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Abstract—In developing countries, crop field productivity is
particularly vulnerable to spreading diseases, including viruses
and fungi. This is mostly due to the lack of skilled plant
pathologists as well as to the scarce fund and poor infrastructure
(e.g., roads, power and water lines) availability. The PlantVillage
project through its mobile application named Nuru provides an
AI digital assistant to recognize plants and their diseases through
image analysis. Through the use of Nuru endowed smartphones,
farmers can participate in a mobile crowd-sensing framework to
improve their crop production. The crowd sensing framework
also contributes to early detection of the outbreak of spreading
diseases across geographical regions, and consequent adoption of
appropriate countermeasures to ensure food security.

As devices are often granted in a limited number by countries’
government or charities, we propose a Farmer to Farmer (F2F)
cooperation to achieve the required Quality of Information (QoI)
for the system. In particular, only a selected crew of farmers
receive smartphones to monitor their own farm as well as some
other farmers’ one. We formulate two variants of the problem
of mobile device deployment and task assignment and propose
related solutions. We evaluate the proposed approaches through
simulations and apply them to a test-bed in Kenya.

Index Terms—pervasive computing, agriculture, deep learning,
smartphones

I. INTRODUCTION

The proliferation of smartphones and the improvement of
their sensors, such as camera, GPS, and microphone, enables
their use in complex monitoring applications. Data can be
collected and analyzed close to the user [1], also exploiting
his/her movements, which may be opportunistic or partic-
ipatory. These improvements also enable a new paradigm
of data collection, i.e., mobile crowd-sensing [2], [3]. In
particular, in the agriculture domain, smartphones may be used
to perform pervasive sensing and computing to determine the
plants’ health status. The collected data can be used to make
informed decisions to improve food productivity, safety and
sustainability [4].

Especially in developing countries, where agriculture has
a huge social impact and most of the economy relies on it,
widespread use of smartphones with computing capabilities
can improve farming operations, while increasing awareness
on plant diseases, health and growth requirements. In fact,
most of the agriculture problems in developing countries are
due to a general lack of knowledge of the main causes of
plant diseases, for which reason farmers do not use the correct
pesticides or proper countermeasures to diseases, failing in
preventing their spread.

Governments sometimes hire skilled personnel to inspect
crop fields in the region and help farmers understanding the
ongoing issues. However, skilled personnel are not enough
to support all the farmers with the necessary frequency to
increase crop disease awareness as is desired.

To address this issue, PlantVillage [5] introduced a mobile
application, called Nuru [6], which is able to collect data from
crops, detect possible plant diseases, and suggest countermea-
sures. Farmers, provided with a Nuru endowed smartphone,
can participate in a crowd-sensing framework which aims
at improving crop production and data collection to monitor
the agriculture situation at region scale, and eventually plan
massive interventions. As farmers in developing countries
can seldom afford the purchase of their own smartphone
the country government may occasionally provide a limited
number of them. For example, in our test-bed a limited number
of smartphones were donated by Penn State University.

Considering the limited number of devices, a partially
controlled mobility approach to foster Farmer-to-Farmer (F2F)
interaction is proposed: only a selected crew of farmers receive
the smartphones and they travel around to help some of
their neighbors in monitoring operations. While a random
distribution of devices to farmers seems reasonable, the irreg-
ular distribution of farms can produce zones with too many
smartphones, and others with no smartphones at all.

To improve the deployment of sensing devices, i.e., the
presence of people with smartphones along the region, we
propose an analytical model that, given the available number
of smartphones and farmers’ positions, decides which farmers
can receive the smartphones, and which monitoring tasks
they should perform in the neighbor farms. The model aims
at maximizing coverage (i.e., the number of farmers who
benefit from the framework). Due to the high computational
requirements of the problem, we propose a second model in
which we reduce the computational complexity by relaxing
the route optimization requirement.

We compare the two models by means of simulations
against a random deployment. We show how the first model
provides a better monitoring efficiency at the expense of huge
processing time and resource requirements. Finally, we show
an application in our real test-bed in Busia, Kenya. In the test-
bed region, smartphone were initially distributed as gifts by
charities and given to a subset of farmers, selected on the basis
of the farmer social reputation and local elections. In this paper



we show how the proposed approaches can be used to design
a new device deployment scheme, to replace the original
assignment. Simulation results highlight the improvements.

The paper is organized as follows. Section II introduces the
overall mobile crowd-sensing framework. In section III we
present the deployment problem of mobile sensing devices and
we propose two analytical models for this problem. Finally,
in section IV we discuss simulation results and the expected
improvements when the models are applied to a real test-bed.

II. OVERVIEW OF MOBILE CROWD-SENSING FRAMEWORK

The PlantVillage crowd-sensing framework, shown in Fig-
ure 1, includes two main components: the users (i.e., farmers),
which collect data from the environment according to a partic-
ipatory sensing model (i.e., they actively sense the data using
a special purpose application); and the system which collects
data, analyzes and stores them, and provides data visualization
tools. The system allows plant pathology experts to access data
to help users and to monitor the overall agriculture situation.

Fig. 1: Mobile Crowdsensing Framework

The users are endowed with smartphones and can participate
in the crowd sensing framework by using a special purpose
mobile application, called Nuru [6]. The application interface
is shown in Figure 2. It allows the users to perform crop field
measurements, detect potential plant diseases, and eventually
receive advise on the appropriate countermeasures. It also
allows users to: speak with plant pathology experts, to ask
questions about diseases; access data concerning past and
current agriculture status in the region; and access an online
database with huge plant knowledge.

Notice that, as the application targets developing countries,
it is developed with low computational requirements so as to
work with low performance smartphones and poor network
connectivity. More specifically, the application is designed to
work offline and connect to the internet only when a reliable
connection is available.

III. SMARTPHONE DEPLOYMENT AND TASK ALLOCATION

In developing countries, where farmers are too poor to
afford a smartphone, governments or charities can provide

Fig. 2: Mobile Application

a limited number of them. To deal with this limitation, we
propose a participatory sensing model, which includes Farmer-
To-Farmer (F2F) interactions: selected farmers, the so called
lead farmers, receive the smartphones, and assist and help
their neighbor farmers, referred to as basic farmers, who do
not have a Nuru smartphone.

To improve the number of covered farms, an optimized
selection of lead farmers and their relative neighborhood
assignment (monitoring task assignment) must be performed.
In fact, a random distribution of smartphones to farmers does
not ensure a uniform coverage of the monitoring service
over the region, because of the non uniform distribution of
farms. For simplicity, in the following sections, we assume
that each farmer owns a farm that we consider as his home
position. In this section, we propose two analytical models to
maximize the number of covered farms within the region of
interest by selecting the lead farmers, and their basic farmers
assignment, given a fixed number of smartphones. Notice
that, for a farmer, active participation in the crowd-sensing
framework is encouraged through the prospect of receiving a
free smartphone, and of gaining social reputation and prestige
due to the contribution to the improvement of the crop yield
of other farmers.

A. Optimization models

We consider a set of farmers f ∈ F displaced into a region
of interest (RoI), which can be turned into lead farmers when
endowed with a smartphone. We consider Z as the number of
available smartphones to give them.

To improve crop production we empirically note that each
farmer should be visited at least one time each month by
a pathology expert to help farmers with diseases. Thus, we
model a problem where we select the lead farmers that
visit and help their neighbors with the use of their Nuru
smartphone. The ultimate goal of the system is to cover the
maximum number of farms, i.e., those that are visited at least
once in a month, using the available smartphones. Notice that,



while the proposed model considers a monthly period, with
constraints, parameters and solution for this time horizon, it
can be extended to any different period (day, week, or year),
based on the application needs.

We assume that a farm f needs a monthly inspection which
lasts τf seconds, and that a lead farmer i moves (walks) at an
average speed of vi. We also assume that each lead farmer i
works for a limited amount of time in the framework, due to
the farmer capabilities and free time available. His/her monthly
workload is Mi, the time devoted to a single trip is bounded
from above by a threshold bi (i.e., the lead farmer wants to
visit only close farmers). Then, considering dij the distance
between farmer i and j, which is defined as the geographical
distance between their farms, a candidate lead farmer i can
visit only farmers j such that 2·dij

vi
+ τj ≤ bi. Therefore,

only farmers within a bounded round-trip time, which includes
inspection time, can be visited.

We now introduce the two optimization models. The first
model, called Lead Farmer Selection and Trajectory Planning
Problem (LFSTPP), decides which farmers should receive the
smartphones and which not, and assigns a set of paths to
lead farmers to visit basic farmers. Nevertheless, this model is
complex and its computational time with large instances may
become prohibitive. Thus, we introduce a simplified model,
called Lead Farmer Selection Problem (LFSP), which selects
lead farmers, and basic farmers to visit, using simple round-
trip routes (i.e., a lead farmer visits only one basic farmer for
each trip).

An example of the solution of two models solution is
introduced in the Figure 3. Both the models select the lead
farmer L which has a maximum workload of 350 (ML = 350).
In the first model (Figure 3a), which is referred to LFSTPP,
the lead farmer L is associated with all the other farmers with
a cost of 270, thanks to its optimal visit trajectories. Notice
that, farmer 5 and 4 are visited in the same trip, without going
back to its home farm. In the second Figure 3b, which is a
solution to LFSP, the lead farmer L has only associated the
basic farmers {2, 1, 4, 5} with a cost of 310: due to round trip
path, farmer R is not visited as he/she exceeds the maximum
workload (310 + 60 > 350). Nevertheless, the time required
to solve the first problem is fifty times bigger than the time
required by the second model.

In general, considering the same problem instance, the
second model, (LFSP), has shorter processing time, while the
first one, (LFSTPP), due to path variables and constraints is
extremely computational demanding. In some scenarios the
models result equivalent (e.g., when a lead farmer carries some
load, such as water, to basic farmers and he/she needs to return
to his/her farm after each visit). In such a case the second
model is preferable. Computational time is investigated in the
section IV.

B. Lead Farmer Selection and Trajectory Planning Problem

We introduce the first optimization model, Problem 1, which
aims at selecting lead farmers and assigning them monitoring
tasks including visits to basic farmers, with optimized paths.

(a) LFSTPP (b) LFSP

Fig. 3: Lead farmer to neighbors path

It achieves a maximum coverage of farmers while respecting
the available number of smartphones.

Problem 1. We introduce yf ∈ {0, 1} as first decision
variable which decides to provide the smartphone to the
farmer f (yf = 1) or not (yf = 0), for f ∈ F . We
consider that each lead farmer can visit the associated basic
farmers with several multi-trip paths, namely |W|. Then, we
introduce xfij(w) ∈ {0, 1}, with i 6= j for all i, j, f ∈ F
and w ∈ {0, ..., |W|}, as decision variable to move the lead-
farmer f from farm i to farm j, exploring them in a sequence
(xfij(w) = 1) or not (xfij(w) = 0) in the w-th path.

Notice that, an upper bound for the values of W can be the
number of farmers |F|.

We introduce an auxiliary variables zi ∈ {0, 1} that, based
on the decision variables, indicates if i participates in the
framework (zi = 1), i.e., he is lead farmer or he has an
associated lead farmer which visits him, or not (zi = 0), for
i ∈ F .

To reflect the assignment variables we impose the following
constraint to value of zi:

zi ≤ yi +
∑

w∈|W|, j,f∈F,j≤i

xfji(w), ∀i ∈ F (1)

Thus, the objective function can be expressed as:

max
∑
i∈F

zi (2)

that maximizes the number of farmers that participate in the
framework.

We now introduce additional constraints to deal with farmer
capabilities and to define the feasible set of solutions for
the optimization problem. We impose that the number of
lead farmers is less than or equal to the number of available
smartphones Z: ∑

i∈F
yi ≤ Z (3)



We add a constraint to guarantee that a basic farmer is
visited only by a lead-farmer:∑

i,j∈F,i6=j,w∈|W|

xfij(w)

|W| · |F|2
≤ yf , ∀f ∈ F (4)

We impose that each lead farmer has a valid cyclic path by
means of the MZT formulation [7]. In details, we introduce
some auxiliary integer variables ofi (w) ∈ {1, . . . , |F|}, to
enforce an order in the farmers visited by the lead farmer.
The constraint is proposed as follows:∑

i∈F,i6=j

xfij(w) =
∑

i∈F,i6=j

xfji(w), ∀j, f ∈ F , w ∈ |W| (5)

ofj (w)− o
f
i (w) ≥ x

f
ij(w) + |F| · (x

f
ij(w)− 1)

∀i, j, f ∈ F , i 6= j, ∀w ∈ |W| (6)

Then, we consider the capacity constraint of a lead farmer.
To comply with the different lead farmer capabilities and time
expenditure for travel, we define ωf

ij , dij

vf
+ τj , which is

the cost for lead farmer f to travel from farmer i to visit j,
∀f, i, j ∈ F , i 6= j. We recall bf is the maximum workload
for a single trip and Mf is the monthly workload, for a lead
farmer f ∈ F . The constraints are formulated as follows:∑

i,j∈F,i6=j

ωf
i,j · x

f
ij(w) ≤ bf , ∀f ∈ F , ∀w ∈ |W| (7)

∑
i,j∈F,w∈|W|,i6=j

ωf
i,j · x

f
ij(w) ≤Mf · yj , ∀f ∈ F (8)

Finally, as we consider that any farmer could be a lead-
farmer if he/she receives a smartphone, when some farmers are
not suitable to become lead-farmers (i.e., they are not willing
to collaborate) an optional constraint must be added to the
model:

yi ≤ 0, ∀i ∈ F̂ (9)

where F̂ are the farmers not available to be lead farmers.

C. Lead Farmers Selection Problem

We now introduce the second optimization model, Problem
2, as special case of the previous one. The problem selects lead
farmers and assigns them the basic farmers with simple round-
trip paths to achieve a maximum farmers coverage, while
respecting the available number of smartphones.

Problem 2. We again set yi ∈ {0, 1} to be the decision of
selecting farmer i as lead farmer (yi = 1) with a smartphone
or not (yi = 0), for i ∈ F . We introduce a new variable
xij ∈ {0, 1} which determines the assignment of farmer j to
a lead farmer i (i.e., j is assigned to i then xij = 1, or not
xij = 0), considering a simple round-trip path.

Then, we introduce the binary variables zi ∈ {0, 1} which
reflects if a farmer i participates in the system (zi = 1) or
not (zi = 0), for i ∈ F . Formally, we impose the following
constraint for the value of zi:

zi ≤ yi +
∑

j∈F,j 6=i

xji, ∀i ∈ F (10)

max
∑

i∈F zi (a)
s.t.

zi ≤ yi +
∑

w∈|W|, j,f∈F,j≤i x
f
ji(w), ∀i ∈ F (b)∑

i∈F yi ≤ Z (c)∑
i,j∈F,i6=j,w∈|W|

x
f
ij(w)

|W|·|F|2 ≤ yf , ∀f ∈ F (d)∑
i∈F,i 6=j x

f
ij(w) =

∑
i∈F,i 6=j x

f
ji(w), ∀j, f ∈ F , w ∈ |W| (e)

ofj (w)− ofi (w) ≥ xf
ij(w) + |F| · (xf

ij(w)− 1)

∀i, j, f ∈ F , i 6= j, ∀w ∈ |W| (f)∑
i,j∈F,i6=j ω

f
i,j · x

f
ij(w) ≤ bf , ∀f ∈ F , ∀w ∈ |W| (g)∑

i,j∈F,w∈|W|,i 6=j ω
f
i,j · x

f
ij(w) ≤Mf · yj , ∀f ∈ F (h)

yi ≤ 0, ∀i ∈ F̂ (i)
yf , zf , ∀f ∈ F (l)

xf
ij(w) ∈ {0, 1} ∀i, j, f ∈ F (m)

ofi (w) ∈ {1, . . . , |F|} (n)

Problem 1: Lead Farmer Selection and Trajectory Planning
Problem.

The objective function can be expressed as:

max
∑
i∈F

zi (11)

Again, we impose that the number of lead farmers (i.e., the
farmers which receive the smartphones) is less or equal to the
number of available smartphones Z:∑

i∈F
yi ≤ Z (12)

We impose that a basic farmer can be assigned only to an
actually deployed lead farmer:∑

j∈F,j 6=i

xij ≤ yi, ∀i ∈ F (13)

Then, we consider the capacity constraint of a lead farmer.
To comply with different lead farmer capabilities and their
time expenditure for travel, we denote with wij the workload
of lead farmer i to visit farmer j, such that wij , 2dij

vi
+ τj .

We recall that τj is the inspection time required by farmer j
for his farm. Thus, the lead farmer workload constraints are
modeled as follows:

wij · xij ≤ bi · yi, ∀ j, i ∈ F , j 6= i (14)∑
j∈F,j 6=i

wij · xij ≤Mi · yi, ∀i ∈ F (15)

Finally, we impose that farmers, which cannot be lead
farmers, are not selected to receive the smartphone:

yi ≤ 0, ∀i ∈ F̂ (16)

where F̂ are the farmers not able to be lead farmers.

IV. PERFORMANCE EVALUATION

In this section we evaluate the performance of the pro-
posed approaches first through simulations and then with
real experiments in Western Kenya, in the Busia region. The
model parameter tuning is based on estimates derived from the
analysis of previous data or provided by local farmers, which
are the end-users of the crowd-sensing framework.



max
∑

i∈F zi (a)
s.t.
zi ≤ yi +

∑
j∈F,j 6=i xji, ∀i ∈ F (b)∑

i∈F yi ≤ Z (c)∑
j∈F,j 6=i xij ≤ yi, ∀i ∈ F (d)

wij · xij ≤ bi · yi, ∀ j, i ∈ F , j 6= i (e)∑
j∈F,j 6=i wij · xij ≤Mi · yi, ∀i ∈ F (f)

yi ≤ 0, ∀i ∈ F̂ (g)
yi, zi ∈ {0, 1} i ∈ F (h)
xij ∈ {0, 1} ∀j, i ∈ F (i)

Problem 2: Lead Farmer Selection Problem.

A. Simulation results

To give the intuition of the characteristics of the deployment
achieved by the proposed models, in Figures 4 and 5 we show
their solution for a scenario with only 3 smartphones, provid-
ing service for 23 local farmers. In particular, Figure 4, which
employs the solution of Problem 1, evidences a complete cov-
erage of all the farmers: it visits them using multiple optimized
paths. Likewise, Figure 5 shows the solution of Problem 2 in
the same setting. This small example highlights that the second
model, which is simpler and more computationally tractable
than the first, shows a good performance, with only a moderate
loss in coverage with respect to the first model, i.e., only 2
farmers are left out from the framework.

Figure 6 shows the computation time required by our
approaches. The models are solved using the Gurobi Optimizer
[8] on a Lenovo X3550 M5, with 2 CPUs Intel(R) XEON(R)
E5-2650 @ 2.20GHz with 16 cores each and 80 GB RAM
[9]. The figure suggests the need to tradeoff computation time
with deployment performance. In fact, working with medium
size instances, LFSTPP requires several hours of computation
(e.g., around 6 hours for 50 farmers) while LFSP requires only
few minutes. The following experiments show that when the
number of farms is high, the two algorithms’ performance
is very close, motivating the use of LFSP. In fact, when
the number of farmers is high, LFSP produces a deployment
solution in a considerably shorter time with respect to LFSTPP,
at the expense of a negligible loss in coverage.

In the following experiments we study our approaches
comparing them with a random deployment of devices to
the users. Such a baseline approach, hereafter shortly called
Random, mimics a current deployment of devices in our test-
bed experiment in Kenya, where deployment of smartphone
is uniquely based on the selected farmer’s social role. Where
not otherwise stated, we consider a region of around 100km2,
and homogeneous parameter setting with: maximum monthly
workload Mi = 10hr; farm inspection time τi = 45; maxi-
mum path workload bi = 2hr; an average speed of farmers
vi = 3m/s for all i ∈ F .

The algorithms are compared in terms of Percentage of
Covered farmers ρ, which reflects the number of farmers who
benefit from the use of the framework, either because they are
lead farmers endowed with a Nuru smartphone, or because
their farm is included in the task schedule of a lead farmer:

ρ , 1
|F| ·

∑
i∈F zi. In the following plots, the error bars denote

one standard deviation of uncertainty.
Figure 7 show how ρ varies when the number of farmers

in the area increases. For this experiment, we set the number
of available smartphones to 1/10 of the number of farmers
(e.g., for 40 farmers we deploy 4 smartphones). The figure
highlights that, as expected, the proposed approaches LFSP
and LFSTPP produce a better coverage than the Random
deployment. The figure also highlights that the performance of
two proposed algorithms is only slightly different, despite the
fact that LFSP requires a considerably lower computational
time. In particular, the percentage ρ of covered farmers under
LFSP model is only 10% worse than under LFSTPP.

Also, the performance of LFSP and LFSTPP converges
when the density of farmers (nr. farmers / size of the area)
increases: for 50 farmers over 100km2 the coverage achieved
by LFSP is very close to that of LFSTPP. When more farmers
are close to each other, path optimization is less critical.

Figure 8 shows the percentage of covered farmers by
varying the number of available smartphones in the case of
30 farmers. LFSTPP achieves a coverage close to 1 with
only 3 smartphones while the random deployment does not
cover all farmers, neither with 5 smartphones. In contrast,
the performance of LFSP is close to that of LFSTPP, and it
requires only one more smartphone to achieve full coverage.

In the following, we consider larger size scenarios with a
more realistic number of farmers. Due to the large size of the
problem instance and considering the high computation time
of LFSTPP, in the following experiments, we examine only
LFSP and Random. We consider an area of 225 km2 and a
ratio of smartphones to farmers equal to 1/15. Figure 9 shows
the percentage of covered farmers ρ by varying the number of
farmers and 10 show. Figure 10 shows how ρ varies with the
number of smartphones, with 160 farmers. Both plots confirm
the algorithms trends and the superiority of the LFSP solution
with respect to the random algorithm.

Finally, Figure 12 shows the applicability of the LFSP
model in our real test-bed in the Busia region, Western Kenya.
We collected the position of around 175 farmers, shown in
Figure 11 and applied the LFSP model. Figure 12 shows how
the LFSP model can cover all the 175 farmer with the only
25 smartphones received from the PlantVillage [5] research
group, while meeting the workload constraints (i.e., 15 hours
each month and 2 hours for each visit).

V. CONCLUSIONS

We consider a crowd-sensing framework for diagnosing
crop field diseases. The framework is designed to work in de-
veloping countries with limited availability of sensing devices
and poor infrastructure. Considering the above limitation, we
introduce two optimization models to improve device deploy-
ment and service coverage through the region of interest. We
show that the proposed models, along with a farmer-to-farmer
collaboration, provide a better data collection even when the
number of available devices is limited.



Fig. 4: LFSTPP solution Fig. 5: LFSP solution Fig. 6: Time by varying nr. farmers

Fig. 7: Algorithms by varying nr. farmers Fig. 8: Algorithms by varying nr. smart-
phones (30 farmers).

Fig. 9: Random vs Star by varying nr.
farmers

Fig. 10: Random vs Star by varying nr.
smartphones (160 farmers)

Fig. 11: Farmers in Busia Fig. 12: LFSP in Busia

Thanks to the optimal deployment, the model can increase
the system participation to sufficiently large number of users
to ensure the required pervasiveness and retrieve enough data.
We evaluate the models and compare them with a Random
deployment approach which mimics the current solution in
our test bed in Kenya. Results demonstrate that our models
outperforms the previous approach in terms of number of
people who benefits from the use of the framework, and
meets the required Quality of Information (QoI) for the whole
system.
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