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Abstract—Human activity recognition (HAR) has applications
to various fields. However, not accounting for the personal dif-
ferences among various subjects can lead to significant accuracy
degradation. To address this problem, we propose a lightweight
personalization process that enables an HAR model adapt for
various users, some of them ever unseen before. Indeed, by
adding a small amount of new labeled data, the model we
propose can be personalized and boost the HAR accuracy
when dealing with a wide range of target users. Furthermore,
we also propose an innovative training algorithm to support
personalization during the training stage. Our evaluations on
three public real-world datasets demonstrate the superiority of
our personalization approach, i.e. 6-14% improvement on the
target-domain accuracy, while using only five labeled data points
per-class.

Index Terms—human activity recognition, edge learning,
model personalization, incremental learning

I. INTRODUCTION

Human activity recognition (HAR) has great potential for

daily life tracking, athletic training, healthcare and physio-

therapy [1]–[3]. With advances in processor technology and

the rising interest in health monitoring, various approaches

targeting real-time and low-power HAR on wearable systems

have been brought to light in recent years [4]–[7].

In a typical HAR [1]–[7] scenario, a vendor would train

a model by recruiting a large numbers of subjects and

then deliver it for use by regular customers who target

real-life applications. The system should be able to per-

form successful activity classification from an independent

and identical distribution (i.i.d.), which assumes the same

distribution between subjects and customers. However, as

we observed, there always exist subject differences in the

existing datasets. For instance, Figure 1 illustrates the subject

differences in the Sports and Daily Activity (SDA) Dataset

[1]; all these differences are due to the violation of the

above i.i.d. assumption. In other words, a well-trained model

will overfit the distribution produced by the subjects in the

training set so it cannot be generalized to new users.

This work focuses on improving the HAR accuracy of

target users. The main contributions are as follows: 1) We

provide a personalization process to extend a pre-trained

model to handle new target users. 2) We also propose an

innovative training algorithm to obtain a personalization-

friendly pre-trained model in order to boost its accuracy after

the newly proposed personalization process. More precisely,

the personalization process takes a pre-trained model and

only few new data samples from the user, then generates

a personalized model to classify the activities of the target

user accurately. The success of the personalization process

comes from combining the efficiency of nearest class-mean

classifiers (NCM) [8] and the flexibility of cosine similarity

[9].

Together with the personalization process, we also propose

a new training algorithm for the pre-trained model. This

innovative training algorithm only differentiates the within-

subject activities during the training stage, and obtains a rep-

resentation which discriminates the activities collected from

the same subject. Equivalently, we simplify the traditional

learning task, which classifies the HAR activities by ignoring

the personal differences among various users.

The rest of the paper is structured as follows: We first

discuss some related approaches and their limitation. In

Section III, we define our new problem. Section IV and Sec-

tion V describe the proposed personalization process and the

personalized training algorithm, respectively. We demonstrate

the benefits of our approach using three public HAR datasets

in Section VI and discuss the results in Section VII. We

summarize our work in Section VIII.

Figure 1. T-distributed Stochastic Neighbor Embedding (t-SNE) [10] Data
visualization for the SDA dataset: By representing each activity as a color,
the visualization shows multiple clusters from some activities; that is, when
each subject performs an activity, the sensory data might be similar within-
subject, but very different among other users. This is due to the subject
differences in the SDA dataset.
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Figure 2. Personalization Overview: By collecting the data from recruited subjects (Labeled data), a company can train a model (Model) performing well
on the source domain, but performing poorly on the target domain (Misaligned distribution); thus, we propose personalize the model (Personalization) to
classify the data on both domains.

II. RELATED WORK

A. Domain adaptation

Generally speaking, personalization belongs to domain

adaptation. Domain adaptation focuses on general cross-

domain tasks, which aim at distilling or transferring the

knowledge from a source domain into a specific target

domain. In HAR [5]–[7], the domain varies for various

applications. For instance, [5] defines the domain as sensor

placement and leverages data from a basic sensor placement

to the extended placement. In contrast, the authors of [6], [7]

label all the unlabeled target-domain data from the knowledge

in the source domain, and retrain a model from data in both

domains.

By targeting the accuracy maximization in the target-

domain, this prior work commonly searches the new param-

eter from scratch as a solution. To continuously personalize

the model for any new input, the retraining-based framework

has to keep training a model; this high update cost is clearly

not affordable on wearable systems.

B. Incremental learning

Incremental learning addresses handling new inputs com-

ing as a data stream and prevents the catastrophic forgetting

[11].

To achieve low-cost incremental learning, the NCM clas-

sifier provides a cheap but powerful way to extend a model

and learn new classes. Using class mean to represent learning

a class, the authors in [8], [12] combine NCM with random

forest and metric learning, respectively. Further, [13] extends

the NCM concept to deep neural networks and classifies

new classes by appending an NCM layer with an Euclidean

distance to the model.

Our personalization process can also be interpreted as

combining the NCM classifier with cosine similarity, thus

leveraging the low-cost advantage stemming from NCM.

Furthermore, by using normalized weights in the fully-

connected layer, we bring the idea of NCM into the domain

of convolutional neural networks.

C. Metric learning

Metric learning focuses on finding a distance function to

discriminate among different classes. For instance, [14] learns

a Mahalanobis distance measure to maximize the k-nearest

neighbors (kNN) score. [9] further extends this idea to reduce

the intra-class Euclidean distance.

We exploit the idea from [9] and propose a personalized

training algorithm to minimize the distance among the same

activities of the same user. A key difference of our work is

that we only minimize distances within a subject, say due to

the observed personal style in the HAR dataset.

III. PROBLEM FORMULATION

Figure 2 shows a typical real-world scenario: A healthcare

company may collect the signals of different activities per-

formed by a set of subjects (source-domain labeled data), and

then train an ML model for these subjects (source-domain

model). When deploying the model to new (potentially

unseen) target user, the collected data may appear as an

non-identical distribution (i.e. misaligned distribution); this

would likely result in HAR accuracy degradation for the

target user. The target user can randomly label few data points

(target-domain labeled data) to alleviate this degradation.

With these additional data, the personalization process adapts

the decision boundary and offers a more accurate model for

the target user (personalized model) as shown in Figure 2.

A. Cross-domain tasks

For our problem, the classification belongs to two domains,

namely, the source and target domains, which contain data

from the recruited subjects and the target user, respectively.

We define our cross-domain task as: Perform a good HAR

classification in the target domain based on the given model

and only a few data samples taken from the source domain.

These two domains differ in the following:

1) Distribution: As shown in Figure 1, the domains de-

fined by different subjects lie on non-identical distri-

butions due to the users behavioral variance.

2) Number of labels: A healthcare company can recruit

several subjects and data engineers to label a large



amount of data, but a regular user cannot and should

not spend a lot of labor effort labeling collected data.

The aforementioned factors make the classification task

more difficult. Specifically, training from source-domain data

can rely on comprehensive features from large amounts of

data, but that model may misalign data from the target

user. In contrast, the target-domain data can have the same

distribution, but typically exist too few samples to train a

robust model.

B. Objective function

We formulate the model personalization as an optimiza-

tion problem. For the source domain, we have the optimal

parameter θs and the model F which minimizes the cost on

the source-domain data Js(θ); that is:

θs = argmin
θ

Js(θ), (1)

where Js(θ) =
∑Ns

i=1 L[F(x
(i)
s ; θ), y

(i)
s ] is the empirical loss

from Ns source-domain data Ds = {(x
(1)
s , y

(1)
s ), (x

(2)
s , y

(2)
s ),

. . . , (x
(Ns
s , y

(Ns)
s )} under pre-defined loss function L.

Providing few labeled data samples from the tar-

get domain Dt,label = {(x
(1)
t , y

(1)
t ), (x

(2)
t , y

(2)
t ), . . . ,

(x
(Nt,label)
t , y

(Nt,label)
t )}, where Nt,label << Nt, we aim to

search a new parameter θt from Dt,label and prior knowledge

θs to minimize the target-domain cost:

θt = argmin
θ

Jt(θ), (2)

where target-domain cost Jt(θ) =
∑Nt

i=1 L[F(x
(i)
t ; θ), y

(i)
t ]

is the empirical loss among all validation data in the target

domain.

C. Real-world Limitations

There are several ways to adapt our model to the target

domain. However, focusing on real scenarios and considering

the model practicability, there exists some limitations:

1) Computation cost for updating new data: Power con-

sumption is a major concern in HAR and wearable systems,

hence, the proposed solution should not require intensive

computations. For example, the retraining-based method

can find a parameter from joint loss by searching θ =
argminθ[Js(θ) + Jt,label(θ)]. However, such an iterative

search process would consume considerable power so it

would not be practical in real applications.

2) Labeling effort and randomness: The new labels from

the target user are rare and random, since it is burdensome

to ask a user to label his/her own activity during a specific

time or keep labeling data for long stretches of time. Such

random labels can be noisy and actually confuse the model,

as we further explain it in Section VII-B.

3) Privacy of subject data: With enough amount of data,

machine learning methods can train and classify well on a

given dataset. However, companies are responsible to keep

personal data private. Without access to the source-domain

data Ds, this limitation makes the adaptation suffer and

typically result in underfitting.

4) Model storage complexity: To improve the classifica-

tion performance, the companies can collect more data and

provide more accurate models; thus, the proposed model

should be scalable. A counter example is the kNN classifiers,

which can adapt to new users quickly and well, but they are

not suitable for the real-life scenarios due to their very limited

scalability.

IV. LIGHTWEIGHT MODEL PERSONALIZATION

To personalize the HAR model to accommodate new user

activities, we propose a lightweight model personalization

which solves Equation 2 and exploits cosine similarity-based

classifiers. When deploying this model to the target user and a

new set of labeled data becomes available, the personalization

synthesizes a weight matrix for the last fully-connected (FC)

layer and infers the model afterwards.

A. Cosine similarity-based classifier

Using regular convolutional networks with normalized

weights allows to make predictions based on cosine simi-

larity. The prediction of a data point x can be written as:

ŷ = argmax
j∈Y

{Wj · φ(x)}, ‖Wj‖2 = 1,

where φ is the feature extractor function before the last layer

and Y = {1, 2, . . . , l} is the label space.

The inner product with the normalized weights essentially

calculates the cosine similarity between the feature and each

column of weight matrix, since argmax{Wj · φ(x)} =
argmax{Ŵj · φ(x)}, where Ŵj = Wj/‖Wj‖2 is the

L2-normalized features. The inner product (·) between two

uni-length vectors is their cosine similarity: cos (v1,v2) =
(v1 · v2) · ‖v1‖

−1 · ‖v2‖
−1.

B. Weight matrix synthesis

The proposed cosine classifier relies on weight matrix

customization so we can personalize the model for the

target user. Figure 3 shows how to synthesize a weight

matrix from the pre-trained feature extractor. A well-trained

feature extractor projects the data points (Figure 3a) into the

feature space (Figure 3b); then, we calculate the within-class

average (Figure 3c) to express a class. For example, after a

new data point goes through the same feature extractor, the

classification can be done by finding the NCM.

Feature

Extractor

Class

mean

New

input

Input space Feature space Feature space

(a) (b) (c)

Figure 3. Weight matrix synthesis: (a−→b) The target-domain data are
mapped into the feature space with a well-trained classifier. (b−→c) Since
the features are clustered with a non-linear mapping, class mean becomes
representative for characterizing a class; that is, the new data point (shown
with yellow) will be classified as the nearest class mean during the inference.
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Figure 4. Personalized training overview: In personalized training, the subject-isolated data loader splits data based on various subjects. Each epoch only
contains data from one subject, and the cosine distance of those features is minimized. In the target domain, the collected data from the user inherits the
same feature extractor. The classifier makes the prediction by comparing those features against each class mean.

To formally exploit this property, we can generate a weight

matrix by aggregating the within-class features and stacking

their class means column-by-column:

Xj = {x(i)
s |y(i)s = j} (3)

W̃j = mean{φ(x)|x ∈ Xj} (4)

Wj = W̃j/‖W̃j‖2 (5)

After the weight matrix synthesis, the classification task is

equivalent to finding the class mean with minimal angle,

hence the name of maximal cosine similarity.

This method can be seen as a special case of the NCM

classifier, which makes the prediction by comparing the

distance between each class mean. Then our prediction

equivalently uses the cosine similarity distance, defined as

d(x, y) = 1− cos(x, y), for the NCM classifiers.

V. PERSONALIZED TRAINING

In addition to the personalization, we propose a novel train-

ing algorithm to find a personalization-friendly parameter,

which aims at boosting the accuracy after the personalization

process happens as described in last section. We refer to this

training as personalized training.

Observing that an activity from each user may center

at different values (see Figure 1), the personalized training

leverages the subject-isolated mini-batches to perform the

intra-subject clustering. There are two differences between

the classic procedure, i.e., Shuffling all data and then train

the classifier from a FC-head network) and our approach:

1) the β−weighted inner-product which measures the dis-

similarity between features and encourages clustering; 2) the

subject-isolated data loader samples a mini-batch during the

training step, in which the mini-batch contains data points

from one user only.

A. Weighted similarity-based last layer

Converting cosine similarities to probabilities helps us

integrate our idea in a typical neural network training pro-

cess. More precisely, we estimate the probability from the

normalized weights, i.e. the probability of class j is defined

as the output from a weighted softmax layer:

P (y = j|x) =
exp (βWj · φ(x))∑

m∈Y
exp (βWm · φ(x))

, (6)

where ‖Wj‖2 = 1 for j ∈ Y . This probability estimation

positively correlates to the cosine similarity; therefore, maxi-

mizing it is equivalent to maximizing the similarity for intra-

subject data.

A hyperparameter β controls the discrimination of the

model. Since the cosine similarity sets an output range

[−1, 1], this range in logits forms an upper-bound to the

confidence. Specifically, a 10-class classification task has the

maximum confidence e/(e+ (10− 1)e−1) = 45.09(%) with

the logits [1,−1,−1, . . . ,−1]T , where 1 stands for the most

confident class and -1 for the others. Thus, introducing a hy-

perparameter β > 1 discriminates the prediction probability

and gives a higher score for the most confident class.

Algorithm 1 Cosine Similarity-based Classifier

Input: input data {(x(i), y(i))}Nbatch

i=1 , class mean

{c1, c2, . . . , cl}, where ck = mean({xi|yi = k})
Output: probability matrix P for Nbatch l-class probability

1: for i = {1, 2, . . . , Nbatch} do

2: ẑi = Normalize(φ(x(i)))
3: for j = {1, 2, . . . , l} do

4: Pi,j = exp(βcj × ẑi)/
∑l

m=1 exp(βcm × ẑi)
5: ⊲ Calculate softmax probability based on (6)

6: end for

7: end forreturn P

B. Subject-isolated data loader

To encourage the intra-subject clustering, we use a subject-

isolated data loader to generate single-subject mini-batches.

As illustrated in Figure 4, in each mini-batch, we only

choose data from a single subject and involve these data in

training (forwarding, feature comparison and backpropaga-

tion). The chosen data are split into the support set (for class



mean) and the query set (for feature comparison), but share

the same feature extractor φ . The similarity-based last layer

measures the similarity between the class mean determined

by support set and input features extracted from query set

[9]. With the similarity, we can obtain the probability from

the weighted softmax and backpropagate the loss.

VI. RESULTS

In this section, we validate our proposed method by using

the three publicly available HAR datasets. We establish the

cross-subject k-shot scenario and evaluate the accuracy of

our models.

A. Datasets

The first dataset is the Sport and Daily Activity dataset

(SDA) [1] collected from 8 subjects; each subject performs

19 daily activities (e.g., walking, standing, etc) and the body

movement is measured by stacking sensors (accelerometer,

gyroscope, magnetometer) on five body parts (both arms,

both legs, and torso).

The second dataset is the OPPORTUNITY Activity Recog-

nition Data Set (OPP) [2] where four subjects are required to

perform six rounds of activities. We only use coarse-grained

locomotion labels (i.e., sit, stand, or walk) and skip the fine-

grained labels like arm behavior (i.e., opening drawer or

closing fridge) to homogenize our classification tasks.

The third dataset, namely the Sensors Activity dataset

(SAC) from [3], is based on collected data from the smart-

phone sensors directly placed on jeans and arms. This dataset

shows that our method is practical not only for the body-worn

sensors, but for the smartphone-based sensors too.

B. Implementation details

1) Pre-processing: Each sample sequence in the above

datasets is segmented into windows of length w. We choose

1-second windows for all datasets, and also normalize the

reading of each sensor into zero mean and unit variance.

2) Model selection: Follow the idea from [4], we use a

simple CNN model in our experiments. The model consists of

an one-dimensional convolution and a fully-connected layer.

The convolution is followed by a batch-normalization and a

ReLU activation and a max-pooling layer. Finally, the fully-

connected layer is activated by the tanh function.

3) Model training: To perform a fair comparison, we use

the same optimizer for all model variants. We select Adam

[15] as our optimizer and set the batch size to 128 for each

experiment. The learning rate is 10−3 and the weight decay

is 10−3. Each experiment trains for 20 epochs and selects the

model with the lowest validation loss. We observe that these

hyperparameters are good enough for the model to converge.

C. Cross-subject k-shot scenario

To reproduce a real-life scenario, we design a cross-

subject scenario to demonstrate the effect of personalized

classification of our proposed framework. In this scenario, we

split all Np subjects into two groups: Source-domain subjects

with Np−1 people ({s1, s2, . . . sNp
}\sp) and a target-domain

user ({sp}).

From Section III-C, we evaluate the model with only k
labeled data per activity, which we call k-shot scenario. In

the following experiments, we demonstrate the classification

performance for one-shot and five-shot experiments.

D. Model Personalization

We report the personalization results from model only,

in which the target user has the source-domain model and

without any other information from the source domain.

This l-class classification demonstrates the performance of

different training algorithms. In this experiment, the last layer

weight matrix is solely constructed from the k × l user’s

labeled data by the weight matrix synthesis (sec. IV-B); that

is, any input data from the user compares its feature to the

user’s labeled data.

Figure 5. Personalization from model for different k-shots Scenarios

Figure 5 shows the accuracy on the target user. The person-

lized training shows consistent 3-4% accuracy improvement

in one-shot and 2-3% in five-shot, compared to applying

personalization on the traditionally-trained model. The per-

subject accuracy is shown in TABLE I. The increased accu-

racy over most of the subjects shows that the personalized

training can generate more robust features than the baseline

training.

We also find the personalized accuracy is worse than the

no personalization case in some one-shot scenarios (SAC and

OPP datasets). We hypothesize that using a single data point

as the class mean might be a noisy and faraway from the

true class mean approximation. More details are discussed in

Section VII-B.

VII. DISCUSSION

A. Accuracy with increased number of label samples

Figure 6 plots the target-domain accuracy as the number

of labels increases. The ascending mean accuracy follows

our intuition about personalization: The sample mean closer

to the true class mean results in more precise and accurate

predictions.

Another interesting point is that the accuracy saturates very

fast in our personalization process. Indeed, by labeling 5-10

images per-class leads to less than 1% accuracy degradation

compared to using more than 100 images. This justifies our

five-shot scenario in the experiments.



Table I
EXPERIMENTAL RESULTS WITHOUT SOURCE-DOMAIN CLASS MEAN

(WHERE "NO" MEANS "NO PERSONALIZATION")

Dataset User No
Baseline personalization Personalized training

One-shot Five-shot One-shot Five-shot

SDA
#1 78.58 87.12 92.86 91.35 95.49

#2 85.54 90.74 95.05 94.48 97.97

#3 78.42 87.67 93.37 91.53 95.68

#4 79.57 89.44 93.99 89.99 94.82

#5 83.21 93.43 95.63 95.12 96.82

#6 87.60 87.06 91.72 91.00 94.94

#7 80.76 87.38 92.44 91.67 95.63

#8 80.38 85.80 91.71 88.43 93.45

Avg 81.75 88.58 93.34 91.70 95.60

OPP
#1 91.48 88.95 93.75 91.13 94.82

#2 87.22 80.19 87.31 84.36 90.10

#3 87.67 81.12 88.82 88.34 93.55

#4 76.32 78.76 86.87 79.20 86.03

Avg 85.45 82.26 89.19 85.76 91.13

SAC
#1 95.07 91.14 95.59 96.73 98.27

#2 92.21 89.53 93.93 92.29 95.67

#3 87.35 86.74 92.53 91.06 95.36

#4 96.58 93.41 96.93 95.87 97.93

#5 91.94 87.89 93.11 92.72 96.32

#6 92.49 92.54 96.66 96.00 98.16

#7 90.20 89.27 94.17 91.56 95.20

#8 79.88 88.46 93.80 88.60 93.71

#9 92.61 90.46 95.49 94.69 98.21

#10 92.54 89.46 95.26 96.72 98.19

Avg 90.19 89.89 94.75 93.62 96.70

Figure 6. Accuracy vs. number of labels (nt,label). This figure shows that
the more labels are provided, the more consistent the classification is. The
dark shade is inside a standard deviation, while the light shade is inside the
max/min.

B. Personalization from model and class mean

Rather than the HAR model alone, we also evaluate the

personalization from model and additional source-domain

class mean. In this case, the l class mean from each subject

is also included in the classification; thus the label space

contains activities from Np− 1 subjects from source domain

and the target-domain user. The augmented classification

only considers the activity labels regardless of the subject

information.

TABLE II shows the result of personalization with class

mean. The richer label space improves the accuracy in one-

shot scenario, but degrades the five-shot one.

Figure 7 shows the accuracy vs. #labels with and without

Table II
PERSONALIZATION WITH/WITHOUT SRC-DOMAIN CLASS MEAN

One-shot Five-shot
Dataset w/o src-mean w/ src-mean w/o src-mean w/ src-mean

SDA 91.70 92.74 (+1.04) 95.60 94.22 (-1.38)
SAC 93.62 94.01 (+0.39) 96.70 95.25 (-1.45)
OPP 85.76 89.71 (+3.95) 91.12 91.36 (+0.24)

Figure 7. Comparison with/without source-domain class mean. This figure
shows that the accuracy is higher with only few labels without source class-
mean (dashed) than with source class-mean (solid) due to the presence of
less noisy data. But source class-mean becomes more representative after
the number of data points increases.

class mean. When the number of labels is low, the samples

are too few to represent the true behavior; this is shown in

the lower accuracy of the solid lines in the beginning of

the curve. However, when the number of labels increases,

the sample mean approximates the true class mean well. In

contrast, the class mean from other subjects may confuse

the classification. As a result, the solid lines in Figure 7

outperform the dashed lines (with source-domain class mean)

when the number of labels becomes large.

VIII. CONCLUSION

In this paper, we have investigated the effects of user dif-

ferences in existing HAR datasets; thus, we have presented a

new framework to alleviate overfitting in model deployment.

Model personalization augments the model capability with

low-cost from few labeled user data, and supports personal-

ized training of a pre-trained model. In our evaluations, we

have validated our idea with 6-14% accuracy improvement

compared to a model without personalization.
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