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Abstract—Precise tracking of smart wearables in 3-D space
is foundational in domains ranging from Augmented Reality
(AR) and gesture recognition to robotics and indoor localization.
Usually, a sensor-dependent approximation model, and a comple-
mentary infrastructure like acoustic, vision etc. is implemented
alongside an onboard IMU (Inertial Measurement Unit) for an
effective tracking. In this work, we present a novel 3-D tracking
solution, ‘AiRite’ for commercial-grade smart wearables/mobiles
using only their onboard IMU. Our tracking method mitigates
the manifested inertial errors using a novel progressive zero
correction, yielding superior results both for 2-D and 3-D
trajectories. AiRite aims for a pervasive usage and is independent
of device’s form factor, or make of sensor enabling it to be used
right out-of-the-box. The solution is shown to be more accurate
than prior arts in tracking trajectories of basic shapes by moving
the hand both in 2-D and 3-D. We depict trajectories of medium
to long duration words written in air in a cursive handwriting
using both smartwatch and smartphone. We further demonstrate
robustness of AiRite by depicting panoramic 3-D texts written
in air in a concave shape and visualizing the same from multiple
angles, which are first results of their kind in this domain.

Index Terms—MEMS, inertial sensors, tracking, wearable,
smartphone

I. INTRODUCTION

Consider a scenario where one is wearing a personal smart-
watch, smart glove or holding a smartphone, and can digitally
create 3-D text and shapes in one’s own handwriting by just
scribbling in air without any complementary hardware, or a
case where hand gestures from a visually-challenged person
can be tracked accurately & ubiquitously without the need of
being in front of any camera or a special setup. Touchscreen
inputs can be used for simple 2-D geometries, but lose their
application in case of smartwatches, or if the trajectory is
to be written/visualized in 3-D (e.g. creating CAD models
of real-life 3-D objects by tracing object edges with a smart
device [2]). True ubiquity in such cases can be achieved only
if the solution is fully device-agnostic, and is independent
of any hardware external to the device itself. In this work,
we present such a 3-D tracking solution, ‘AiRite’, capable
of running on smart wearables/devices with different form
factors (wrist-watch, phone etc.) using solely the IMU chip
present onboard these devices. With a robust gravity removal,
and highly effective yet frugal progressive zero-correction
technique, we are able to achieve a high degree of tracking
accuracy in drawing shapes/gestures and in writing cursive

Fig. 1. Artistic ‘good morning’ text reproduced by AiRite in 3-D, written in
air in a concave panoramic fashion while wearing a smartwatch.

words in air. To further strengthen the 3-D capability statement
of our solution, we present tracking results of words written
in a concave fashion so as to traverse all the 3 dimensions
(Figure 1).

The results presented are first of their kind to the best of our
knowledge and prove that our system can provide extremely
accurate short-duration 3-D trajectories using commercial-
grade smart wearables in domains like healthcare, where
potentially any part/joint of the body can be accurately tracked,
e.g. unobtrusive tracking of range of motion using smart-
watches in subjects with shoulder-injuries [3]. Our system
can also immensely improve detection of fine hand activities
[4] by providing detailed trajectories traversed by hand in
air, and help creating highly accurate smartwatch-based bio-
metric solutions by directly exploiting the 3-D trajectory data
of wrist’s motion [5][6].

II. RELATED WORKS

Errors manifested in IMU sensors have been attacked from
various perspectives in prior researches. Pang et. al. [7] evalu-
ated low-cost MEMS accelerometer at different rates of accel-
eration using a robotic arm and presented a study regarding
different biases like random, thermal etc. Laotrakunchai et.
al. [8] proposes an accelerometer based method, coupled with
camera in order to determine the dimensions of objects in 3-D
space.

There have been interesting attempts to use IMU-enabled
wearables as devices to create texts/3-D gestures in air, which
is also the major scope of this work. Arduser et. al. [9] uses
smartwatch to classify 3-D accelerometer data to individual
alphabets using DTW-based feature vector matching with



Fig. 2. Proposed Architecture

an accuracy of 94%. Amma et. al. [10] uses accelerometer
and gyroscope attached to the back of the hand to detect
motion while writing in air, and use an HMM to classify the
motion data into individual characters. Agrawal et. al. [11]
has presented some interesting results of air-writing where
individual characters are written in air and are classified using
grammar trees operating using individual strokes. Casanova et.
al. [12] presents a bio-metric solution where the user performs
an authentication by making a certain unique 3-D gesture in
air using the device. Wang et. al. [13] proposes a digital pen
employing accelerometer for recognizing handwritten digits
and other 3-D gestures. All the mentioned works perform an
error and/or gravity correction at some stage of their respective
methods. Error correction and calibration for IMU sensors,
specifically accelerometer, is also a widely researched area
[14][15].

III. FOUNDATIONAL CHALLENGES

In this section, we outline major challenges posed by a
purely IMU-based tracking system.

A. Continuous Drifting

Various factors like cross-axis dependence, temperature,
scaling factors etc. result in erroneous IMU data, which when
numerically integrated (for velocity, displacement and angle of
rotation) drifts the output by large factors. A common tech-
nique for drift correction is Zero Velocity Update using sensor-
specific approximation error models, usually implemented on
foot-mounted IMUs [16][17]. But the accuracy of the same is
limited when the IMU is located on a device being moved by
or attached to a hand.

B. Gravity Estimation

In order to accurately track the device’s trajectory in 3-D
space, an efficient filtering of gravity is required. Performing a
traditional low-pass filtration on acceleration data, sometimes
fused with orientation information from gyroscope can corrupt
the numerical integrity of the data, and the resultant linear
acceleration is also highly affected by the external motion
being registered with the accelerometer.

C. Reference Coordinate System

Inertial sensors present onboard a device provide instanta-
neous data in a Device Coordinate System (DCS). While the
device is in motion and changing its orientation continuously,
the data needs to be converted from DCS to a single Univer-
sal Coordinate System (UCS), so that a meaningful vector
analysis can be made on the same. Deriving the basis of
such a coordinate system may require using a complementary
sensor like a magnetometer, which presents challenges of its
own, such as environmental disturbances calling for ambient
calibrations. Our solution avoids the use of magnetometer to
keep the overall system free from any additional calibration
effort.

IV. PROPOSED APPROACH

We now present the details of our devised approach with
a modular overview of our approach depicted in Figure 2.
Our approach assumes a small interval where the hand is kept
almost stationary immediately before and after the motion.

A. Gravity Removal

For estimating gravity component in the acceleration data,
we propose a method where an initial gravity estimate is made
from accelerometer, following which the subsequent estimates
are generated solely using gyroscope. Let the gyroscope data
at sample i be ri = (rxi , r

y
i , r

z
i ), and the accelerometer sample

be ai = (axi , a
y
i , a

z
i ). If the data is sampled at Fs samples a

second, then the device’s rotation from sample no. i−1 to i can
be represented as θi = ((ri−1 + ri)/2).dt where dt = 1/Fs.

Stacin et. al. [18] proposes that if the sampling frequency
is high enough, then the rotation θi can be approximated
to an equivalent representation in axis and angle (ci & Φi

respectively) as follows:

Φi = ‖θi‖2, and ci = θi/Φi

ci = cxî+ cy ĵ + cz k̂
(1)

An initial gravity estimate in DCS is made using the first
stationary interval of duration dg at the session’s beginning



(dg can be as small as 0.5s). The initial gravity vector in DCS
is then calculated as:

gi = g1 ∀ 1 ≤ i ≤ dg.Fs (2)

For i > dg.Fs, the gravity vector gi is transformed to gi+1

using Euler-Rodrigues rotation formula [19] as:

gi+1 = Reri × gi, for i > dg.Fs (3)

where Reri is a special rotation matrix [19], and is derived
using ci and Φi.

Linear acceleration at ith data sample, li can now be
inferred simply as li = ai − gi.

B. Session Demarcation

Demarcation stage is responsible for selecting an appropri-
ate starting data sample, S from Ds and an ending data sample,
E from De, where Ds and De represent inertial data of the
stationary intervals immediately before and after the motion
respectively. Since our system primarily targets motion by a
human hand, keeping the device perfectly stationary before
and after the motion is not practically feasible, hence a single
best possible sample needs to be selected from a (relatively)
noisy stationary interval. We propose following approach to
select most appropriate boundary samples, which have been
observed to yield excellent tracking results.

The measurement session’s linear acceleration data l=(lxî+
ly ĵ + lz k̂) as derived from previous stage, is divided into
N data windows, with every window having K no. of data
samples. Also let the standard deviations of three axes for
ith data window of acceleration be denoted as a vector
Φi = Φx

i î + Φy
i ĵ + Φz

i k̂ and let the jth sample no. of ith

window be denoted as wi
j . Any scalar-based logical operation

on Φi is applied on its individual components. Let the linear
acceleration vector at (wi

j)
th sample be denoted as l(wij).

A low and high thresholds for the standard deviation of data
windows are defined as ΦL and ΦH . It is observed that one
fixed set of ΦL & ΦH performs satisfactorily with multiple
devices.

Let nth window be such that Φn > ΦH and Φi <
ΦH ∀ i < n. Also let mth window be such that Φm < ΦL

and Φi > ΦL ∀ m < i < n. Then the starting sample no. for
X-axis, Sx is calculated as:

Sx = argmin {|lx(wn
i )−Ms|} for (wn

K/2) < i < wn
K (4)

where, Ms =

∑wm
K

i=wm
1
lx(wm

i )

K

Similar operation is carried out for Sy and Sz .
In order to end the session of motion, the accelerometer

sensor is required to be in a stationary state for a certain
duration. The proposed model works with duration as low as
0.5s. Session’s last data window (N th) is such that ΦN < ΦL.
Now let pth window be such that Φp < ΦL & Φi > ΦL ∀ n <
i < p. Then the ending sample no. for X-axis, Ex is calculated
as:

Ex = argmin {|lx(wp
i )−Me|} for (wp

K/2) < i < wp
K (5)

where, Me =

∑wN
K

i=wN
1
lx(wN

i )

K

Similar operation is carried out for Ey and Ez .
In their essence, equations 4 and 5 pick up the sample point

whose value is closest to mean of the data in their respective
stationary intervals (Ds and De).

C. Modeling Error in Linear Acceleration

As mentioned in previous section, the difference in acceler-
ation at samples S and E is the key to address the errors
manifested in the gravity-corrected accelerometer data. We
propose a method whereby the aforementioned parameter is
modeled linearly in time domain, akin to performing a zero
update. This modeling is performed both on linear acceleration
and derived velocity in a progressive fashion.

In order to achieve this, first the linear acceleration, l is
normalized with respect to the demarcated starting sample S.
This eliminates any accumulated error in the accelerometer
data when the data stream of the sensor has started. The
normalized linear acceleration is calculated simply as:

rx(i) = lx(i)− lx(Sx) for Sx ≤ i ≤ Ex (6)

In a similar manner, ry(i) and rz(i) are also calculated to
provide the complete r(i).

At this stage, the component rx(Ex) reflects the true value
of the error in linear acceleration accumulated during the
motion (along X-axis; similar operations and interpretations
are made for Y and Z axes), mostly as a result of approxima-
tions in the angle-axis formulation. This error is then linearly
distributed among the data before sample no. Ex as a time-
varying parameter. We term this zero-correction model Linear
Temporal Cumulated Error Model (LiTCEM), which is frugal
yet robust and accurate in performance, as is inferred from the
evaluations discussed later.

The correction parameter used by the model is calculated
as follows:

Ψa
x = (rx(Ex))/(Ex − Sx) (7)

Ψa
x and Ψa

x are calculated in a similar fashion using Y and
Z axes components of r to give the final correction vector
parameter as Ψa = Ψa

xî+ Ψa
y ĵ + Ψa

z k̂.
After Ψa has been calculated, its components are distributed

among the components of r in a linear time-varying fashion,
as also mentioned previously. The final corrected linear accel-
eration vector, d is then calculated as follows:

dx(i) = rx(i)− δax(i) (8)

where δa represents the temporal parameter calculated as:

δax(i) = Ψa
x ∗ (i− Sx) for (Sx + 1) ≤ i ≤ Ex

Similar operations are carried out for Y and Z axes to yield
the corrected linear acceleration vector d.



D. Re-orientation to Root Coordinate System

As previously discussed, the DCS acceleration d needs
to be transformed to UCS, since the device continuously
changes its orientation when the user freely moves their hand
in air. Usually such a UCS is interpreted using magnetic
north vector from magnetometer, and the gravity vector. But
as already mentioned, magnetometer poses many calibration-
based challenges when used in wild with varying magnetic
fields impeding an accurate coordinate transformation, and
hence affecting trajectory calculation. We hence propose a
different UCS, a Root Coordinate System, RCS without using
magnetometer at any stage, whose basis is identical to the
basis of the DCS at start of the stationary duration before
the motion is performed (samples 1 to dg.Fs). Hence, RCS is
equal to the DCS at the first sample of the duration dg . Let
λ = dg.Fs.

In order to convert the acceleration vector d(i) which is
in DCS, to the rotated vector u(i) in RCS, following is
performed:

u(i) = Reri,1 × d(i) (9)

where Reri,1 represents the Euler-Rodrigues rotation matrix for
converting the vector from DCS at sample no. i to the DCS
at starting sample, i.e., sample no. 1. This matrix is different
from the matrix expressed in section IV-A, and can be derived
from the same as follows:

Reri,1 = Rerλ ×Rerλ+1 ×Rerλ+2 . . .×Reri−1 ×Reri (10)

E. Velocity Correction

At this stage, the corrected acceleration u is available, and
has already been rotated from DCS to RCS, which can be used
for velocity calculation. The velocity vector, v is calculated by
employing trapezoidal integration on u as following:

vx(i) =
ux(i) + ux(i− 1)

2× Fs
for (Sx + 1) ≤ i ≤ Ex (11)

and similarly vy and vz to yield complete v = vxî+vy ĵ+vz k̂.
It is observed that v exhibits similar behavior in terms of

error as r. Hence, LiTCEM is performed on v as well to yield
the corrected velocity vc as follows:

vcx(i) = vx(i)− δvx(i) (12)

where δv represents the temporal parameter for velocity, and
is calculated as:

δvx(i) = Ψv
x ∗ (i− Sx) for (Sx + 1) ≤ i ≤ Ex

and Ψv is similar to Ψa and is calculated as:

Ψv
x = (vx(Ex))/(Ex − Sx) (13)

vcy and vcz are calculated in a similar fashion giving the final
corrected velocity vector as vc = vcxî+ vcy ĵ + vcz k̂.

Once we have the corrected velocity, estimating displace-
ment vectors is trivial. Trapezoidal integration of vc yields the
final displacement, D as follows:

Dx(i) =
vcx(i) + vcx(i− 1)

2× Fs
for (Sx + 1) ≤ i ≤ Ex (14)

Fig. 3. For each of a and b, first row corresponds to trajectory produced
by AiRite (red: ground truth, blue: calculated trajectory) on left, and the
corresponding CDF of error distribution on the right. Second row corresponds
to the corresponding output along with its CDF as produced by BatTracker
[20] (figures directly imported from the paper [20] for comparison purpose
due to lack of vector data).

V. AIRITE IN ACTION

In this section we evaluate our error model’s performance
using AiRite for 2-D and 3-D scenarios and present some
interesting results. For smartwatch, we use an LG Urbane
running Wear OS 2. We also present results for AiRite running
on a smartphone form factor to prove seamless performance
of our system across devices. A data sampling rate of 80Hz
is used for both accelerometer and gyroscope sensors. As also
mentioned previously, the user holds the hand stationary (as
per convenience) for a short duration (≈ 0.5s) immediately
before and after the writing action is performed. For every
writing activity, user assumes the corner of smartphone as
the writing tip, while wearing a smartwatch simultaneously
on their wrist. The writing motion is performed leveraged
at the elbow (instead of wrist) so that correct acceleration
signals are registered with the smartwatch. All trajectories in
the following sections are smartwatch-derived (except Figure
4(b)). The duration of writing the words varied from ≈ 5s for
short words, up to 13s.

A. 2-D Trajectories

Here, we examine AiRite’s performance in drawing trajec-
tories in 2-D ranging from simple shapes to complex long
words written in cursive handwriting.

1) Basic Shapes: BatTracker, as devised by Zhou et. al.
[20] presents a 3-D tracking method using a combination of



Fig. 4. Words digitally reproduced by AiRite, along with ground truth above each reproduction. (a) LG Urbane Smartwatch, and (b) Oneplus 5 Smartphone.
Starting and ending points of tracing for a word are marked by green and red dot respectively.

IMU and acoustic techniques, where the authors have shown
it to be more accurate than a similar CAT system devised by
Mao et. al. [21], and AAMouse introduced by Yun et. al. [22].
We compare AiRite system directly with BatTracker.

Figure 3 shows the trajectories of triangle and loop drawn
using AiRite and BatTracker, with the respective error dis-
tributions. AiRite presents better accuracy for triangle. For
loop, the 90th percentile error equals BatTracker (0.5cm).
It is noteworthy that unlike BatTracker, AiRite uses only
device’s onboard IMU, and doesn’t require any extensive pre-
calibration of the system.

2) Words in Cursive Handwriting: In order to perform this
experiment, a word was written on a large sheet of paper, and
the hand was moved along the trajectory of the word. Figure
4 shows the original word to be traced, and screenshots of
the respective trajectory produced by AiRite on smartwatch
(Figure 4(a); trajectory plotted on a computer) and smartphone
(Figure 4(b)). RCS was initialized such that the trajectories are
drawn in the plane perpendicular to gravity (RCS’ XY plane).
The maximum displacement error accumulated in the Z-axis of
RCS was only 12mm. Mean error in the XY plane bounding
box dimensions of the calculated trajectories was found to be
3.4cm.

B. 3-D Trajectories
Finally we analyze AiRite’s performance by moving the

device unconstrained in 3-D space. We again compare AiRite
with BatTracker system while drawing the double circle ge-
ometry with some elevation with the XY plane, so that the
device moves in all the 3 axes. Figure 5 shows the trajectory
reproduced by AiRite and BatTracker for similar geometry. It
can be inferred from the error distribution functions (Figure
5(b)) that AiRite outperforms BatTracker in tracking the

Fig. 5. (a): 3-D trajectories produced by AiRite (left) and BatTracker (right).
(b): CDF of error distribution in drawing the 3-D geometry for AiRite
(left) and BatTracker (right). CDF plots are shown separately due to lack
of vector data for BatTracker. Figures directly imported from the paper [20]
for comparison purpose.

geometry, with a maximum trajectory error of 1.1cm against
BatTracker’s ≈ 1.5cm.

1) Curved Panoramic Texts: The method underlying
AiRite system is capable of projecting trajectories from DCS
to a unique RCS in 3-D, when the device is moved in random
orientations, which opens up possibilities of generating more
creative and complex geometries in air, than just simple
geometries. As a start, we tested the application’s performance
by writing panoramic texts, where the user wrote a text in
air wearing a smartwatch while sitting on a chair starting



Fig. 6. Curved panoramic text ‘goodmorning’ written in air using a smart-
watch viewed from different angles.

from left of their head and continuing around the head in
a circular concave fashion. An example result is illustrated
in Figure 6 for the word ‘goodmorning’. The trajectories in
Figure 6 prove that DCS to RCS transformation of our system
works effectively, in series to the LiTCEM progressive zero
correction.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work we presented a solution capable of accurately
tracking smart wearables (and potentially any commercial
device with an IMU) in 3-D. Proposed solution was shown
to perform effectively in tracking the hand in writing short
to medium duration cursive words both in 2-D and 3-D,
without any pre-calibration or complementary hardware, and
on devices with form factors of both wrist-watch and phone.

Currently, the solution is being developed as a highly
accurate system for recognizing complex hand gestures, and
also for a low-cost and ubiquitous gait analysis of Parkinsons’
patients using commercial off-the-shelf IMUs on wrists and
feet, with detailed and precise calculation of stride trajectories
and hand tremors.
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