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Abstract—The accelerated growth in number of vehicles in
recent years has led to an increase in traffic congestion which
ends up affecting the quality of life of the citizens. Because of
this, emphasis has been placed lately on creating smart cities,
where traffic is controlled with the help of technology. Thus, in
this paper we address the issue of dynamic traffic control, by
proposing a solution where vehicles collect data and forward it
to the traffic lights, which can communicate with each other and
with the vehicles around them in order to dynamically change
their parameters based on the traffic flow, with the final goal
of reducing the time spent in traffic and implicitly the overall
congestion in the urban area. We then implement and test our
dynamic algorithm in the Sim2Car simulator, showing that it is
indeed able to reduce congestion in multiple scenarios.

Index Terms—VANET, traffic, dynamic, vehicular, routing,
crowdsensing

I. INTRODUCTION

In recent years, traffic congestion has become a critical
problem for many developing cities in the world [1]. The
situation will only worsen in time [2], becoming a real threat
on the quality of life. The main effect is the reduction in vehi-
cle speed, which results in higher commute times, larger fuel
consumption and increased pollution levels when compared
to fluid traffic. The reason for this phenomenon is that the
population is growing and people tend to prefer the benefits
of owning a car, such as easy personal mobility and a feeling
of security. However, this leads to problems in urban areas
where the existing infrastructure was not developed with such
large traffic levels in mind, or where methods of alleviating
the traffic congestion do not function properly.

The current tendency is to transform existing cities into
durable systems known as “smart cities”, which are urban
areas with various electronic sensors employed for collecting
data that help utilize resources in an efficient fashion. This pro-
cess includes collecting data from the citizens and the devices
through crowdsensing, which are then processed and analyzed
in order to monitor and manage the transportation, energy,
waste management, and information systems, among others.
The concept of a smart city integrates ICT (Information and
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Communications Technology) and a plethora of interconnected
devices in order to optimize the services in the urban area. In
these conditions, the need for intelligent traffic systems (ITS)
arises. An ITS assumes interaction between its components:
vehicle drivers, traffic management systems, pedestrians, etc.
Some examples of ITS-based improvements are dynamically-
timed traffic lights, route planning applications, self-driving
cars, etc. Increasing the capacity of the roads is not necessarily
the best solution, since it can lead to only temporary positive
effects, but to an increase in traffic in the long term [3].

Thus, in this paper we address the issue of dynamic traffic
control, by proposing a solution where traffic lights can com-
municate with each other and with the vehicles around them
(through close-range protocols such as Bluetooth, Wi-Fi Direct
or NB-IoT) in order to dynamically change their parameters
based on the traffic flow. The goal of this system is to respond
rapidly to changes in traffic conditions by modifying the
durations of the lights and by rerouting traffic participants
in order to avoid congestion. In order to test our solution,
we employ a realistic vehicular ad-hoc network (VANET)
simulator entitled Sim2Car, which uses real-life urban traffic
data, where vehicle routes are extracted and replayed, and even
changed dynamically [4].

The rest of the paper is structured as follows. In Section II,
we present related work in the area of dynamic traffic light
solutions. Then, in Section III we describe the scenario where
we aim to deploy our proposed solution. Section IV presents
our dynamic traffic light switching solution, while in Section V
we show and analyze the results obtained when running
our algorithm in Sim2Car. Finally, we draw conclusions and
present future work in Section VI.

II. RELATED WORK

Due to the increase in congestion mentioned in the previous
section, several dynamic traffic control solutions have been
proposed recently. In [5], an intelligent traffic control solution
that uses wireless sensors for traffic surveillance is presented,
which has minimal implementation costs and very good results
(decreasing the average waiting time with up to 55% when
compared to predetermined traffic). The authors propose an
adaptive algorithm entitled TAPIOCA, which employs traffic
data to decide the duration of the green lights at an inter-
section. The system is composed of wireless sensors (built



to ensure the communication infrastructure for traffic) and the
controller where the dynamic flow control algorithm runs. The
algorithm computes a score for each queue of waiting vehicles
based on the number of vehicles on the street and the time
elapsed since the last time the green light was set. In order
to control multiple intersections, a global score is computed
based on the local (per-intersection) scores, the capacity of the
roads, and the score defined by the vehicles heading towards
the area of the intersections. One drawback of this solution
is that it uses user-defined weights for the local score, which
can be improved by dynamically computing them based on
traffic characteristics (e.g., number of vehicles, route duration,
etc.). Moreover, when utilizing dynamic traffic lights, com-
munication can only be performed between directly-connected
intersections, thus limiting their synchronization.

Another dynamic traffic lights solution uses fuzzy logic
based on the number of vehicles that pass in an intersection at
every minute [6]. The proposed method only takes into account
the number of vehicles, which can lead to long waiting times at
an intersection if the waiting queue is not large. One problem
exhibited by this solution is the complexity of the rules when
multiple inputs are taken into consideration (and not just the
number of cars waiting at the red light). Furthermore, the
solution only handles independent or neighbor intersections,
thus not having an overview of the entire infrastructure. An
improved fuzzy logic-based algorithm is proposed by Collotta
et al. [7], whereas another interesting recent solution performs
pheromone-based traffic management [8].

Based on the solutions presented above, our proposed
dynamic traffic algorithm addresses multiple key issues that
are handled partially or not at all in the current literature.
These include dealing with cases where vehicles may end up
waiting forever at a red light, choosing phases that can have
the green light simultaneously so that vehicles can pass safely,
or synchronizing the intersections. Our solution automatically
computes the traffic lights set to green and their durations,
by using not only the length of the waiting queue, but also
traffic data such as movement speed, the duration required by a
vehicle to cross the intersection, the time elapsed since the last
green light, etc. Furthermore, the solution is evaluated using
Sim2Car on real infrastructures as a basis for communication,
the evaluation being performed for an entire city, not just for
a few key connected intersections.

III. COLLECTING AND VALIDATING TRAFFIC DATA

The main idea of the solution proposed in this paper is
that the dynamic traffic lights have access to information
about the road segments that they connect, in particular in
terms of the number of waiting vehicles and their behavior.
Based on this information, we show in Section IV that the
traffic lights are able to make informed decisions regarding the
durations and occurrences of green lights, with the purpose of
improving the driver experience (in terms of route duration,
fuel consumption, gas emissions, etc.). However, an important
component of our solution is the way data are collected and
aggregated, and how they reach the traffic lights.
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Fig. 1. Vehicle-to-vehicle data collection.

A. Data Collection and Aggregation

In our proposal, we assume that data are collected from the
vehicles themselves, using the drivers’ smartphones, which are
equipped with GPS and a network connection. Most of the
previous proposals for crowdsensing in transportation, as well
as existing applications (such as Waze1), send the data that
they collect to a cloud backend, where the aggregation and
processing are performed. However, while this is affordable for
a very large company such as Google, having an infrastructure
that can cover an entire city can be very expensive. For this
reason, in our paper we propose employing vehicle-to-vehicle
communication for collecting and aggregating data locally,
using opportunistic networking-based solutions.

A scenario for vehicle-to-vehicle data collection is pre-
sented in Figure 1. In the figure, it can be observed that
two vehicles located on the same lane close to the same
intersection (numbered 3 and 4 in the picture) are able to
communicate with each other through close-range protocols
(such as Wi-Fi Direct or Bluetooth), so that they both know
that they are advancing in the same direction and waiting
at the same traffic light. In this situation, they both have a
similar view of their surrounding area. However, since vehicle
3 is in range of the traffic light (which is also equipped with
wireless communication), the two can exchange information
as well. This way, the traffic light knows that there are two
vehicles waiting for the green light, so it can adjust its lights
dynamically. Had there been additional cars behind vehicle 4,
they would have communicated with each other in a hop-by-
hop fashion through close-range protocols.

There can also be situations where vehicles going in op-
posite directions can communicate, so that they have a better
view of the area. This is the case in Figure 1 for vehicles
1 and 2, which meet for a brief period of time while passing
each other. However, that time is enough for them to exchange
information that might help the traffic lights improve the
circulation. For example, vehicle 2 might inform vehicle 1 that
there are two cars waiting for the green light at the other end
of the intersection, or even notify it about other cars on vehicle
1’s direction that vehicle 2 has encountered recently. At the
same time, vehicle 1 can transmit these data to the semaphore
it is in range of, which can then make informed decisions

1https://www.waze.com.



regarding when to change lights. For a better coordination,
the two semaphores in Figure 1 can be connected with each
other (through a backend or directly), which would allow them
to synchronize their lights and further improve the overall
performance.

For the communication between the various types of nodes
(vehicles, traffic lights, perhaps even a lightweight cloud
backend), a fog-based model would be the suitable choice,
because, in our scenario, the vehicles are the mobile nodes and
the traffic lights are the more powerful fog devices. One such
model, which also includes device-to-device communication
at the bottom layer, is Drop Computing [9], which takes
advantage of the social connections between nodes in order
to optimize hit rate, latency and delivery cost.

B. Data Validation

When vehicles exchange data and then the traffic lights
use them to make their decisions, it is important that the
information used is correct. There may be situations where
vehicles send incorrect information due to a malfunction of
the smartphone collecting the data, or there may even be
malicious nodes that intentionally inject incorrect information
into the network. These situations need to be avoided by
employing suitable trust and reputation solutions that are able
to isolate malicious nodes, while also preventing defective
ones from negatively influencing the behavior in the network.
One such example is SAROS [10], which takes advantage
of the default behavior of an opportunistic device-to-device
network by employing gossiping and quorum methods for
selecting the correct messages.

IV. DYNAMIC TRAFFIC LIGHT CONTROL

In this section, we propose our solution for dynamic traffic
light control in an intersection, after presenting the simulator
used for implementing our solution (entitled Sim2Car).

A. Sim2Car

The advantage of simulators over theoretical mobility mod-
els is that they offer a realistic solution of analyzing mobility
by utilizing a real-life environment. The analysis of vehicle
mobility can be modeled microscopically and macroscopically,
through models that are tested and improved using simulators,
prior to real-life implementation. The macroscopic models
perform an analysis of the traffic as a whole, observing
larger components such as the vehicle model. On the other
hand, microscopic models analyze each vehicle individually,
offering more realistic traffic information. For this reason, the
focus in recent years has been on microscopic models [11]
such as SUMO [12], VanetMobiSim [13], MATSim [14], or
VNSim [15].

The simulator that we devised and employed for implement-
ing our solution, Sim2Car [4], simulates vehicle movement
using data collected from GPS devices and street graphs from
OpenStreetMap (OSM)2. It is an easily extensible application
implemented in Java that allows vehicles to dynamically

2www.openstreetmap.org/.

change their movement patterns through mechanisms such as
speed adaption, traffic rules, driver behavior, etc. Its main char-
acteristics are modularity, extensibility and response speed.

B. The Architecture of an Intersection

In order to propose a solution for dynamic traffic control
in an intersection, we need an intersection model. We thus
implemented in Sim2Car a 4-street cross intersection model.
Prior to reaching the intersection, each vehicle needs to
choose a direction, from forward, left or right. Based on the
current position of the vehicle and the movement direction,
the following movements can be defined: south-north, south-
east, south-west, north-south, north-east, north-west, east-west,
east-north, east-south, west-east, west-south, and west-north.

One of the goals of this paper is to implement a solution for
dynamic traffic control using real-time data regarding the flow
of vehicles in an intersection, with the purpose of reducing the
traffic light waiting times. The current traffic state is observed
in an intersection, and this information is used to choose a
functioning pattern for the intersection traffic lights. This leads
to a configuration containing the color of each traffic light
(green or red) and durations for them.

C. Dynamic Traffic Control in Intersections

Traffic in an intersection is controlled with the help of traffic
lights, which work in phases. Each phase guides the traffic
based on a certain movement type, and has a certain period
where the green light is set so that vehicles with that movement
type can pass. Each street has a traffic light for controlling
the access of vehicles in an intersection. For the four types
of movement, four phases are defined. One functioning cycle
of the intersection contains a succession of these four phases
where, for a certain period of time, some lights are green
and allow vehicles to safely enter the intersection. If a certain
type of movement does not have any vehicles in the waiting
queue, it will not receive the green light. Instead of setting
fixed durations for the traffic lights, our solution dynamically
sets the lights based on vehicle movement and waiting queue
sizes. The main goal is to reduce traffic light waiting time
and to eliminate cases where vehicles may end up waiting
forever. The algorithm allows different types of movements to
be executed simultaneously and safely for the drivers.

During the simulation, the intersections are controlled by
dynamic traffic lights. This means that the functionality of
each traffic light depends on the queues of waiting cars. Each
intersection is controlled by a master traffic light which sets
and communicates the color and the period of each traffic light
it manages. At each step of the simulation, the master traffic
light receives information from the cars that are waiting for
the green light. After the information is received, the master
traffic light decides if the color should be changed or not.

The communication between the cars and the master traffic
lights is done via Wi-Fi Direct or Bluetooth. When a car has
just stopped at a red traffic light, it sends a message to the
traffic light master (either directly or through opportunistic
hop-to-hop communication). The traffic light master adds



the car to the corresponding traffic light queue. During the
simulation, the master traffic light decides if the color of the
traffic lights should be changed according to the waiting queue
length, according to these steps:

1) Determining traffic volume (number of cars waiting
on each queue). This step assumes that each smart traf-
fic light has knowledge regarding the traffic it controls
and the queue of waiting vehicles (this data is obtained
by monitoring through crowdsensing).

2) Choosing the most favorable traffic light (queue) for
setting the green color. The direction that has the high-
est waiting queue is most likely to see the green light.
When setting the green light, the time that has passed
since the last light change is also taken into account.
If the waiting queue is too long, the time assigned to
the green traffic light may be too high, and the other
cars waiting to move in other directions can wait too
long. To avoid waiting indefinitely, it is not permitted
for a queue to wait longer than 120 seconds. Setting
the green light for a direction also implies allowing
the passage of vehicles that can enter the intersection
safely from other directions as well (so one green light
might actually lead to the setting of multiple green
lights in the intersection). When dealing with multiple
intersections, the synchronization of the traffic lights
is considered at this step, because creating “waves” of
green lights is an important part of decongesting the
traffic. Communication between traffic lights in different
intersections is performed through a cloud backend.

3) Choosing the duration for the green light. This
step determines the running time of the traffic lights
for the green color just assigned. It should be lower
than Tmax = 90 seconds and greater than Tmin = 7
seconds3.

The solution for dynamic traffic control first needs to define
the waiting queues for each traffic light with source s and
direction d, where S, W , N and E are the sources (the
cardinal points), and L, R and F are the directions (left, right,
forward)4:

Q(s, d),∀(s, d), s ∈ {S,W,N,E}, d ∈ {L,R, F}

Then, the waiting time for the first vehicle at the traffic light
is defined as the duration between the moment when a vehicle
reaches a traffic light and the current time:

Tfirst(s, d),∀(s, d), s ∈ {S,W,N,E}, d ∈ {L,R, F}

In order to eliminate the case where vehicles end up waiting
forever at the traffic light, the following logic is followed. If,

3All these time values were set based on experiments in the simulator, but
we acknowledge that a dynamic solution would be better suited, which is
something that we wish to pursue in future work.

4In this situation, we assume that a vehicle will not turn around in an
intersection, but this is something that we wish to address in the future.

for one or multiple traffic lights, the vehicle in front has a
longer waiting time than the maximum defined waiting time
(Twait = 120 seconds), then the vehicle that has waited the
longest gets the green light in the following phase5 (G is the
set of green lights):

∃(s′, d′), Tfirst(s′, d′) ≥ Twait → G = G ∪ (s′, d′)

The next step is to compute the length of the vehicle queue
that gets the green light. If the longest waiting queue has
been selected at the previous step (by waiting more than the
maximum threshold Twait), then the green light duration is
computed by selecting the queue with the highest size out
of all the queues whose vehicles can advance safely in the
intersection with the previously chosen movement direction:

Qphase = max(Q(s′, d′), Q(s, d)),∀(s, d)

If no vehicle waited more than Twait, the queue length is
computed as follows:

Qphase = max(Q(s, d)),∀(s, d)

At the next step, we compute the time it takes for all the
waiting vehicles in the selected queue to cross the intersection
(where T1 is the time needed for the first vehicle to cross):

TPQphase = T1 + α× (Qphase − 1)

Having computed this, we compute the duration of the
green light for the previously selected queue and direction. In
this case, in order to avoid infinite waiting times in certain
situations, we limit the duration of the green light to a
maximum value Tmax (set to 90 seconds):

TQphase = min(TPQphase, Tmax)

After this computation, all traffic lights from the direction
of the selected queue are set to green for TQphase seconds.

V. EXPERIMENTAL ANALYSIS

A. Experimental Setup

We ran our experiments on three different cities available
in Sim2Car (San Francisco, Beijing and Rome) with 200 cars
each, highlighting the benefits brought by dynamic traffic
lights as opposed to static traffic lights. For the 200 vehicles,
we chose a small simulation area in each city, because we
wanted to test with highly-congested traffic. An advantage
of Sim2Car in this situation is that, even if the number of
vehicles is high and many computations must be performed,
it behaves extremely well in terms of processing time. In
order to compare the performances of the two solutions,
we selected four per-vehicle metrics: routes completed, time
needed to reach all the destinations, average speed, and fuel
consumption. For the latter metric, we employed the model

5This can further be extended by connecting multiple neighboring intersec-
tions and dynamically changing the waiting time.
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Fig. 2. Results for the San Francisco scenario.

proposed in [16]. The metrics were chosen in order to highlight
the benefits of our solution in terms of driver benefits and
green transport, which were the goals of our proposed dynamic
traffic light system. Because Sim2Car only considers one type
of vehicle, the model in this simulation was adjusted for light
vehicles. Thus, the quantity of fuel ∆f consumed in a time
interval is computed as:

∆F = (fi + β1Rtv + [
β2Mva

2v

1000
]a>0)∆t, Rt > 0

∆F = fi∆t, Rt ≤ 0

In the formulas above, v is the vehicle’s velocity, a is its
acceleration, Mv its mass, Rt is the total force acting on a
vehicle, fi is the idle fuel consumption, β1 is an efficiency
parameter and β2 is an energy-acceleration efficiency param-
eter. Based on the work reported by Akcelik and Besley [17],
we set the vehicle-specific parameters as follows, in order to
simulate a light vehicle: Mv was set to 1100 kg, fi to 1350
mL/h, β1 to 900 mL/kJ and β2 to 300 mL/(kJ × m/s2).

We measured the four metrics on three city-wide scenarios,
in San Francisco, Beijing and Rome, both on original taxi
traces (from CRAWDAD6) and using the Sim2Car Trace Tool,
which allows the user to select a rectangle on a map and
then generate traffic inside it. We did not settle only for
original traces because the data are not entirely complete, since
they were collected only when the taxi meters were running,
and real traffic lights also had an impact on the behavior
of the vehicles. We simulated the traffic under two different
conditions: with static traffic lights (each traffic light has a
fixed time set) and with dynamic traffic lights (the color of
each traffic light is changed based on the number of waiting
cars, as presented in Section IV).

B. Results
Figure 2 shows the results obtained for the San Francisco

scenario. In Figure 2(a), it can be observed that the dynamic

6https://crawdad.org/index.html.
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Fig. 3. Results for the Beijing scenario.

traffic light solution is able to improve the number of com-
pleted routes for both original and generated traffic. For the
former, the dynamic algorithm is able to increase the number
of completed routes by 29%, which translates to more than 1
extra route per simulation. For Sim2Car-generated traffic, the
improvement brought on by dynamic traffic light scheduling
is 17.4% in terms of number of routes finalized. It should
be noted here that the metric was not improved for every
individual vehicle, because Sim2Car uses an intelligent routing
algorithm for the car module, which may route a vehicle
in an area with more traffic lights than in the static light
scenario. However, it is important that the overall number of
completed routes was improved by our solution in both cases,
because per-vehicle metrics end up being balanced in time,
thus allowing all drivers to benefit. It is also interesting to
note that the number of routes is much higher for original
(i.e., real-life) traces, which is caused by the fact that, in
reality, taxi rides vary and can also span short distances and
durations. An improvement can be observed when analyzing
the average route duration per vehicle, depicted in Figure 2(b).
Dynamic traffic lighting reduces the average route time by 8%
on original traces and by 19% on generated traces (amounting
to a reduction of about a minute for both test cases).

In terms of average speed and fuel consumption, the results
shown in Figure 2(c) and Figure 2(d) are also positive. Due to
a good synchronization of traffic lights and thus less stops and
starts, the fuel consumption is reduced for both the original
and the generated scenario by 16.3% and 9.9%, respectively.
For both cases, this amounts to more than 1 liter per hour.
When analyzing the average speed in Figure 2(c), it can be
observed that the speed for the original scenario is reduced.
However, even if this happens, the number of routes, route
duration and fuel consumption are all improved (as previously
shown), which means that a lower speed does not affect those
metrics in this situation. This is caused by the fact that a
vehicle might have to wait at more traffic lights than in the
static test case, but the wait times will be shorter.

In the Beijing scenario, shown in Figure 3, it can be ob-
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Fig. 4. Results for the Rome scenario.

served that, while the number of completed routes is increased
for both original and generated movements, the average route
duration is also increased for the static scenario with 26
seconds. However, this is caused by the increase in completed
routes, because more routes mean extra movement for those
particular vehicles. Furthermore, Beijing has more traffic lights
that are closer to one another than the ones in San Francisco,
which means that extra routes naturally translate to higher
traffic light waiting times. On the other hand, for the original
traces (which are more realistic), the dynamic traffic lights
solution is able to reduce the average route duration by 8%.
Additionally, Figure 3(c) shows that the average speed is
increased by 2% and 12.3%, whereas the fuel consumption
seen in Figure 3(d) is reduced for the original traces (by 9.4%,
i.e., about one liter) but increased for the generated scenario.
However, the increase is relatively insignificant (2.1%) and is
probably caused by the increase in speed, coupled with the
high number of traffic lights in Beijing.

Finally the results for Rome (presented in Figure 4) show
that the improvements seen in San Francisco and Beijing also
apply here. More specifically, the dynamic routing solution is
able to increase the number of routes by 21.5% and 21.3%,
while also reducing the average route duration by 5.7% and
8.5%. Even if the average speed decreases by 11.5% for
the original trace, the fuel consumption is reduced for both
scenarios, with 3.9% and 5.1%, respectively. It should also be
noted that Rome has fewer traffic lights compared with Beijing
and San Francisco.

VI. CONCLUSIONS AND FUTURE WORK

The aim of this paper was to improve the traffic of crowded
cities through dynamic lights in intersections, based on data
collected from vehicles. For this reason, we proposed and
implemented a novel solution based on dynamic traffic light
switching using context information, and showed that it is able
to improve the number of completed routes, route duration,
driving speed and fuel consumption for most cases. In the
future, we wish to extend the proposed solution to not only

use the crowdsensed information for dynamically setting the
traffic lights, but also for routing traffic away from congested
areas.

Furthermore, since in this paper we evaluated our proposal
only against static behavior (i.e., without dynamic switching
of traffic lights), in the future we would like to compare our
solution to similar mechanisms, in order to better highlight its
advantages.
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