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Abstract—Wrist-worn smart devices are providing increased
insights into human health, behaviour and performance through
sophisticated analytics. However, battery life, device cost and
sensor performance in the face of movement-related artefact
present challenges which must be further addressed to see effec-
tive applications and wider adoption through commoditisation of
the technology. We address these challenges by demonstrating,
through using a simple optical measurement, photoplethysmog-
raphy (PPG) used conventionally for heart rate detection in
wrist-worn sensors, that we can provide improved heart rate and
human activity recognition (HAR) simultaneously at low sample
rates, without an inertial measurement unit. This simplifies
hardware design and reduces costs and power budgets. We apply
two deep learning pipelines, one for human activity recognition
and one for heart rate estimation. HAR is achieved through
the application of a visual classification approach, capable of
robust performance at low sample rates. Here, transfer learning
is leveraged to retrain a convolutional neural network (CNN) to
distinguish characteristics of the PPG during different human
activities. For heart rate estimation we use a CNN adopted
for regression which maps noisy optical signals to heart rate
estimates. In both cases, comparisons are made with leading
conventional approaches. Our results demonstrate a low sampling
frequency can achieve good performance without significant
degradation of accuracy. 5 Hz and 10 Hz were shown to have
80.2% and 83.0% classification accuracy for HAR respectively.
These same sampling frequencies also yielded a robust heart rate
estimation which was comparative with that achieved at the more
energy-intensive rate of 256 Hz.

Index Terms—deep learning, transfer learning, photoplethys-
mography

I. INTRODUCTION

Photoplethysmography (PPG) is an optical technique com-
monly employed in wearables and other medical devices to
measure volume changes of blood in the microvascular tissue
during the cardiac cycle. Light becomes reflected and absorbed
at different rates during this cycle and the reflected light is read
by a photo-sensor to detect these changes. The output from this
sensor is then processed so a valid heart rate estimation can
be determined.
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Heart rate can be measured at multiple sites on the body
using PPG including, but not limited to; ear, forehead, fin-
gertip, ankle and wrist. In the context of personalised health
and fitness monitoring using wearables, the wrist is the most
frequently used location for photoplethysmographic heart rate
monitoring. Accuracies of consumer-grade wearables, for the
most part, are acceptable but are prone to errors during daily
activities [1]. The difficulties associated with correctly estimat-
ing heart rate arise mostly in obtaining a strong physiological
reading from the sensors. Often the signals read from the
PPG modules are heavily corrupted with motion artefacts and
the movement of the limbs is a major contributor to this
introduced artefact. Retrieval of a clean PPG signal from a
heavily corrupted signal can be achieved by applying filtering
techniques including adaptive methods based on a measure of
the artefact sourced from an accelerometer-based measurement
[2].

We have shown previously that human activity recognition
(HAR) can be performed on optical signals, taking advantage
of the artefact present in the signal [3]. In this study we
take this a step further, exploring to what extent HAR is
sufficiently accurate when decreasing the sampling frequency
and investigating whether we can obtain a valid heart rate
estimation without further on-board filtering of the PPG signal
thus reducing computing requirements.

The battery life of smartwatches and fitness trackers vary
greatly depending on the features and functionality available
on-board the wearable. The Apple Watch Series 5, which is
more of a lifestyle and fitness tracker, can run for a period of
up to 18 hours whereas the Fitbit Charge 3 fitness tracker can
go for up to 7 days on a single charge. Continuous activity
and heart rate monitoring speed up the depletion of the battery
of most wearables. Gathering and processing of simultaneous
sensor data can further increase the power consumption of
the devices. Without explicitly stating the sampling frequency,
Apple state that their heart rate monitor Light Emitting Diodes
(LEDs) blink “hundreds of times per second” [4].

Capitalising on recent advancements in machine learning
could pave the way for the simplification of wearables, allow-
ing for a reduction in power requirements and subsequently



smaller and lower-cost devices. The work described in this pa-
per is part of a larger-scoped effort to develop easily deployed
artificial intelligence which can be used and interpreted by
end-users who do not have deep levels of signal processing
expertise.

In this paper we demonstrate the contributions of our
pipeline, using a standalone optical sensor for both activity
recognition and heart rate monitoring with significantly re-
duced sampling frequencies. This novel approach yields not
only improved power efficiency but does so without signifi-
cantly sacrificing accuracy thus advancing the development of
simpler, more cost-effective wearables.

Although globally people are using hospitals more effi-
ciently, public healthcare expenditure is rising. For example,
in Ireland expenditure has risen from C14.9 billion in 2009 to
an estimated C16.8 billion in 2018 with the increasing preva-
lence of chronic illness requiring long-term patient-provider
engagement and management, accounting for roughly 80% of
spending [5]–[7]. Frost & Sullivan in 2010 predicted, based
on the then-current trends, that healthcare spending in Western
economies would almost double (as a proportion of GDP) by
2050, reaching 20%-30% of GDP in some cases. The report
also stated that per capita, healthcare spending is rising faster
than per capita income in most countries [8].

As a response, globally there is a change in how healthcare
is managed. For example, in Ireland, the Department of Health
has signalled a major shift in the paradigm of treating people
with illnesses. This signals a change in health policy from a
reactive to proactive treatment-based models where the focus is
increasingly on keeping people healthy [9]. Advancements in
digital health technologies, including mHealth and MedTech,
have the potential to contribute significantly to a transforma-
tion in healthcare delivery, e.g. enabling proactive care through
the use of continuous monitoring devices and application of
advanced data analytics that enable greater personalisation of
treatments [7]. Thus the role of data gathered from wearables
is important as part of such a shift in healthcare provision
policies.

II. RELATED WORK

Convolutional Neural Networks (CNN) have contributed
tremendously to the success of machine learning since their
introduction in the 1990s. They are an example of neurosci-
entific principles influencing deep learning [10], in that they
are designed to mimic the processing of images in the visual
cortex of the human brain [11]. Fully automatic learning of a
CNN allows the neural network to extract features that are
salient in the input data across different layers. Given the
correct training, a CNN allows for the implementation of high
accuracy classifiers without the need for signal processing
or feature extraction knowledge. This had contributed to
their success in practical applications, particularly with image
classification.

The current state of the art in HAR systems are camera-
based which allow for direct capture of the data but conse-
quently requires significant computer processing to determine

distinct activities. HAR studies are frequently carried out using
data from inertial measurement units (IMU) which measure
proper acceleration of a body or limb. Signal processing and
feature extraction for these HAR studies are not trivial, includ-
ing (but not limited to); singular value decomposition (SVD),
support vector machine (SVM) and Random Forest (RF).
High accuracy ranging from 80% to 99% can be achieved
with such signal processing techniques but they often require
a combination of sensor modalities [12] and using multiple
IMUs located on various parts of the body which in turn gives
rise to scalability and functionality issues in these studies.

Few studies have employed the use of a PPG sensor only
for HAR as they are more commonly used with heart rate
estimation [3], [13]. Biagetti et al. conducted a study on
the same dataset used in this paper for activity recognition
[14]. Using the PPG data only for HAR they achieved 44.7%
classification accuracy using their feature extraction algorithm.
Later the authors combined the PPG data with accelerometer
data and achieved 78.0% accuracy using their feature extrac-
tion technique. Mehrang et al. used a combination of PPG
and accelerometer with feature extraction and classification
techniques such as RF and SVM, achieving accuracy of
89.2%± 4.2% and 85.0%± 6.8% respectively [15].

It should be noted that leading, modern feature extraction
and classification techniques using multiple IMUs can achieve
80% to 99% classification accuracy, which may require several
sensors located throughout the body [12].

We have found few works that leverage CNN for heart rate
estimation. Qui et. al computed heart rate estimation from
facial videos using a CNN [16]. In [17], the authors proposed
a method to estimate heart rate using a CNN trained on a
sequence of facial images. Reiss et. al sought to solve a
regression problem by estimating heart rate from PPG and
accelerometer data by computing the Fast Fourier Transform
(FFT) and z-normalisation on the 4 input channels to a CNN
[18]. Extending on this, using a standalone PPG we develop
a CNN regression architecture for heart rate estimation on a
single channel time series without any preprocessing.

Junker, Lukowicz and Tröster [19] downsampled wearable
accelerometers from 100 Hz in a wearable context recognition
system. The authors found that they could achieve sufficient
classification accuracy rates for sampling frequencies as low as
20 Hz. However, a significant drop in accuracy (below 60%)
is observed when the sampling rate is reduced to 10Hz.

Finally, in [20] the authors use a developed wrist-worn
wearable consisting of a two-axis accelerometer, microphone,
light and temperature sensors for context-aware wearable com-
puting. They found that a sampling frequency of 6 Hz yields
comparative accuracy compared to much high sampling rates
using available time domain features with machine learning.
Following this Krause et al. demonstrated that this decrease
in sampling frequency from 20Hz to 6Hz increases the battery
life of their constructed wearable by 85%.



III. METHODS

A. Computing Platform

The experiments for this project were run on an Nvidia
Titan Xp with Tensorflow. The code for these experiments are
available online1.

B. Dataset

A readily available wrist PPG exercise dataset collected by
Jarchi and Casson [21] and publicly available on PhysioNet
was used for the experiments in this paper [22]. Data was
collected during exercise by 8 healthy patients (5 male, 3
female) with a sampling frequency of 256 Hz. Data was
gathered using a wrist-worn PPG sensor on board the Shimmer
3 GSR+ unit for an average recording time of 4 to 6 minutes
with a maximum time of 10 minutes. Four exercises were
performed; two on a stationary exercise bike and two on a
treadmill. The exercises are broken down as follows; walk
on a treadmill, run on a treadmill, high resistance exercise
bike and low resistance exercise bike. No further filtering is
applied to the PPG data for the treadmill exercises other than
what the Shimmer unit provides on board. For the exercise
bike recordings there was high frequency noise present which
was filtered in MATLAB using a second order IIR Butterworth
filter with a 15Hz cutoff frequency [21].

To accurately evaluate the unfiltered PPG heart rate per-
formance, we compare it with a concurrent ECG that was
collected by the authors of the data gathering experiment
described above. This will provide a ground truth against
which to assess our heart rate estimation.

C. Downsampling and Segmentation

Prior to segmenting and plotting the PPG signal it was
downsampled to a number of different sampling frequencies.
The classifier was trained in Python using the full 256Hz
sampling frequency, then retrained on the downsampled fre-
quencies of 30Hz, 15Hz, 10Hz, 5Hz and 1Hz respectively.

Once the signal had been downsampled it was then seg-
mented into smaller chunks. A simple rectangular windowing
function was used to capture 8 seconds worth of data and step
through the data in increments of 1 second.

D. Human Activity Recognition

A CNN based on the Inception-V3 architecture and pre-
trained on ImageNet was used as the classifier for the HAR
experiments. The deep model was retrained leveraging the
technique of transfer learning [23], the penultimate layer had
its weights updated while all other layers remained the same.
This allowed the use of smaller amounts of data to train a
model with a large learning capacity that would normally
require a lot of data and time to train from scratch. The re-
training process can be fine-tuned through the optimisation of
hyperparameters. The parameters were set as their defaults in
this experiment except for the number of training steps which
were changed from 10,000 to 4,000. This helped minimise

1GitHub Repository: https://github.com/Brophy-E/CNNs HAR and HR

overfitting through sufficient convergence of the loss function
(cross-entropy). See Figure 2 below for a block diagram of
the processing pipeline associated with our methodology.

As a machine vision approach is applied using this classifier,
the temporal PPG signals are saved as images rather than time
series vectors to be used as input. Matplotlib, a Python plotting
library was used to plot the PPG signal as images, which were
saved as 299x299 JPEGs. All axis labels, legends, titles and
grid ticks were removed. Python’s wfdb library was used to
pull and load the data from PhysioNet.

To train the HAR classifier, a total of 6,653 images were
stored in four sub-directories of the possible predicted classes
(High, Low, Run and Walk). A train/test split validation
approach was taken in this experiment. 80% of the data was
used for training, 10% for validation and 10% for testing. See
Figure 1 for examples of PPG data used during training of the
classifier.

Fig. 1. Example of PPG from each exercise used in CNN training

Data Collection Downsampling

Plot data as images

Estimate Heart Rate Validate with ECG Heart Rate Error

Train CNN Classify Activity

Preprocess Data
(segmentation)

Fig. 2. Block diagram of our processing approach

E. Estimation of Heart Rate

We designed a CNN with the output layer replaced by a
regression layer. We refer to this model as CNNR (Convolu-
tional Neural Network with Regression). It is a four-layer 1-
D convolutional network with batch normalization and ReLU
(Rectified Linear Units) followed by a fully connected and



regression layer respectively. The model architecture can be
seen in Figure 3 below. This model is used to estimate heart
rate from the noisy PPG data. We used a train-test split of
90/10 for the CNNR.
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Fig. 3. Architecture of CNNR

HeartPy, an open-source toolkit for estimating heart rate
from the PPG data, was used in our work as a baseline
reference to compare the performance of our CNNR approach
[24]. The HeartPy toolkit is designed to handle clean and noisy
PPG data collected from either PPG or camera sensors. In the
case of both our CNNR and HeartPy work, the PPG data used
was the noisy, raw time-series signal. The estimated heart rate
value for a segment of the signal was then compared to its
concurrent ECG time series. The QRS peaks from the ECG
were annotated as part of the data collection experiment. An
estimated heart rate obtained using the CNNR and PPG toolkit
on noisy data was then compared to the ECG heart rate which
acted as the ground truth.

IV. RESULTS

A. Human Activity Recognition

The results for the HAR experiment are shown in Table I
below. As expected, the highest classification accuracy of
90.8% is achieved when the original sampling frequency
of 256Hz is used. However, we can still achieve a very
competitive estimation performance even after downsampling
the original sampling frequency to 5 Hz. Perhaps what is most
surprising is the superior performance of our classifier when 10
Hz is chosen as the sampling frequency compared to the higher
frequencies (15 Hz and 30 Hz) tested as part of this project.
Due to the higher accuracy of 10Hz we also tested 12Hz,
11Hz, 9Hz and 8Hz as the chosen sampling frequency but
found no anomaly as the surrounding frequencies yield similar
accuracies. To further investigate the 10Hz performance, we
low-pass filtered the PPG with a 4.5Hz cut-off frequency to
remove possible aliasing but this did not impact the classifi-
cation accuracy.

As a sampling frequency of 10 Hz performed the best
out of the sampling frequencies tested, we show the training
results for this sampling frequency over the 4,000 epochs along
with the cross-entropy loss function and confusion matrix for
exercise classification in Figures 4, 5 and 6 respectively. We
also show the relevant precision, recall and F1-scores in Table
II.

TABLE I
SAMPLING FREQUENCY VS. ACCURACY

Sample Frequency Accuracy

256Hz 90.8%
30Hz 82.3%
15Hz 81.6%
12Hz 82.1%
11Hz 81.6%
10Hz 83.0%
9Hz 81.2%
8Hz 80.5%
5Hz 80.2%
1Hz 68.5%

Fig. 4. HAR Training Results for 10Hz Sampling Frequency

B. Estimation of Heart Rate

Results for estimating heart rate from the motion artefact
(MA) corrupted PPG signal using HeartPy and our CNNR
method are displayed below. Figure 7 and Figure 8 presents
the average heart rate error across the various sampling fre-
quencies for each exercise for the two methods. The Heart
Rate Error (HRE) is defined here as the absolute difference
between the estimated heart rate for a given PPG sample and
the heart rate ground truth calculated from the concurrent ECG
sample.

Fig. 5. HAR Cross Entropy for 10Hz Sampling Frequency



Fig. 6. Confusion Matrix of HAR classifier

TABLE II
PRECISION, RECALL AND F1-SCORE

Exercise Precision Recall F1-Score

High 0.803 0.904 0.851
Low 0.846 0.666 0.745
Run 0.826 0.849 0.837
Walk 0.834 0.899 0.865

For the HeartPy method, exercise specific HRE is similar
across all sampling rates except from the 10 Hz sampling
frequency on the walk exercise. Other sampling frequencies
return an error of between 46% and 55% whereas the 10 Hz
sampling frequency reduces the error to 39%. The numerical
results for the heart rate experiments is displayed in Table III
where it can be clearly seen that 10Hz sampling frequency
performs best for estimating heart rate from the MA corrupted
signal.

TABLE III
HEART RATE ERROR USING HEARTPY

Sampling Frequency Exercise
High Low Run Walk

256Hz 11.78 8.14 19.44 54.94
30Hz 11.80 10.61 20.71 53.69
15Hz 12.10 11.15 19.94 46.83
10Hz 10.46 14.05 17.82 39.28
5Hz 10.94 10.05 19.27 48.85

Our CNNR results can be found in Table IV below. It
can be seen that the HRE is similar across all exercises and
there is not a distinguishable loss in accuracy for any of the
sampling frequencies. For the walk exercise there is a great
improvement in accurately estimating heart rate compared to
the HeartPy method. It should be noted that average HRE
across all exercises and sampling frequencies has decreased
using the CNNR method from 22.59% to 20.15%, an increase
in over 2 percentage points.

Fig. 7. Average Heart Rate Error Across all Exercises and Sampling
Frequencies using HeartPy

Fig. 8. Average Heart Rate Error Across all Exercises and Sampling
Frequencies using our CNNR Method

TABLE IV
HEART RATE ERROR USING OUR CNNR METHOD

Sampling Frequency Exercise
High Low Run Walk

256Hz 24.55 15.41 24.38 20.94
30Hz 17.59 16.58 17.68 24.56
15Hz 19.62 22.47 18.00 20.21
10Hz 19.30 21.87 18.49 28.41
5Hz 18.90 22.26 14.61 16.47

V. CONCLUSION

The approaches used in this paper yield highly competi-
tive results for HAR even though only the optical signal is
used. This demonstrates that more cost and power-efficient
wearables are possible through the exploitation of secondary
information available from a simple optical sensor. This sug-
gests single-sensor based wearables can achieve much of the
functionality and capabilities of more complex multi-modal
wearables.

The sampling rate did not have too much of an adverse
effect on the performance of the algorithms. Interestingly,



the CNN performed better at a 10 Hz sampling frequency
compared to 15 Hz and 30 Hz. The reasons behind this have
not been fully investigated.

Perhaps what was the most surprising from the results
presented in this paper was the heart rate estimation results.
We demonstrate how a CNN regression approach is capable
of robust heart rate estimation even during periods of high
artefact. The performance, particularly during these high arte-
fact scenarios, was superior to conventional signal processing
approaches for such estimation as demonstrated by the relative
performance of the open-source tool kit HeartPy which served
as a baseline here. Furthermore, this heart rate estimation per-
formance was sustained even at reduced sampling frequencies.
Notably sampling the sensor at 5 samples per second just as
well as all other sampling frequencies, including the original
256 Hz.

A pervasive computing approach to wearables is taken here.
Using a low power wearable with a single optical sensor and a
sampling frequency of 10 Hz we can demonstrate compelling
performance both in heart rate estimation and human activity
recognition. This has the potential to reduce costs, improve
battery performance and encourage wider adoption of digital
technologies to a larger population and allow the transition
to personalised, patient-centred preventative models of health-
care. Increasing access and affordability to these technologies
will in turn lower costs and the strain on public healthcare
expenditure, as well as helping to improve overall wellness.
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