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Abstract—Crowdsensing is rapidly becoming an interesting
approach for scenarios in which a significant amount of data
is needed and a static infrastructure is not a viable option due
to cost or other challenges. Although users collect data without
any direct cost, it is common to reward them depending on
the amount and quality of the data they provide. However,
as this data also carries sensitive geolocation information, it
also exposes the users to privacy concerns, if such data is
accessed by a malicious entity. Geolocation information can
disclose information about the habit of the user and his or her
places of interest, however, in many cases, such information is
crucial for the purpose of the application and cannot be omitted
nor distorted. In this work, we present a novel framework
for opportunistic MCS scenarios focused on maintaining the
privacy of the users while rewarding them for their collected
and geolocated data. We evaluate our proposal on real datasets,
quantifying its benefits over other methodologies.

I. INTRODUCTION

Modern Smart Cities rely on precise and timely data that
aim to describe the properties of the city and its environmental
status. Some of this data comes from manually installed
sensors, such as induction loops or weather station, which
report accurate data to the Smart City infrastructure. This
data is then analyzed together with a multitude of other
information, to eventually provide enhanced services for the
community. Although this architecture enables novel and ex-
citing possibilities, it also comes at a cost, both for installing
the sensors and for maintaining the whole infrastructure.
Moreover, it is challenging, if not impossible, to achieve a
wide coverage with static sensors, as this would again raise
the costs, and it would also be difficult to place them in hard
to reach scenarios. It is also worth mentioning that nowadays
many Smart Cities applications are on-demand and require
the whole sensing infrastructure to be flexible. For these
motivations, Mobile Crowdsensing (MCS) architectures have
recently started to gain popularity, thanks to their ability to
provide a large amount of data, directly reported by citizens,
often through off-the-shelf devices. This is usually realized
by utilizing a specific application, developed by the Smart
City application manager or the crowdsourcer (i.e. the entity
running the crowdsensing campaign). This application can
sense different data from the user device, depending on the
purpose of the crowdsensing campaign, and report this data
back to a central entity for later processing. The cost of
running the campaign for the crowdsourcer is then limited to
maintaining the infrastructure and developing the application,

since the cost for the sensors is inherently payed by the users
when they buy the mobile devices. Therefore, although with
reduced costs, still crowdsensing campaigns involve setting
up an infrastructure capable of receiving data from users.
Even though users may run the campaign virtually at no cost,
providing them with incentives raises the possibility to gather
participants for the campaign [1][2]. Typically, collected data
is geolocalized, as it is needed to correlate measurements
in the space domain. Clearly, this raises a privacy concern,
since having access to the data reported by a user would
enable a third party to understand her movements and daily
routines. In this work we study the challenge of running
crowdsensing campaigns with rewards, limiting the amount of
private information that can be exploited accessing data sent by
the users. It is straightforward to note that if measurements are
timely correlated, it is then possible to reconstruct paths, which
if repeated over different days may lead to understanding
routines, which eventually results in possibly understanding
political orientation, religious information and other private in-
formation. Guaranteeing higher privacy levels is of paramount
importance for crowdsensing campaigns, as if users rely more
on the platform collecting the measurements they may be more
confident in providing it with their own data. The privacy leak
is quantified in terms of possible traces reconstruction by raw
GPS measurements, which is a topic actively studied [3][4].
Although for the purpose of this paper we designed a specific
metric to quantify the privacy, we also note that it is possible
to use other metrics, although those are out of the scope of this
paper. For the purpose of this work, we focused particularly
on opportunistic MCS scenarios, in which data is reported
by the end devices in background without any specific action
performed by the users. In fact, for participatory MCS, the
topic of privacy has to be discussed differently, as, in such
case, the central entity (e.g. the collector server) is typically
aware of the location of users over time in order to issue
them with tasks. We instead focus on frameworks in which
the users contribute freely in a push-based policy, therefore
the server is basically unaware of their behavior. We assume
that users can select which of their performed measurements
they want to use in order to obtain the reward, and we then
propose an algorithm which out of N measurements collected
by the users selects the best possible k needed to obtain the
reward. We compare our proposal with other standard selection
techniques, showing that the amount of private information



that can be obtained by subsequent measurements is in general
high. The evaluation is performed on two different, publicly
available datasets, namely Gowalla and Brightkite [5]. The
rest of this paper is structured as follows: Section II presents
related works from literature; Section III details our framework
and our proposal, in particular it explains the metric we
used to quantify the privacy issues; Section IV presents the
datasets, details the experiments and shows the results of the
performance evaluation, and Section V concludes this study
discussing future works.

II. RELATED WORK

MCS is a topic that has been investigated thoroughly
over the very last years in all its different facets. Several
architectures have been proposed over the years, which target
specific campaigns in a plethora of use cases, among which
we cite environmental monitoring [6], social trends detection
[7] and traffic estimation [8]. However, it has been shown
that users tend to be more willing to share their data with a
third party organization, if that leads to a reward [1][2]. In
general, rewards can be broadly categorized into two different
classes: monetary or non-monetary. Monetary rewards refer to
incentive mechanisms that eventually award the user a prize,
which can be monetary or in the form of any good that the
user is willing to accept. Non-monetary rewards refer instead
to all those mechanism which do not give the user any money,
such as gamification proposals.

In [9] the authors foresee a novel smart city architecture, in
which the users are an active part of it. Basically, they leverage
user gathered sensor data, in exchange of a reward which is
no less than the sensing cost of the users. Other approaches
such as [10] take into account gamification methodologies.
Basically users share information about the quality of WiFi
hotspots in a scenario. The more data they share, the higher
the probability to virtually conquer WiFi territories. This also
shows that the reward can also be non-monetary, though
less appealing. Gamification is also used in [11], where the
objective is to reduced expenses in heavy duty scenarios,
in which the participation of the users require more effort.
Interesting the approach described in [12], where users are
rewarded according to how many friends and neighbors they
convince to participate in the crowdsensing campaign. This
has a double effect, as the users are willing to publicize the
crowdsensing campaign to obtain a higher reward, while the
entity running the campaign also achieves a higher number
of participants. Besides the specific mechanism of the reward,
[13] also proposes a method to quantify the quality of the data
obtained through crowdsensing, and adapts the reward to the
users based on that. It is well known that one of the major
problems in crowdsensing scenarios is indeed the uncertainty
on the data quality, as it is possibly sensed without taking
proper attention to it by the users. Hence, [13] dynamically
adapts the reward based on the quality itself, thus rewarding
users with higher quality data more. Finally [14] presents
two different approaches which reward users in crowdsensing
scenarios: a crowdsourcer centric one and a user centric one.

While the former leverages game theory through a Stackelberg
game where the crowdsourcer is the leader and the users are
the follower, the latter uses an auction based mechanisms, in
which the users have more control over the data they send to
the crowdsourcer, and can also decide based on the expected
reward they can get. In relation with privacy, many existing
works in literature leveraged independently private information
enclosure in order to cope with common de-anonymization
oriented attacks (e.g. collusion and eavesdropping). Notable
works are LOCATE [15], which distributes the users trajec-
tories across all the participants to make them anonymous,
and PEPSI [16], which introduces a registration authority and
obscures the sensitive data with an identity based encryption.
More recently, notable works like [17] also leverage cloaking
of the users location by increasing its granularity, however
this is not feasible in applications where the precision of the
geolocalization of the measurement is crucial. Concerning the
privacy of mobile users, among different proposals rise k-
anonimity [18] and differential privacy [19]. However, those
are more oriented in preserving the privacy of a human being
among a crowd of users, in datasets, while our work is focused
towards users preserving themselves their own privacy by
sharing loosely correlated locations and measurements.

III. FRAMEWORK

In this section we detail our proposed privacy-aware frame-
work for MCS scenarios. We recall that such framework is
only applicable in contexts in which each observation is sent
anonymously to the server (i.e. the server does not record
any information about the connection with the participant’s
device). In other words, it must be supported by a data
collection framework that implies the server being unaware
of the identity of each user as well as their location over time.
Furthermore, communication between the central entity and
the participant is assumed to occur directly, however, if medi-
ation is performed by other participants, as it happens in adhoc
MCS architectures, the framework is still applicable as long as
the data sent eventually reaches a common single repository.
As highlighted in Section I, the main challenge in these archi-
tectures is the rewarding mechanism, as participants, in order
to claim their compensations for their contributed data, would
intuitively need to expose their identity and, consequently,
the history of their location. This would hinder the privacy
by construction guaranteed by the architecture, hence our
proposal. An example of a suitable data collection framework
can be found in [20], where, the rewarding mechanism was
not taken into account.

Let P be a generic client participating in the considered
MCS campaign (from now on we will use the term client and
participant interchangeably). As the participant moves in the
area of interest for the campaign, it sends sensor measurements
– a.k.a. observations – to the central server, depending on the
considered data collection framework. Let then Ii be the i-th
observation sent by P to the central server and let us define
Ii as follows:

Ii = {li, ti, di},



where li is the location at which the observation has been
performed, ti is the time and di is the numerical value of
the measurement. The whole set of chronologically ordered
observations {I1, . . . , In} performed by P is defined as the
trace of P . As introduced earlier, even though the information
Ii is reported by user P , no information about such association
is found inside the tuple, which only contains data referring
to the observation itself. Once the observation is received, the
server binds the information tuple Ii to a randomly generated
hash hi which is a token representing the value of Ii to obtain
rewards. Such token is then stored in the local memory of the
server as well as sent back to P . At this time, the server keeps
the connection to P alive only for the purpose of sending
back the reward, after which the connection is assumed to
be destroyed. This is crucial, because the connection itself
obviously carries information that can expose the identity of
P ; with its destruction, subsequent instances of the connection
from P do not carry any data that can make it amenable to
other connections initiated by the same user. The client P then
stores the hash received from the server in its local memory.
We assume that, if all such hashes are associated to the same
person, they can expose potentially sensitive data, such as
the trajectory of P would be disclosed. All the hashes stored
locally can then be used to collect the relative rewards from
the entity running the crowdsensing campaign, by sending a
set of them to the central server to collect the prize. Ideally,
we assume that a reward can be released in exchange for a set
of k hashes with k > 1, as we consider scenarios in which
the number of measurements can be large and rewarding all
of them singularly would be impractical. Once the hashes are
received, the server erases the correspondent local copies and
returns a single code in exchange, which can be used by the
participant to collect the final prize (e.g. a QR code). More
formally, we define each crowdsensing campaign with a set
of rewards (or prizes) R = {R1, . . . , RM}. Each Rw, with
1 ≤ w ≤ M needs kw distinct rewards to be obtained. For
sake of simplicity, in this work we assume all the generated
hashes h1, . . . , hn to have an atomic value. A client can then
access the prize Rw by “spending” kw hashes, provided that
n ≥ kw. This is done by selecting the prize, selecting kw
hashes and sending them to the server. We assume for the
sake of simplicity and without loss of generality that all the
prizes need the same number k of hashes to be obtained. The
way in which a participant selects the set of k hashes has
an impact on the amount of information undisclosed, as then
the respective k observations can be associated to the same
person: note that the association between an information Ij
and its hash hj is always known to the central entity, though
it is not stored the correlation between different measurements,
hence locations. In the following subsections we will give
the definition of metrics that can be used to select the k
observations to minimize the risks.

A. Correlation Metric

Given that the total number of hashes available to P is n, in
this section we define a criterion for choosing k observations

(and their respective hashes) out of n. Ideally, at each iteration,
one would like to select a subset of data that yields the
least possible information to a potential attacker. We choose
to quantify the “sensitivity” of each piece of information by
giving it a correlation value, which represents how much the
information is related to the pool of measurements collected.
Upon such premises, we define a correlation function Γ(Ii)
that returns a numerical value normalized by [0, 1] (1 means
that the element is maximally correlated, 0 means that the ele-
ment is not correlated at all). This function is computed locally
by the participant against all the elements of {I1, . . . , In}, then
the least k correlated elements are selected to be converted in
a reward. The definition of unique and universal metrics is
out of the scope of this paper as the sensitivity of a piece
of information can depend on a high number of factors with
respect to different use cases. We recall that our framework
is totally independent on the specific metrics used, hence it is
flexible to accommodate other measures and methodologies
to quantify privacy risks on top of the MCS environment
taken into account. Nevertheless, we propose in this section
the metric we use to address a major aspect of location-aware
privacy: the disclosure of locations that are sensible for the
user, such as the workplace, the home and any place that
is visited frequently and periodically. In order to address it
we make use of a value function calculated upon Markov
chains. This method has been used and adapted extensively
in literature for similar problems [21]. In our case we achieve
our goal by defining our metricΓ as a function V{∆t}, where
∆t defines a fixed time interval, which is our atomic unit
of time. It is also necessary to define an additional attribute
τ ∈ [0, 86400/∆t] for each observation, such that τi is the
time of the day extracted by ti divided by ∆t. The process
takes place through the following steps: first, we construct a
graph such that each node is identified by a tuple 〈l, τ〉, which
represents the presence of the user in a location l at a defined
time slot of the day τ . Next, for each couple of consecutive
measurements within the trace Ii, Ij , we increase the weight
of the edge (〈li, τi〉, 〈lj , τj〉) by one, provided that they occur
within the same day. Then, each node 〈li, τi〉 is initialized
with a value equals to its weighted indegree. A high value
corresponds to a location and a time of major interest, since
the user often traveled to such location during that time of
the day. Subsequently, for each other node 〈lj , τj〉 reachable
in at most γ steps, the initial value of 〈lj , τj〉 multiplied by
the probability of the path connecting 〈li, τi〉 and 〈lj , τj〉. The
probability of a path of {E1, . . . , EX} ordered edges is defined
as:

X∏
x=1

weight(Ex).

At the end of the process, for each observation Ii, V{∆t}(Ii)
results in the value of the related node in the graph 〈li, τi〉.
Once values are calculated, we normalize them by their
maximum value, in order to respect the metric properties.



Gowalla Brightkite

0

20

40

60

80

100

ΔΔ
sp
ac

eΔ
(k
m
)

(a) Spatial distribution.

Gowalla Brightkite

0

25

50

75

100

125

150

175

ΔΔ
tim

eΔ
(h
)

(b) Temporal distribution.

Fig. 1: Distribution of spatial and temporal intervals between each pair of consecutive measurements in Gowalla and Brightkite datasets. The strip plot shows
only about 10% of the points for displaying purposes.

IV. PERFORMANCE EVALUATION

In this section we evaluate the performance of our frame-
work. In Section IV-A we describe the datasets we used for our
evaluation through and ad-hoc simulation, and in Section IV-B
we detail the parameters and the environment used.

A. Datasets

To evaluate our work, we used 2 different datasets retriev-
able on the web. The datasets are check-in based, meaning
that they record, for each user, a list of location visited in
GPS coordinates alongside with the timestamp. We chose
such datasets because they have been used extensively in
the literature for a multitude of related problems. A brief
description of the datasets is reported below:
• Gowalla: Gowalla1 [5] is a location-based social network

and its dataset has been used in various studies on the
privacy.

• Brightkite: Brightkite2 [5] is a location-based social
network and its dataset has been used in various studies
on the privacy. Brightkite and Gowalla are often used in
comparison studies as they have a similar structure.

Each datasethas been adapted in order to contain data about
100 users, with each trace being exactly 90 observations
long, for the sake of the comparison. Due to the extreme
heterogeneity of spatial and temporal differences within each
datasets – certain users may turn off their sensing for many
days and/or travel significant distances – we extracted only
traces containing 90 subsequent observations such that the
time difference between two consecutive observations is less
than a week and the spatial distance is less than 100km.
Subsequently, location data has been normalized in order to
identify areas instead of GPS locations. In order to have a
standardized area denotation, we made use of the Military

1https://snap.stanford.edu/data/loc-gowalla.html
2https://snap.stanford.edu/data/loc-Brightkite.html

Grid Reference System (MGRS) [22] with different area size
depending on the datasets. As Gowalla and Brightkite have
sparsely distributed observations (both in time and space), then
we set the precision of the MGRS squares to be 10km. The
experiments can be scaled to different precision in datasets
displaying a finer granularity of data. Figure 1 shows the
distribution of space and time differences in the two datasets
by means of a boxed strip plot. Regarding the spatial difference
we can observe that there are for both datasets some cases
in which two consecutive observations are performed by the
same user at a distance up to 100km. However, these are
mostly outliers, as the vast majority of the spatial distances are
concentrated in the lowermost section of the plots. Indeed, the
median values are ∼780m for Gowalla and ∼0m for Brightkite
(meaning that Brightkite users are mostly still). A similar
behavior is observable in the time domain, in which some time
intervals can be as large as 100 hours, however the median
values are around 60min for Gowalla and around 100min for
Brightkite.

B. Experimental Setup

In order to evaluate our experiments we performed sim-
ulations with 100 users, each of them performing 90 mea-
surements. The purpose of the experiment is showing that,
as the number of measurement increases, potentially selecting
k observations among them makes the correlation values to
drop. In order to show this, we performed simulations with
the value of k fixed to a certain amount for all users. In real
deployments, the value of k might be different across users
and even across prizes for the same user over time, however,
fixing it to one value does not prejudicate our experiments to
be representative of the reality and it facilitates the display
of results. In particular, we have three different values of k:
10, 20 and 30. The simulation consists in calculating, for each
user, the correlation of the k values selected over N , where
N ranges from 0 to 90, which is the maximum length of the
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Fig. 2: Average correlation values of the selection of k elements N ranging from 0 to 90 for 100 users.

trace. For each value of N , we extract k elements in three
different ways:
• We sort the N measurements by their correlation value,

as shown in Section III-A and pick the bottom k values.
This ensures the best combination of unrelated k values
according to our metric. The average correlation value of
the k-sized subset of measurements selected this way is
the Min correlation value and reflects our goal.

• As a term of comparison, we pick the top k values from
the N sorted measurements. This represents the worst
combination, i.e. the k values that yield the maximum
information according to our metric. The average corre-
lation of the k-sized subset of measurements selected this
way is the Max correlation value.

• As a further term of comparison, we also pick the
mean correlation value over all the N measurements as
a fair average case. Such correlation value is the Avg
correlation value.

These three values are shown in Figure 2 for both Gowalla
and Brightkite datasets for all the values of k. Logically lines
start from the relative value of k as it would not make sense
to select k values over a quantity that is less than k. For
a better readability, values are normalized by the selection
of k elements over k, for which the correlation value is set
to 1. By observing the plots we observe what is expected:
selecting the k elements with minimum correlation leads to a
low correlation of the subset, whereas it happens the opposite
when selecting the maximum. It is also noticeable how Max
and Min lines tend to be almost monotone even though every
time a new observation is added (i.e. N increases) the values in
the graph can change. It is also worth mentioning that the three
Avg lines have the same absolute values, however, they are
shifted due to normalization. Figure 3 shows two area plots,

one for each dataset, representing the difference between the
Max and the Min correlation values for an increasing value of
N . When N = k Max and Min are the same value, therefore
the area is 0. We can appreciate how, differently from the plots
in Figure 2, the shape of these ones in monotone, meaning that,
with our metric, by adding a new observation, the difference
between Max and Min cannot decrease. This also leads to the
concept that the more a participant “waits” before sending its
measurements, the higher the chance for the k measurements
to be unrelated with his or her habits and, therefore, to yield
sensitive information.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel framework for
privacy preservation in opportunistic MCS scenarios for the
purpose of rewarding users. This framework ensures that
measurements reported by participants are not associated
directly to the person of interest and provides a way for
the user to expose a subset of the measurements in order
to obtain the related reward. We also provided a mechanism
thanks to which each subset of measurements can be released
without any direct association of such subsets with their owner.
Furthermore, we defined a policy of choosing the subset of
measurements by assigning a correlation metric to each of
them so that the subset with the least average correlation
can be chosen at each iteration; in this way even the risk of
indirect association can be lowered. We provided simulation
results that demonstrate the effectiveness of our solution by
using our metric, however, several other metrics can be used
with this framework depending on the application domain and
requirements. We consider this as a pioneering effort in the
field of rewarding users in opportunistic MCS scenarios, in
fact we envision a consistent number of improvements as a



10 20 30 40 50 60 70 80 90
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
M
ax

 - 
M
in

K = 10
K = 20
K = 30

(a) Gowalla dataset

10 20 30 40 50 60 70 80 90
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ax

 - 
M
in

K = 10
K = 20
K = 30

(b) Brightkite dataset

Fig. 3: Area plot of the differences between Max and Min correlation values for both the Gowalla (Figure 3a) and Brightkite (Figure 3b) dataset, for different
K and N values.

future work. First of all, this framework will be tested with
a larger and differentiated number of metrics that can give
us more details on which of them has a higher information
gain in different datasets. Indeed, we also plan to experiment
our framework on a higher number of well-known datasets
with substantial differences in terms of data granularity and
distribution. Lastly, we also envision how to include metrics
that do not imply an absolute correlation – i.e. the correlation
of an information with all the others –, but also a correlation
between pairs of measurements or subsets. This boosts the
computational complexity of the research for the minimum, as
it becomes an NP-hard problem, therefore we will investigate
further on possible solutions.
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