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Abstract—IoT is spreading heavily in many use cases that
surround our everyday life; however, existing IoT ecosystems
are still behaving as close islands with little interoperability
with each other. Recent research efforts tend to propose new
architectures and standards to which private customers and
companies producing data are supposed to adhere in order to
make them consistent. However, such entities have their own
vested interests that hinder data integration. We instead leverage
information acquisition through Collective Awareness Paradigms
(CAPs) such as Open Data and Mobile Crowdsensing (MCS) in
order to use what is already available. As a proof of concept, we
developed SenSquare, a prototype IoT architecture and platform
for Smart Cities and environmental monitoring that gathers
raw data through CAPs, adapts it to a common semantic and
composes customizable flexible services. Inexperienced users can
generate their own services using an easy visual programming
plugin designed around a customized language. Furthermore, we
test the platform on a real world use case.

Index Terms—IoT, Open Data, Mobile Crowdsensing, SOA.

I. INTRODUCTION

The spread of the Internet of Things (IoT) in its multiple
forms has been impressive over the last 15 years. The
research in this direction has been largely fostered, also
because the areas of research are by now numerous; it is
indeed impossible to give a unique definition of how an
IoT ecosystem is ought to be structured. In fact, many of
the use cases have orthogonal features and the areas of
research pertaining the IoT are getting farther and farther
from each other. This is evident, since nowadays many of
the IoT-related works in literature highlight the growing
number of connected devices and the amount of billions
of dollars invested in the IoT market [1], together with the
plethora of technologies, standards and protocols that have
been proposed and distributed in the market. The outcome
of this consideration is that this universe is currently moving
at a pace that sometimes research and standardization efforts
cannot keep up; as new needs come in, industrial ad-hoc
efforts tend to come first. In fact, we are currently witnessing
a set of “Intranets of Things” rather than a true Internet
of Things [2], this is because current ecosystems tend to
behave as closed islands with little or no interoperability
between each other. This happens either because solutions
need to be deployed “here and now” – so there is more
need for the least solution that solves the problem rather
than something that can someday be useful to others – or
else because widespread and different industrial solutions

force the customer to stick to what has been envisioned
by the manufacturer. Of course, architectural and semantic
standardization efforts have been envisioned. As a matter
of fact, the literature is literally covered in proposals for
new IoT frameworks and architectures expected to cover a
plethora of use cases; however, many of them end up being
yet another standard that a small amount of solutions adopt.
The prosperity of a standard has to be examined from the
viewpoint of whether the participants achieved their goals
from their participation in the standardization process [3]: in
our case, the various parties have much at stake in their own
interests, therefore standardization efforts in some IoT fields
find a lot of obstacles.

As opposed to the situation described above, we leverage
the concept of Collective Awareness paradigms (CAP) [4], a
revolutionary way to think about IoT: instead of proposing
a new standard, the priority is to adapt the architecture to
what is already in place through a wise use of a collective
effort. CAPs rely on the cooperation of participant users that
willingly share their data through public repositories to be
used and aggregated by third parties in order to construct a
common model. For a number of use cases based on common
resources (i.e. environmental monitoring and Smart Cities)
such paradigms have demonstrated to be a key enabler to a
whole new level of pervasiveness for any application as well as
a significant reduction in the costs. In fact, what was formerly
required – i.e. ad-hoc deployments of sensor networks – is, for
many applications, no longer necessary. Clearly, this paradigm
is characterized by different issues that formerly were merely
technological and now shifted to social: people need to be
instructed, encouraged to participate, incentivized and satisfied
of the results. The greatest outcome that CAPs bring to the
current trends is given by three major concepts:

1) Data about phenomena of common interest is probably
already in place. The more the interest, the more likely
is to find Open Data that can describe it, being it
institutional (i.e. gathered through reliable appliances) or
crowdsourced.

2) If data is not available, devices capable of reporting
observations about such phenomena are probably already
in place. Even though Mobile Crowdsensing (MCS) is the
biggest trend that exploits this concept, any collaborative



solution could make the difference in such sense.
3) The need for IoT services does not come only from com-

panies, but also from citizens. They need a simplified and
accessible way to design their own customized services.

With the final goal of bringing interoperability to IoT
ecosystems and bridging the gaps of data and device re-
dundancy, we illustrate our vision though an implemented
prototype architecture, called SenSquare, which leverages the
usage of CAPs (crowdsourcing and crowdsensing), aggregates
data from heterogeneous sources and delivers to the final user
a customized and straightforward way to monitor and react to
phenomena in a service oriented fashion. That being said, we
do not aim to propose yet another standard, but rather we aim
to make the most out of what is already in place and present
a solution that outlines our vision on the Collaborative IoT. In
short, the paper brings the following contributions, also with
respect to previous related publications [5]:

1) Different CAPs (MCS and Open Data) sources are ana-
lyzed and integrated together in a common paradigm and
data is processed and classified whether necessary.

2) A more expressive dedicated language for service com-
position is proposed and defined.

3) A novel visual programming way to define customized
services for end users is proposed and implemented.

4) A translator for service templates into Python scripts, in
order to execute them as blackboxes, has been proposed
and implemented.

The paper is structured as follows: Section II introduces the
different facets of CAP and our motivation for focusing on
them, Section III introduces SenSquare and discusses the
architectural details and its elements, Section IV presents the
user experience of our platform, finally, Section V concludes
the paper.

II. COLLECTIVE AWARENESS: THE COLLABORATIVE IOT

A fundamental building block of the present work is given
by the CAPs, a set of methodologies and systems that leverage
the collaboration in data collection and other fields in which
a complex and resource-consumptive task is offloaded to a
crowd of participants. This results in a minimal effort for the
individual, a benefit for both the executors and the issuers and
a massive economic saving. Our vision supports a paradigm in
which services are delivered through what is already in place,
leveraging cooperation between final users and stakeholders.
Specifically, we make use of two major paradigms: Open Data
and Mobile Crowdsensing (MCS).

A. Open Data

Open Data is, as the name suggests, data that is
freely accessible in machine-readable format from public
repositories. It may be either contributed by users or gathered
in an open access form through an initiative. In fact, we group
Open Data repositories as “reliable”, that is, repositories
maintained by organizations or governments, and “unreliable”,
that is, repositories created through crowdsourcing: users
freely contributing in uploading IoT data through their

personal devices [5]. Reliable Open Data repositories are
preferred, since the data they provide follows some sort
of annotation policy (i.e. we know exactly what it is), is
updated regularly and its quality is guaranteed by the use
of professional appliances. Examples of reliable Open Data
repositories are the Environmental Protection Agency (EPA)1,
providing environmental monitoring data in the United States,
and various weather and forecast services such as DarkSky2.
Unreliable Open Data repositories, on the other hand, provide
IoT data without any warranty about its veracity, neither
about what it actually measures. Data is typically unlabeled,
poorly annotated and incomplete and needs a processing
step to classify which data feeds are valuable and what they
actually measure. An example of crowdsourced unreliable
Open Data repository is ThingSpeak3, a platform where users
can upload data generated by their personal devices (mostly
environmental) in “data channels” and make them public.

Why then unreliable Open Data repositories should be of
interest? First of all, it is worth noting how data coming from
reliable sources is provided at a wide area granularity (often
per-city), which may be inaccurate for some applications. An
example is the acoustic noise, which varies dramatically in
small distances in time and space. Another reason lies upon
the general trend in the usage of these platforms throughout
a time window of few years. Let us consider the example
of ThingSpeak, for which we analyzed all the public data
channels (around 160.000 out of a total of 600.000 are public
at the time of writing), all of them coming with a creation
date and the time of the last update. We report the channels
in the diagram in Figure 1. For each month in the diagram,
the horizontal line inside the boxplot represents the number of
active channels, the upper box is the number of newly created
channels, and the lower box is the number of channels that
have been updated for the last time on such month (we assume
them to be no longer active since then). Green boxes are those
for which the number of created channels is higher than the
number of channels that ceased their updates, red boxes are
the opposite.

We can observe a global increase in the number of active
data streams since 2011, as almost every month shows an
increase in the number of active channels. Motivations behind
this phenomenon are the reduction of the cost for components
such as Arduino, ESP8266 and alike. Moreover, related tools
are now much easier to use, reducing the digital gap and
flattening the learning curve to develop embedded software.
Furthermore, it is interesting to observe how the integration
of heterogeneous sources would improve the knowledge base,
due to their specialization in different observation fields as well
as their different geographical concentrations. Such analyses
shed some light on how rapidly the world of Open Data is
growing and people are gaining interest in using a platform

1https://www3.epa.gov/
2https://www.darksky.net/
3https://thingspeak.com/



Fig. 1. Trend in creation and update of ThingSpeak channels.

that takes away the burden of creating a local ecosystem.

B. Mobile Crowdsensing (MCS)

Mobile Crowdsensing (MCS) is a CAP coined in [6] and de-
fined as “a paradigm through which a number of individuals,
called participants, are committed to perform tasks – as part
of a campaign – involving sampling of real world phenomena
of common interest through the use of portable, connected and
Spatio-Temporal Aware mobile devices in order to enable its
mapping through information aggregation” [4]. The definition
includes any connected mobile device capable of observing
phenomena and performing computation, however, MCS refers
predominantly to Smartphones. In [6] MCS was first classified
into participatory and opportunistic, a separation that has
been pointed out in other subsequent works. In particular,
Participatory Crowdsensing is a paradigm in which the user
is actively involved, often through the use of a front-end
application, and intentionally reports observations through a
specific action, whereas in Opportunistic Crowdsensing the
user involvement is minimized and often an application is run-
ning in background performing sensing, monitoring tasks and
performing decisions on where and when to sense and send
on behalf of the user. MCS yields a massive data gathering
at a significantly low price, although it presents a multitude
of challenges that are addressed separately in literature [7],
such as data quality [8], incentivization techniques [9] and
recruitment algorithms to deal with scenarios in which data can
be too sparse or too dense for the purpose of the application
[4]. We consider MCS mainly for the purpose of Smart Cities
and environmental monitoring, areas in which it has been
greatly leveraged.

III. SENSQUARE: ARCHITECTURE AND MODULES

The effectiveness of our paradigm is demonstrated through
the real implementation of our prototype platform SenSquare.
It has first been introduced in [5] and, since then, we have ex-
plored all its components. The overall architecture is presented
in Figure 2.

In the figure, we can see clearly three different sections:
1) The data gathering part, devoted to collect data using

CAPs.

2) The data aggregation part, committed to unify data
coming from different sources and forming a layer of
abstraction that transforms raw data in complex services.

3) The service domain, in which users create, share and
make use of customized and dedicated services.

A. Data Gathering

The lowest layer of the architecture of SenSquare is in
charge of retrieving useful IoT data from publicly available
resources. This task is clearly non-trivial due to the hetero-
geneity of the data sources as well as their potentially variable
data quality. Within the scope of public Open Data, the only
way to retrieve all the possible data feeds is to construct
a dedicated data scraper that periodically performs HTTP
requests in order to extract the updated data points from the
web. Both reliable and unreliable resources have been tested
with success, in particular, we extracted air quality data from
the Regional Agency for the Protection of the Environment
in the Italian region Emilia-Romagna (ARPAE)4. Such data
is annotated and its precision is ensured by the quality of the
appliances. For the unreliable data sources, we extracted the
whole knowledge base of the Open Data clouds of ThingSpeak
and SparkFun5 (although its public cloud is not available
anymore since 2017), since they present similar issues in
terms of annotation. In fact, the crowdsourced data feeds in
ThingSpeak are not properly annotated (i.e. the measurement
class is not explicitly stated), thus, we potentially do not
know what is being measured. For such reason, in order
to automatically classify each feed (defined as “datastream”)
we proposed a sequential ensemble algorithm that combines
classifiers for both numerical and natural language data [10].
The algorithm has been tested on a number of datasets, among
which the ThingSpeak dataset that we produced and made
openly accessible6, and it is shown to outperform canonical
approaches in literature such as [11].

We also leveraged MCS as a powerful source of information
for our framework. In particular, we focused on the opportunis-
tic collection of data, i.e. we built a mobile Android application
that periodically uploads data collected by the sensors in the
device. Each type of data has its own spatial and temporal
ideal granularity at which it has to be sampled. This has been
implemented through a set of rules that are fine tuned through
a self-adaptable distributed probabilistic algorithm. The goal of
the algorithm is to regulate the amount of collected data to an
established optimum and to preserve the privacy of the users.
In particular, it pushes the participant devices in contributing
more when data is too sparse in the area and it limits data
uploads when data is too dense [12].

B. Data Annotation

In order to step into the stage of service composition,
semantic annotation is essential to uniformly access heteroge-
neous IoT data. In order to fill such gap we envision a tool that

4https://www.arpae.it/
5https://www.sparkfun.com/
6https://github.com/stradivarius/TSopendatastreams
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Fig. 2. Architecture of the whole ecosystem together with all of its external and internal components and actors.

is able to semantically enrich IoT data with metadata extracted
from semantic sensor ontologies. In particular, such platform,
called “Datastream Manager and Annotator (DMA)”, is in-
cluded as part of the architecture in Figure 2 between the data
gathering environment and the service part. Such tool gathers
data from all the data gathering and processing components
and saves it into the repositories using a unique format. It
could be easily extended to an automatic datastream annotator
using metadata extracted from domain-specific ontologies –
i.e. ontologies that are specific to the data type, for instance
the air quality – and semantic sensor ontologies such as SSN
[13] or SOSA [14], using as input the data class received from
the gatherers or, when missing, the output of the classification
algorithm. In such a way the DMA would be able to associate
the SSN or SOSA class with the output class from the
classification module, then we expect it to semantically enrich
the annotated IoT datastreams with domain specific concepts
provided by the IoT application. An accurate implementation
in such direction is currently under study.

C. Service Delivery

Service Oriented Architectures (SOA) are the added value
to pure IoT applications, since they leverage the service com-
position of raw data and add reasoning capabilities, making
observations much more meaningful to humans. In our case,

services are composed through two main primitive entities:
the datastreams and the Custom Service Templates (CST).
CSTs are designed by the users and shared in a common
repository to encourage reuse. They are abstract composition
of primary types of measurements and users design them in the
same way a programmer writes a function. CSTs are designed
using a dedicated language, defined here in Backus-Naur Form
(BNF), that includes basic arithmetic and relational operations
between datastreams, the if-then-else clause and logical
connectives. Formally, a CST is defined by a mathematical
expression E as follows:

E := c | DC | (E + E) | (E − E) | (E ∗ E) | (E/E) |

IFTE(C,E,E)

C := b | C ∧ C | C ∨ C | ¬C | E > E | E ≥ E | E < E |

E ≤ E | E = E | E 6= E

where c is a constant floating point value, b is a boolean
value and DC is a datastream class. IFTE(C,E1, E2) is the
if-then-else clause, which executes E1 if C is true, E2

otherwise. When defining each DC, the CST specifies whether
it should correspond to a single datastream; in alternative,
aggregated measures for all the datastreams of the same type
can be used (i.e. the maximum, the minimum and the average).
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Fig. 3. Screenshots of the main functionalities of the SenSquare Web application.

A CST is then stored in the database as a Python script with
the used datastream classes as parameters and it is executed
as a blackbox. Given such primitives, the actual services are
defined as Custom Service Instances (CSI), again generated
by the users through the instantiation of a CST in a specific
geographical area. When a CSI is instantiated, the user can
choose the specific datastream of each type located in the area
of interest and required by the respective CST to be used for
the calculation. In alternative, aggregated measures for all the
datastreams of the same type can be used (as specified by the
CST definition). After this stage, the CSI behaves as a new
datastream, which takes in input raw measurements and returns
periodically a numeric output, using the expression contained
in its CST as a calculation function. CST and CSI repositories
are public, thus, once they are created, they are accessible to
all the users of the platform. For the sake of clarity, in the
next section we give an example of usage for CSTs and CSIs.

IV. SENSQUARE: THE USER INTERFACE

In this section we present the current SenSquare desktop
client application7, where users make use of the datastreams
gathered through collective awareness by creating CSTs and
instantiating them into CSI. In order to better explain the
usage of the platform we will walk the interested reader
through an example that better clarifies each step. Let us

7http://sensquare.disi.unibo.it/

say that a user is particularly sensitive to urban pollution,
however, he or she is also interested in jogging in zones
included in the urban area. In such case, the user would
start with the creation of a CST that informs whether the
outdoor air quality is good enough to preserve her health.
Looking at the EPA air quality indices (AQI), we can establish
the maximum level of PM10 (suspended particulate matter
below 10 µm) bearable for a good AQI is 54 µg/m3, whereas
the maximum level of CO (Carbon Monoxide) is 5 ppm.
Hence, we would write a CST that, if both the levels are
below the respective thresholds, would output a positive value,
negative otherwise. We do not assume that inexperienced users
have programming capabilities, therefore, we leveraged the
paradigm of visual programming, widespread in the field of
education, for the composition of a new CST. In particular,
we used the well-known plugin Blockly by Google8 with
customized functionalities in order to cover the only the cases
outlined in Section III-C (i.e. avoiding loops) and provide as
variables only data classes. Whenever selecting a possible data
class that can be part of the CST, we ask to the user whether it
has to be a specific value or an aggregate during instantiation.
In our example, the composition of the CST through Blockly
is depicted in Figure 3(a), in which new blocks can be dragged
and dropped from the left end side into the main dashboard.

8https://developers.google.com/blockly/



We set the value of PM10 to be an aggregate (the average
value), whereas the value of CO has to be selected from
a specific datastream at the time of instantiation. Once the
CST is generated, it is stored together with all the other
CSTs created by other users. The list of CSTs is shown in
the screen in Figure 3(b), where users can explore all the
created CSTs and select to instantiate one of them. Given
that CSTs are created through crowdsourcing, we introduced
a rating mechanism in order to quantify the trustworthiness.
Once the user selects one of the CSTs from the list, she will be
displayed with the instantiation wizard screen, which consists
in a map where the user should indicate a circular zone of
interest (both the center and the radius are customizable). As
the user moves and edits the circle, all the static and active
datastreams within such area are displayed with a marker on
the map (the datastreams coming from MCS sources are not
displayed, since they are moving constantly and, therefore, will
only take part in the aggregates). Only the datastreams of the
same classes as the ones required by the respective CST are
shown, in our example only datastreams measuring PM10 and
CO. In Figure 3(c), following our example, we need to select
a single CO datastream, whereas for PM10 it is not necessary,
as we are using the average over all the PM10 datastreams in
the area. Once the CSI is created it will be available to the
whole community to be visualized. In Figure 3(d) we show
the CSI visualization screen for our instantiated example. On
the right side, the map with the circular area highlighted in
dark grey is displayed, together with the markers representing
all the static sources taken into account. It is also possible to
filter them by type. The part on the left is dedicated to all the
metadata about the CSI, including its name, its location and
the user who created it, as well as the observation values, both
by category and the final value computed through the function
implemented in the respective CST. In our example, we can
see that the values measured for PM10 and carbon monoxide
are respectively 1 and 24.5, thus, the final value computed
is 1 as expected, which stands for a good AQI. We can
conclude that jogging in such area is safe even for susceptible
individuals. The whole platform has been developed using
Angular 4 and Django 1.11 and its front-end interface has
been designed following the guidelines of Material Design to
promote intuitiveness.

V. CONCLUSION

In this work we presented a novel IoT paradigm that, con-
trarily to the vast majority of approaches existing in literature,
does not rely on a novel standard or framework oriented to
the data gathering, rather, it has indeed the high potential for
leveraging resources that are already in place, making use of
Collective Awareness Paradigms (CAP). More in detail, we
consider particularity the usage of Open Data repositories,
being them “reliable”, i.e. coming from certified sources, or
“unreliable”, i.e. crowdsourced through devices belonging to
participants who upload freely their data. Furthermore, we also
imply Mobile Crowdsensing (MCS) as another data gathering
method, for which we implemented a general framework as

well as an algorithm that controls sparse and dense data. We
deal specifically with many of the research problems that affect
such data gathering systems in several past works. Finally, we
propose a prototype platform, called SenSquare, designed as a
SOA, that allows users to make use of the raw IoT datastreams,
collected through collective awareness, composing them in
customized services. In particular, we designed a language
with customized semantics in order to facilitate inexperienced
users to compose services templates and instantiate them into
geographical areas according to their needs. We firmly believe
that this work opens up a plethora of novel possibilities in
research as well as in any entity interested in building IoT
applications for the common benefit; in fact, much of the
data needed for such applications is already available, although
research efforts are needed to make use of it.
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