.92±0.96 0.91±0.01

Without Blink Removal 87.93±0.89 0.88±0.01
Blink Removal using ICA 91.97±0.85 0.92±0.01
Blink Removal using proposed approach 90.12±0.76 0.90±0.01

proach outperforms the state of the art ICA-based approach on
synthetically generated EEG dataset and low resolution EEG
dataset. The classification accuracy obtained on the publicly
available CogBeacon dataset is comparable with that obtained
using state of the art approach (ICA). However, our approach
is preferable over the ICA-based method for the following
reasons: i) the major concern in the ICA-based method is
that, once the independent components are obtained, it requires
manual intervention of an expert to identify the blink-related
components. Our approach can automatically detect blinks
from IMFs and hence, manual intervention is not required; ii)
Since the number of independent components that contribute
to form a complete EEG signal is not known, the number of
distinct components obtained post ICA is typically set as the
number of input EEG channels. Hence, for low resolution EEG
devices having small number of input channels (for example
4-channel MUSE device), the number of components is small.
In such a scenario, it is difficult to correctly identify the artifact
components and hence ICA does not perform well for such
devices; iii) ICA rejects the whole artifact component which
might contain other useful EEG components as well. Removal
of such components leads to removal of the accompanied EEG
data as evident from Fig. 3 and Fig. 5. In our approach, we
are only detecting the blink regions and reconstructing the
EEG signal after removing it. Hence, other useful information
contained in alpha, beta or theta bands are not affected. Lastly;
iv) ICA is a source separation-based algorithm, hence, requires
the spatial locations of the electrodes (i.e. spatial distribution
of the individual signal sources) as well a large number of
channels to perform well. On the other hand, our approach is
not restricted to any such constraint and can be applied to a
variety of EEG devices available in the market.

IV. CONCLUSIONS AND FUTURE SCOPE

In this paper, we have proposed a novel blink removal
approach to be applied on EEG signal. Presence of eye blinks
and other eye movement related artifacts in the EEG signal de-
grades the overall performance of any EEG-based applications.
We have decomposed the raw EEG signal into a number of
intermediate frequency components using MVMD technique
and then removed blinks from these components. The study
also throws light on the advantages of using certain IMFs
for detecting the blink portions over the raw EEG signals.
The reconstructed blink-free EEG signal so obtained has been
evaluated using various metrics. The proposed approach has

been applied on synthetically generated EEG signal as well
as on two publicly available EEG datasets. Results show
good correlation between raw and processed EEG signal.
We have also compared our approach with state of the art
ICA algorithm used for blink removal. The classification
accuracy obtained for CogBeacon dataset (90%) is comparable
with that obtained using ICA (91%). However, ICA needs
manual intervention for blink removal whereas our approach
can automatically detect the blinks. Moreover, unlike ICA,
our proposed approach can be applied successfully on low
resolution as well as on high resolution multi channel EEG
signals. In addition, the proposed approach does not affect
other EEG bands like alpha, beta, theta and hence, it is more
suitable for EEG-based cognitive analysis. In future, we would
like to apply this for various BCI or EEG-based applications
and analysis for improving overall system performance.

V. ACKNOWLEDGMENTS

We thank the authors of Cogbeacon and Covert Shift
datasets for making their recorded data publicly available.

REFERENCES

[1] Navalyal and Gavas, “A dynamic attention assessment and enhancement
tool using computer graphics,” HCIS, vol. 4, no. 1, pp. 11, 2014.

[2] Molla et al, “Separation of eog artifacts from eeg signals using bivariate
emd,” in ICASSP. IEEE, 2010, pp. 562–565.

[3] Hania Aftab et al., “Multivariate variational mode decomposition,” arXiv
preprint arXiv:1907.04509, 2019.

[4] Jiang and et al, “Removal of artifacts from eeg signals: a review,”
Sensors, vol. 19, no. 5, pp. 987, 2019.

[5] Molla et al, “Multivariate emd based approach to eog artifacts separation
from eeg,” in ICASSP. IEEE, 2012, pp. 653–656.

[6] R. Li and J. C. Principe, “Blinking artifact removal in cognitive eeg
data using ica,” in EMBC, Aug 2006, pp. 5273–5276.

[7] Gavas and et al, “Cognitive load and metacognitive confidence extraction
from pupillary response,” Cognitive Systems Research, vol. 52, pp. 325–
334, 2018.

[8] Dragomiretskiy and Zosso, “Variational mode decomposition,” IEEE
transactions on signal processing, vol. 62, no. 3, pp. 531–544, 2013.

[9] Aydemir et al, “Classifying various emg and eog artifacts in eeg signals,”
Przegl Elektrotechniczny, vol. 88, no. 11a, pp. 218–222, 2012.

[10] Yeung N et al, “Simulated eeg data generator,
https://data.mrc.ox.ac.uk/data-set/simulated-eeg-data-generator,” 2019.

[11] Treder et al, “Brain-computer interfacing using modulations of alpha ac-
tivity induced by covert shifts of attention,” Journal of neuroengineering
and rehabilitation, vol. 8, no. 1, pp. 24, 2011.

[12] Papakostas et al, “Cogbeacon: A multi-modal dataset and data-collection
platform for modeling cognitive fatigue,” Technologies, vol. 7, no. 2,
pp. 46, 2019.

[13] Monchi et al, “Wisconsin card sorting revisited: distinct neural circuits
participating in different stages of the task identified by event-related
functional magnetic resonance imaging,” Journal of Neuroscience, vol.
21, no. 19, pp. 7733–7741, 2001.

[14] Berg, “A simple objective technique for measuring flexibility in
thinking,” The Journal of general psychology, vol. 39, no. 1, pp. 15–22,
1948.

[15] Somers and Bertrand, “Removal of eye blink artifacts in wireless
eeg sensor networks using reduced-bandwidth canonical correlation
analysis,” Journal of neural engineering, vol. 13, no. 6, 2016.

[16] Seung-Hyeon et al, “A novel eeg feature extraction method using
hjorth parameter,” International Journal of Electronics and Electrical
Engineering, vol. 2, no. 2, pp. 106–110, 2014.

[17] Chawla et al, “Smote: synthetic minority over-sampling technique,”
Journal of artificial intelligence research, vol. 16, pp. 321–357, 2002.


