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Abstract—Keeping First Responders (FR) connected has the
highest priority of communications in public safety networks. In
this paper, we propose a method to quickly determine where to
deploy Edge-Devices for connecting the first responders in the
scenarios, where the infrastructure supports may be insufficient.
As an FR can only carry very few numbers of edge-devices,
our research goals are two folds: (i) Quickly decide where to
deploy edge-devices and (ii) deploy as less number of edge-devices
as possible. We model the problem as an Optimal (Minimal)
CDS construction problem with time constraints. Specifically,
we propose a novel real-time connected dominating set (CDS)
construction algorithm for connecting first responders (FRs) in
public safety networks. The proposed algorithm is a polynomial
time approximate solution that can yield a solution in a given
time, which is guaranteed by both the algorithm convergence
speed and the designed stopping theory based rules. The approx-
imation ratio to the optimal solution is jointly determined by the
stopping rules, the required time, and the algorithm properties.
The outputs from the algorithm can guide the FRs to deploy
and/or select edge-devices in off-network environments to make
them connected.

Index Terms—Edge Computing; Public Safety Network; Con-
nected Dominating Set, Stopping Theory

I. INTRODUCTION

First responders may be in the environments, where there
is no wireless connection among them and the base station.
There is no fixed infrastructure or centralized management in
wireless networks and the hosts may turn on, turn off or move
around at any speed freely, thus the network topology changes
dynamically, i.e. the routing protocols in such a network need
to adapt quickly to the topology changes. The objective of this
proposed technique is to design a relay or BS deployment or
selection method, so that the FRs can quickly determine when
and where to deploy relays or how to select relays to keep
themselves connected in Public Safety Networks (PSN).

Each host can directly transmit messages to its neighbors
within the transmission range. In this case, there is a link to
every neighbor within the transmission range. If two hosts in
the network are not within the transmission range of each other
and they want to communicate, a multi-hop routing mechanism
is required where some other hosts will relay the messages to
the destination. All of these characteristics stimulate the use
of the Connected Dominating Set (CDS) as a virtual backbone
in the network.

We use a connected graph G = (V,E) to represent an ad
hoc wireless network. V is the set of mobile hosts in the
network and E represents all the links in the network. We
assume that all the hosts are deployed in a 2-D plane and their
maximum transmission range are the same. Thus the resultant
topology graph of the net- work is modelled as an undirected
Unit Disk Graph (UDG). In the context of graph theory, we
call a host as a node. A Dominating Set (DS) of a graph
G = (V,E) is a subset VCDS ⊆ V such that each node either
belongs to VCDS or is adjacent to at least one node in VCDS . A
CDS is a DS which induces a connected sub-graph. The nodes
in the CDS are called the dominators, otherwise, dominatees. It
is desirable to build a Minimum-sized Connected Dominating
Set (MCDS). With the help of the CDS, the routing is easier
since the search space for a route from a dominatee to another
dominatee, is reduced only within the CDS. The construction
of an MCDS in a UDG is proved to be NP-hard in [1].

In this paper we jointly utilize connected dominating set
and stopping theory to design the solution. The theory of
optimal stopping is concerned with the problem of choosing
a time to take a given action based on sequentially observed
random variables in order to maximize an expected payoff or
to minimize an expected cost [2]. In our design, we partition
the PSN area into several grids. We set the center of each grid
as a candidate position for deploying relays or BS. In addition,
if there exist some FRs and/or already deployed relays, they
are also considered as candidate positions. We model the graph
consisted of all the candidate positions and the edges among
them representing the communication links. We design real-
time minimal connected dominating set algorithm to connect
FRs with minimal number of deployed/selected relays. As PSN
may require real-time decision on relay deployment, we further
utilized stopping theory to control the processing time within
a required range. To construct and test our model we randomly
generated Connected graphs G(V,E) with different topology.
Our experiments shows that we can solve for MCDS with
in less than a given threshold time. We show that our model
can find a CDS with small size nodes that can be as low
as 5 percent of the input graph, and we can solve for MCDS
without reaching the threshold time in 80 percent of the times.



II. RELATED WORKS

Due to the fact that there is no fixed infrastructure or cen-
tralized management in ad hoc wireless networks, a Connected
Dominating Set (CDS) of the graph representing the network
is widely used as the virtual backbone of the network this idea
was first introduced in [3] . Since finding a minimum CDS is
NP-hard [1], variety of studies and models has been introduced
to find an optimal solution for it. Algorithms in constructing
CDS is divided to two categories, Centralized algorithms
that required network wide information and Decentralized
algorithms that requires local information only. and khuller
[4] proposed two 2-phase centralized greedy algorithms to
construct CDS in general graphs, which can be viewed as
the process of growing a spanning tree T in several sequential
rounds, this method is also called MCDalgorithm has an
O(Logδ) where δ is the maximum number of neighbors of a
vertex. Wen et al [5] has proposed an algorithm considering the
Maximal Independent Set (MIS) based on spanning tree where
each vertex in MIS can be connected to the spanning tree with
an additional vertex. This algorithm usually produces a larger
CDS than MCDS. In [6] the CDS construction algorithm is
based learning automata, and a near optimal solution is found
based on a heuristic algorithm. A study of MCDS problem
in Cognitive radio network is proposed in [7] where both
Minimum CDS and Maximum network lifetime is considered
where both centralized and localized algorithms are proposed.
Extended Dominating Set (EDS) is studied in [8], and in [9] a
Minimum Spanning Tree is constructed using PSO-Optimized
Topology Control Scheme.

In the study of decentralized algorithms there are two
main methods that are either Clustered-base or pure localized.
Clustering algorithms are relatively slow convergence and have
a constant approximation ratio. In cluster based algorithms
first the network is divided into clusters then a clusterhead
is selected for each cluster. These clusterheads are connected
to form a CDS which is called MIS. [3], [10]–[12]. In localized
algorithms status of each node depends on its h−hop topology
(where h is small constant), in [13] set of hosts, which are
called as coordinators, generate a CDS, and a host becomes
a coordinator if it has two neighbors that are not directly
connected.

III. SYSTEM MODEL AND FORMULATION

In this section we introduce the Connected Dominating Set
(CDS) model along with our basic CDS construction method
and the performance analysis. Then, a stopping theory based
quick CDS construction method is proposed to satisfy the
real-time requirement in PSN stopping Model. Finally, a real-
time CDS construction framework is proposed along with the
analysis of the factors that affect the algorithm’s performance

A. CDS Model

Given a connected graph G(V,E), where V is the node
set in G and E is the edge set in G. A subgraph
GCDS(VCDS , ECDS), is a Connected Dominating Set (CDS)
of G iff GCDS is connected and ∀vi /∈ VCDS , ∃vj ∈ VCDS

s.t. ei,j ∈ E. The objective of Minimal Connected Dominating
Set (MCDS) problem is to find a GCDS s.t. GCDS is a CDS
of G and |VCDS | is minimized.

To find a MCDS, we define the following graphs gen-
erated from node set VM , VM ⊆ V : (1) GM (VM , EM ),
EM = {ei,j : ∀i, j, vi, vj ∈ VM and ei,j ∈ E}. (2)
GM (V,EM ), EM = {ei,j : ∀i, j, vi ∈ VM and/or vj ∈ VM ,
and ei,j ∈ E}. The potential function f for a GM is defined
as f(GM ) = |V | − NC(GM ) − NC(GM ), given a node set
D = {vd} ⊆ V , we define the profit of f after adding D
to GM as ∆fD(GM ) = f(GM ∪ D) − f(GM ) Since the
complexity of calculating ∆fD(GM ) is greater than or equal
to zero. Therefore, the potential function f is monotone non-
decreasing. f(G) = |V | − 2, which is the maximal possible
value for the potential function f given connected graph G, as
NC(G) = 1, NC(G) = 1, and G ∪D = G (We use NC() to
denote the number of connected components in a graph). Then,
GM is a connected dominating set of G iff NC(GM ) = 1 and
NC(GM ) = 1. Therefore, for constructing CDS via adding
nodes one by one to GM , we can stop when f(GM ) = |V |−2.
As f is monotone non-decreasing, to reduce the number of
nodes in VM (for the best approximation to MCDS), the best
strategy is to select the node D that can yield the maximal
∆fD(GM ) in each step. The time complexity of brute-force
searching for the best D in each step will totally be O(|V |2)
times the time for calculate ∆fD(GM ), denoted by T∆fD(GM )

which is not sufficient for real time processing of of a network
of FRs. We, therefore, will propose a stopping theory based
strategy for quickly selecting the approximate optimal D in
each step while considering the UEs’ differences in Sec.III-B.

B. Stopping Model

To design a greedy method for constructing a CDS without
brute-force search for the best D, which yields maximal
∆fD(GM ) in each step, we could chose the vi that has the
following properties in priority order: (1) maximal potential
dominating contribution degree of a node vi for GM , (2)
bigger potential connecting contribution degree of a node vi
for GM , and (3) bigger potential robust contribution degree of
a node vi for GM .

Note that this greedy method cannot guarantee that the
maximal ∆fD(GM ). Therefore, if time allows, we would
check more nodes for their ∆fD(GM ) in each step so that
the probability of reaching/approximating to the maximal
∆fD(GM ) is maximized. Then, the next question is how many
nodes we should check in each step before making a decision.
This is where the Stopping Theory starts to chat in. In stopping
theory, the basic rule is that checking new node should be
stopped if the current profit is greater than the expected profit
of checking more nodes.

Considering the time constrain and probability of finding
the maximal ∆fD(GM ) in each step, we define the profit
function p will be, p(vi) = Timefactor(vi) × ∆fvi(GM ) ×
Weightfactor(vi) We, then, apply the stopping rule in each
step:



Stopping Rules: We will stop checking the node’s profit
p after checking the ith node if p(vi) > E(p(vi+1)), where
E(p(vi+1)) is the maximal expected profit p from checking
the unchecked nodes in the same step.

Once we stop checking node in a step, the node vi,
which has been checked and has the maximal ∆fvi(GM ) ×
Weightfactor(vi), will be selected and added to GM .

Now, we have the algorithm framework presented below.
The detail designs of the factors including Timefactor(vi),
∆fvi(GM ), and Weightfactor(vi) will be presented in
Sec. III-C.

Real-Time CDS Construction Algorithm Framework

Inputs:
T : Time Constrain
G(V,E): A Connected Graph
W (vi): ∀vi ∈ V , The Node Importance (Weight)

Algorithm Framework:
1 VM = ∅
2 While (NC(GM ) 6= 1 or NC(GM ) 6= 1) {
3 Sort the nodes in V \ VM according to Weightfactor;
4 While (T has not been used up) {
5 Check vi ∈ sorted V \ VM ;
6 If (p(vi) > E(p(vi+1))) {
7 break;}
8 }
9 D = {vi : argmax(∆fvi(GM )×Weightfactor(vi))

and vi is available and has been checked};
10 Add a vi ∈ D to VM ;
11 If (T has been used up) {
12 Add node from sorted V \ VM one by one to VM

until NC(GM ) = 1 and NC(GM ) = 1;
13 break;}
14}

Output:
GM : The CDS of G

C. Factor Models

1) Time Factor: Given time T , which is the maximal time
that can be used to find a CDS, the time factor Timefactor(vi)
is jointly determined by the remaining time Tremain, the
time T∆f for calculating ∆fvi(GM ), the time Tweight for
calculating Weightfactor(vi), |VM |, and the current value
of f(GM ). We can predict the number of remaining steps
Nstep

remain = fmax−f(GM )+r(G)(|V \VM |−fmax+f(GM ))
for finding a CDS s.t. f(GM ) = fmax. where r(G) is the
parameter for predicting Nstep

remain given an input graph G.
r(G)’s selection will be discussed in Sec. III-C2.

Once Nstep
remain is known, we can calculate the time for

getting a result from each remaining step as T step
remain =

Tremain/N
step
remain Therefore, in each step, we can check at

most Nstep
check = T step

remain/(T∆f + Tweight) number of nodes.
We then can formulate the time factor as the following:

Timefactor(vi) =

{
1− (i− 1)/Nstep

check : i ≤ Nstep
check

0 : i > Nstep
check

where i is the ith checked node in a step.
2) Profit Factor: Will introduce the best known algorithm

for calculating ∆fvi(GM ).
To calculate the expectation of the profit function, we

assume that ∆fvi
(GM ) is a random variable following Pois-

son distribution in the range [0, fmax − f(GM )], with a
mean λ. ∆fvi(GM ) cannot be less than 0 or greater than
fmax − f(GM ). Note that the r(G) is related to λ. As less
number of steps may be needed when λ is bigger, we set
r(G) = 1− λ/(fmax − f(GM ))

3) Weight Factor: The node importance W (vi), the dom-
inating contribution degree Degreedominating

GM
(vi) and the

potential connecting contribution degree DegreeconnectingGM
(vi)

jointly determine Weightfactor(vi). To calculate the ex-
pectation of the profit function, we assume that the
Weightfactor(vi) is a random variable following uniform
distribution in the range (0, 1).

IV. PERFORMANCE EVALUATION

In this section we will perform performance evaluation by
simulations and quantitative analysis on our system model. We
first evaluate the impact of the Connectivity degree of the input
graph (The Network) on CDS size as well as computation
time. Then, we evaluate the impact of number of FRs of the
network on both factors.

A. Connectivity degree Impact

The connectivity degree of the graph is determined by
the communication range and the physical distance of nodes.
Connectivity is the average of the number of nodes that can
be reached by each node and it varies with the communication
range.

We ran total of six experiments on networks with sizes of
30 and 50 nodes, where for each experiment the number of
FRs and network size is kept fixed and the connectivity degree
is the changing variable. We ran each experiment 100 times
and used the average of the trial for performance analysis.

1) Connectivity degree impact on the CDS size: As men-
tioned, in this subsection we analysis the impact of connectiv-
ity degree on CDS size. Figure 1 shows the changes of CDS
size in respect to the connectivity degree changes. The figure
is comparing the CDS size changes in three scenarios. In all
scenarios network size is fixed at 30 nodes and the number of
FRs is fixed to 3, 9, and 18 for scenario one, two, and three
respectively, and the Connectivity degree is changing from 2
to 20 with the step of 0.07 increment.

According to Figure 1, the CDS size is highly affected by
changes in Connectivity degree. By increasing the connectivity
degree of the network, the CDS size is decreasing significantly
and after passing the threshold of the connectivity degree all
graphs will merge into the same minimal point regardless of
the number of FRs.



Figure 1: CDS size changes in respect to the Connectivity degree
changes. Network size=30, Compared 3 scenarios when the Number
of FRs is equal to 3, 9, and 18.

2) Connectivity degree impact on time: In this comparison
we analysis the impact of Connectivity degree on computation
time. In the same set of experiment in subsection IV-A1 we
recorded the computation time. We first analysis to see, on
how many instances we reached the maximum time threshold
to solve for CDS. Then, we also check to see, on average,
how long does it take to solve for CDS without considering
the maximum time thresholds. Figure 2 shows the number of
instances (%) that the computation time reached the maximum
time threshold to solve for CDS in respect to the connectivity
degree in networks with 30 nodes. Figure 3 is comparing the
computation time (regardless of maximum threshold occur-
rences) in the same experiments. The figures are comparing the
Time factors changes in same scenarios explained in IV-A1.

Figure 2: Number of instances that the computation time reached
maximum threshold(%) in respect to the Connectivity degree
changes. Network size=30, Compared 3 scenarios when Number of
FRs is equal to 3, 9, and 18.

Figure 3: Computation Time(s) in respect to the Connectivity degree
changes. Network size=30, Compared 3 scenarios when Number of
FRs is equal to 3, 9, and 18.

Figure 4: Computation Time(s) in respect to the Connectivity degree
changes. Network size=50, Compared 3 scenarios when Number of
FRs is equal to 5, 15, and 30.

According to figures 3 time is affected by both factors of
Connectivity degree and the number of FRs. In both networks
we can observe that if the connectivity degree is more than 5,
by increasing the connectivity degree, the computation time
is descending. Also, we can see that in each network after
passing a certain threshold the computation time, regardless of
the number of FRs will merge to the minimum computation
time for a given network size. The same scenario holds for
number of instances that reached maximum time threshold.
Figure 2 shows, by increasing the connectivity degree after
the same threshold, the percentage of time will merge to
10% regardless of the size of network or the number of
FRs. By comparing the simulation result in IV-A we can see
that for every network size we can find an optimal threshold
for the connectivity degree where we will have the minimal
computation time. We can see the same threshold when we



are analysing the Percentage of maximum time occurrences
as well as the CDS size.

B. Number of FRs Impact

In this section we want to analysis the impact of changes in
number of FRs on our model. We ran total of six experiments
on networks with sizes of 30 and 50 nodes, where for each
experiment the connectivity degree and network size is kept
fixed and the number of FRs is the changing variable. We ran
each experiment 100 times and used the average of the trial
for performance analysis.

1) Number of FRs impact on Size of CDS: In this sub-
section we analysis the impact of the number of FRs in the
input graph on the CDS size. similar to previous tests, in this
simulation we analyzed two sets of experiments with networks
size at 30 and 50 nodes.

We observed that in networks with smaller connectivity
degrees, number of FRs has minor impact on the CDS size.
In both network sizes, we can find a threshold level for the
number of FRs, where the the CDS size reaches the minimum
possible size at each connectivity degree regardless of the
number of FRs. On the other hand, when the connectivity
degree is higher the number of FR does not affect the CDS
size.

2) Number of FRs impact on Time: In the same set
of experiments the computation time was recorded, In this
comparison we analyze the impact of number of FRs on
computation time. We first analyze to see, on how many
instances we reach the maximum time threshold to solve for
CDS. Then, we check to see on average how long does it
take to solve for CDS without considering the maximum time
thresholds. Figure 5 and 6 are showing the number of instances
(%) that the computation time reached the maximum time
threshold to solve for CDS in respect to the number of FRs in
networks with 30 and 50 nodes respectively. Figure 7 and 8
are comparing the computation time (regardless of maximum
threshold occurrences) in the same experiments. The figures
are comparing the Time factors changes in same scenarios
explained in IV-B1.

According to these observations, time is affected by both
factors of Connectivity degree and the number of FRs. In
networks with smaller Connectivity degree, as the number
of FRs is increasing computation time and Time percentage
are increasing and then decreasing until reaching to a steady
descending behavior or a steady constant value. We consider
this point as a threshold for number of FRs where from
that point by increasing the number of FRs the computation
time will either decrease or at it’s minimum. The observed
Threshold value for number of FRs in networks sizes of 30
and 50 is observed to be at the 25% of the network size.

Our observation from figures 7 and 8 shows that time is
affected by both factors of Connectivity degree and the number
of FRs. In both networks Connectivity degree limits the
minimum computation time and the change in number of FRs
determines the maximum computation time per connectivity
degree. however, in both networks, after a Threshold, the

Figure 5: Number of instances that the computation time reached
maximum threshold (%) in respect to Number of FRs. Network
size=50, Compared 3 scenarios when Connectivity degree is equal
to 10, 20, and 40.

Figure 6: Number of instances that the computation time reached
maximum threshold (%) in respect to Number of FRs. Network
size=50, Compared 3 scenarios when Connectivity degree is equal
to 10, 20, and 40.

computation time reaches a constant value regardless of the
changes in the number of FRs. A similar scenario holds for
number of instances that reached maximum time threshold.
Figure 5 and 6 shows that the minimum percentage is de-
termined by the connectivity degree. However, by increasing
the Number of FRS we have a really large increment in the
time percentage, after the threshold value for the Number of
FRs is passed, the percentage of time will have a descending
behavior as the Number of FRs increases, until it reaches a
constant point. By comparing the simulation result in IV-A
we can see that for every network size we can find an optimal
Threshold for the connectivity degree where we will have the
minimal computation time. Our observation shows that there
is a threshold value for the number of FRs in each network



Figure 7: Computation Time(s) in respect to the Number of FRs.
Network size=50, Compared 3 scenarios when Connectivity degree
is equal to 10, 20, and 40.

Figure 8: Computation Time(s) in respect to the Number of FRs.
Network size=50, Compared 3 scenarios when Connectivity degree
is equal to 10, 20, and 40.

size where in that threshold we have the optimal or close to
minimal CDS size as well as the computation time.

V. CONCLUSION

In this paper, we propose a framework for relay/BS de-
ployment in PSN. We initially analyzed the algorithm’s per-
formance in terms of approximation ratio and time bound.
Further performance evaluation was conducted by simulations
and quantitative analysis. We performed analysis on our model
with analyzing the impact of connectivity degree and the
number of FRs of the Network on the computation time of
the algorithm as well as the size of the CDS graph. We’ve
shown that for any given network size connectivity degree is
a determining factor on both the CDS size and the computation
time. For each network with a certain connectivity degree, the
CDS size and the computation time have a minimum values

regardless of the number of FRs. We can see that by increasing
the connectivity degree the CDS size and the computation
time reduced, and at a threshold point for each network size
after a threshold value for the connectivity degree, we reach
the minimum CDS size and minimum computation time. On
the other, analyzing the number of FRs shows that, when
the connectivity degree is less than it’s threshold value, the
number of FRs has some distorting impacts on both CDS
size and the computation time. as a result, for every network
size the number of FRs also has a threshold value, where at
that point the CDS size and computation time starts to have
descending behavior or reached their minimal value for a given
connectivity degree.
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