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Abstract—Today, video cameras are deployed in dense for
monitoring physical places e.g., city, industrial, or agricultural
sites. In the current systems, each camera node sends its feed
to a cloud server individually. However, this approach suffers
from several hurdles including higher computation cost, large
bandwidth requirement for analyzing the enormous data, and
privacy concerns. In dense deployment, video nodes typically
demonstrate a significant spatio-temporal correlation. To over-
come these obstacles in current approaches, this paper introduces
CONVINCE, a new approach to look at the network cameras as a
collective entity that enables collaborative video analytics pipeline
among cameras. CONVINCE aims at 1) reducing the compu-
tation cost and bandwidth requirements by leveraging spatio-
temporal correlations among cameras in eliminating redundant
frames intelligently, and ii) improving vision algorithms’ accuracy
by enabling collaborative knowledge sharing among relevant
cameras. Our results demonstrate that CONVINCE achieves an
object identification accuracy of ~91%, by transmitting only
about ~25% of all the recorded frames.

Index Terms—Collaborative Sensing, Spatio-temporal Corre-
lations, Video Analytics, Edge Computing, Machine Learning

I. INTRODUCTION

Driven by drastic fall in camera cost and the recent advances
in computer vision-based video inference, organizations are
deploying cameras in dense for different applications rang-
ing from monitoring industrial or agricultural sites to retail
planning. As an example, Amazon Go [1] features an array
of 100 cameras per store to track the items and the shoppers.
Processing video feeds from such large deployments, however,
requires a considerable investment in compute hardware or
cloud resources. Due to the high demand for computation
and storage resources, Deep Neural Networks (DNNs), the
core mechanisms in video analytics, are often deployed in the
cloud. Therefore, nowadays, video analytics is typically done
using a cloud-centered approach where data is passed to a cen-
tral processor with high computational power. However, this
approach introduces several key issues. In particular, executing
DNNs inference in the cloud, especially for real-time video
analysis, often results in high bandwidth consumption, higher
latency, reliability issues, and privacy concerns. Therefore, the
high computation and storage requirements of DNNs disrupt
their usefulness for local video processing applications in low-
cost devices. Hence, it is infeasible to deploy current DNNs
into many devices with low-cost, low-power processors. Worst
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yet, today video feeds are independently analyzed. Meaning,
each camera sends its feed to the cloud individually regardless
of considering to share possible valuable information with
neighbor cameras and to utilize spatio-temporal redundancies
between the feeds. As a result, the required computation to
process the videos can grow significantly.

Motivated by the aforementioned hurdles, we believe that
there is a need for a new paradigm that can benefit the
current systems by lowering energy consumption, bandwidth
overheads, and latency, as well as providing higher accuracy
and ensuring better privacy by pushing the video analytics at
the edge. We are convinced that by looking at a network of
cameras as a collective entity that leverages i) spatio-temporal
collations among cameras in one hand, and ii) knowledge
sharing (e.g., sharing input, intermediate state, or output of
the DNN models) among relevant cameras in the other, we
can utilize the aforementioned benefits in our systems. Prior
works fail in addressing the challenge of large scale camera
deployments where the compute cost grows exponentially by
the increase in the number of deployed cameras. Most of the
recent works only focus on a single camera (not a collection of
cameras) to perform the given vision task. Recent systems have
improved analytics of live videos by using frame sampling and
filtering to discard frames [2]-[4]. However, the focus of these
works are on optimizing the analytics overhead for individual
video feeds.

Our prior work [5] describes our vision of pushing video
analytics to the network edge to leverage knowledge sharing
and spatio-temporal correlation among nodes. To demonstrate
the new opportunities and challenges in our vision, we have
designed a centralized collaborative cross-camera video ana-
lytics system at the edge hereafter CONVINCE ! that leverages
spatio-temporal correlations by eliminating redundant frames
in order to reduce the bandwidth and processing cost, as well
as leveraging knowledge sharing across cameras to improve
the vision model accuracy. Applications that could benefit
from such a system include, but not limited to, public and
pedestrian safety, retail stores (e.g., Amazon Go) and vehicle
tracking.

Contributions. This paper make the following contributions:

« We propose CONVINCE, a novel centralized video an-

alytics framework that leverages cross-camera spatio-
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Fig. 1: A Bird’s-Eye view of CONVINCE framework

temporal correlations and knowledge sharing to reduce
compute and bandwidth requirements while preserving
privacy [SIII].

« Evaluation using a Deep Learning (DL)-based object
detection model (YOLO) shows that CONVINCE can
reduce the number of transmitted frames while preserving
model accuracy [§III].

o We identify the current challenges associated with
CONVINCE [§IV-A]. We also explain how to extend
CONVINCE to be able to run on real-world deployment.
For example, to achieve privacy, we explain how we can
enhance CONVINCE with a locally distributed learning
mechanism using federated learning to update the shared
vision model at the edge and preventing sensitive data to
be sent to the cloud [§IV-B].

II. FRAMEWORK DESIGN CONSIDERATION

To improve the current cloud-centered video analytics sys-
tems where each camera node transmits its feed in isolation,
we have envisioned a novel paradigm to push the video
analytics to the network edge to enable near real-time video
analytics, lower latency, and to address privacy concerns. To
do so, we proposed to look at a network of cameras at
the edge as a collective entity that leverages spatio-temporal
correlations among cameras and enables knowledge sharing
across cameras.

The proposed paradigm can be realized either in a cen-
tralized or distributed setting. In both design approaches, we
assume that each camera node has an embedded processing
unit that is able to run moderate DNN models. The recent
wave in "Al cameras” with embedded compute and storage
resources [6] makes this assumption realistic. In the following,
we describe both system design choices and their associated
assumptions, requirements, and challenges.

Centralized approach In this approach, we assume that
there is a centralized edge server that is powered with compute
and storage requirements for a deeper video processing task.
This server also keeps track of spatio-temporal correlations
among cameras. In this setting, all the other camera nodes

are connected (e.g., through Wi-Fi) to the edge server and
transmit their pre-processed frames for further processing. The
server is also aware of the camera network topology. We have
implemented the centralized system architecture in this work
(see Figure 1). Further details are provided in Section III.

Distributed approach In this setting, all AI cameras
are communicating with each other. Each camera needs to
know the topology or the spatio-temporal correlations of
the other cameras in the network. There are several key
design challenges associated with a distributed setting that
we highlight two of them in the following. One of the main
design challenges in a this approach is the communication
strategy among camera nodes in order to collectively improve
their performance. The communication mechanisms between
multiple nodes could be mainly categorized into two key
approaches; individual peer-to-peer channels and all-to-all
channels. Peer-to-peer channels will enable peer cameras to
experience similar conditions (e.g., proximate cameras with
overlapped Field of Views (FoV)) and targeting similar ob-
jectives to exchange their information with each other to
speed-up the analytics process considering time constraints.
Another challenge is to carefully design a trade-off between
the information transmission time among the cameras and the
delay in the inference step of running DNN models.

III. IMPLEMENTATION AND EVALUATION

Figure 1 illustrates the overview of CONVINCE framework.
In this framework, each camera feed is processed locally to
eliminate redundant frames. The output of the device-based
processing is then sent to the edge server to evaluate the
accuracy of the model running in each camera. In addition,
CONVINCE enables cameras to communicate with each other
and share their obtained knowledge with potential peer cam-
eras (see Subsection III-A).

Experiment setup To evaluate the performance of
CONVINCE we have used YOLO-v2 (You Only Look
Once) [7] which is a Convolutional neural network (CNN)
for object detection. The object detection task consists in
determining the location on the frame here certain objects
are present, as well as classifying those objects. The output
of YOLO is a vector of bounding boxes and class predictions
for the objects in the bounding boxes. YOLO-v2 has a total
of 32 convolution layers that make it suitable for low resource
devices. For evaluation, we used YOLO-v2 values trained on
the VOC2012 dataset [8]. 2 We evaluated CONVINCE using
YOLO-v2 for people counting task on SALSA dataset [9]
which contains footage from four cameras placed on four
corners of an indoor area (see Figure 2), with significant
FoV overlap among the cameras. It contains uninterrupted
recordings of an indoor social event involving 18 subjects over
60 minutes. The reason for our choice of this dataset is to
analyze the potential of using spatio-temporal correlations of
cross-camera video analytics. Depending on what environment
(indoor, outdoor) and the objective of deployed cameras (e.g.,

2Due to space limitation, the interested reader is referred to YOLO [7].
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Fig. 2: Different camera views in SALSA dataset [9]

security cameras, people counting outdoor), the number of
detected objects in a frame for a certain time window does
not change often based on the observation in [10]. Motivated
by such observations, CONVINCE edge devices only transmit
those frames in which a new object is detected to the edge
server. Our own observation on SALSA dataset also suggests
that such observations are likely to happen in typical camera
deployments. In CONVINCE, a newly detected object means
there is a new bounding box detected in a sequence of frames.

Performance metrics Measuring performance is a trade-
off between the model accuracy, resource efficiency, and
performance cost optimization of data analysis on resource-
challenged camera nodes. One of the objectives of CONVINCE
is to reduce the number of redundant frames to save the
network bandwidth and processing time of the video ana-
Iytics while maintaining the model accuracy. We measured
CONVINCE performance by i) people counting accuracy, and
b) fraction of transmitted frames by cameras.

A. Results

Isolated camera frame transmission We evaluate the
performance of CONVINCE when individual cameras transmit
only the frames with a newly detected object to the edge server.
Edge server calculates the people counting accuracy using
the transmitted frames by all cameras. In this experiment, we
have evaluated CONVINCE for people counting task on four
recorded videos using SALSA dataset. Figure 3a shows the
performance of CONVINCE for different recorded videos. As
shown in the figure, although cameras transmit only selected
frames which account on average for about ~ 65% of their
recorded frames to the edge server, people counting accuracy
is maintained a value of about ~ 94% in all the four video
traces. This experiment shows that by intelligently selecting
only informative frames to be processed, we can eliminate
redundant frames, which results in less bandwidth and pro-
cessing consumption while preserving the model’s accuracy.

Collaborative cross-camera frame transmission In this
experiment, we take a further step to evaluate the performance
of CONVINCE in a cross-camera setting where there is a
significant overlap in cameras’ FoV. The purpose of this
experiment is to examine the fraction of transmitted frames
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Fig. 3: Performance evaluation of (a) Single camera frame
transmission (b) Collaborative cross-camera frame transmis-
sion.

with significant FoV overlaps which are analyzed only once
and to see whether CONVINCE accuracy will be compromised
or not. For this purpose, we select one of the cameras as a
supreme camera ( namely Camera #4). The supreme camera
is chosen based on the higher accuracy in people counting task
it achieves compared to the other cameras and their transmitted
frames. As shown in Figure 3b cameras on average transmit
only ~ 25% of their total frames. Although viewing cameras
collectively decreases the total number of transmitted frames
from ~ 65% in the previous experiment to only ~ 25% the
accuracy of the model also drops to ~ 86%. Therefore, we
need sophisticated mechanisms in which the trade-off between
model accuracy, resource efficiency, and cost of data analysis
is carefully considered.

Collaborative cross-camera knowledge sharing

Cameras that are installed in vulnerable positions could
suffer from low-quality images at different times of the day
or under various weather conditions (e.g., under extreme
luminance during the day or a rainy weather condition),
which results in lower accuracy due to poor quality of input
data. However, other cameras installed in a better position
which have overlapping FoVs would have better inference
performance. Therefore, such cameras can complement each
other via collaboratively sharing their inputs. In such a sce-



nario, knowledge sharing among cameras may be as simple
as sharing input frames among relevant cameras. Knowledge
sharing can also mean to share an intermediate state of the
DNN model with other cameras running the same model to
enhance their accuracy.

In CONVINCE a non-collaborative mechanism means each
camera runs the YOLO-v2 algorithm for people detection
task individually. Inspired by [11], we share the interme-
diate output of the YOLO algorithm which is the detected
bounding boxes and their associated confidence level with
relevant cameras. In YOLO-V2 there is a final step called
Non-maximum suppression (NMS) which ensures finding a
single bounding box for each detected object among several
boxes detected for the same object. NMS ensures finding an
optimal bounding box for each object while suppressing any
detected box when the degree of overlap between the detected
and the selected box is lower than a default threshold. In
collaborative camera-setting, relevant collaborating cameras
share their inference states before and after the NMS step
with other cameras. The collaborator bounding boxes are
transformed to the same coordinate system as the supreme
camera and pairs of bounding boxes are matched using the
Hungarian algorithm. Those bounding boxes that fall close
within the same areas across cameras are assigned a higher
confidence score weight since they are detected by multiple
cameras.

In this experiment, the bounding box coordinates and their
corresponding confidence scores with the other cameras are
shared. The supreme camera (Camera #4) is the baseline. As
shown in Table I frames transmitted only by Camera #4 result
in ~67 % accuracy. We then share the bounding box informa-
tion of Camera #4 with Camera #3. This shared knowledge
improves the accuracy of people counting to ~89%. As shown
in Figure 3b, frames transmitted by Camera #3 and #4
accumulate 90% of all the transmitted frames. As expected,
adding Camera #1 and #2 marginally enhances the accuracy
to about ~91%. By sharing bounding boxes between cameras,
we show that the accuracy of the model increased by about
~5% compared to the previous experiment where the supreme
camera does not share the intermediate model information with
other cameras.

Our early results demonstrate the opportunities that
CONVINCE can bring to the current video analytics systems.
However, there are many challenges that need to be addressed.
The results could be highly depend on the position, angle,
overlapped FoVs’ of cameras. Therefore, for different camera
settings we need coping mechanism. For example, a dense
camera deployment may require a clustring algorithm to group
relevant cameras together based on their position and FoVs.
In the following section, we discuss some of the challenges
and future directions of our approach.

IV. DISCUSSION

A. Current Challenges

Dealing with adversarial nodes As mentioned in [5], the
performance and accuracy of our system could be affected

TABLE I: Comparing people counting accuracy using different
camera frames.

Camera feed used Accuracy(%)
Camera #4 (Baseline) ~67
Camera #3, 4 ~89
Camera #1, 2, 3, 4 ~91

TABLE II: Trust Value Indexing example by the centralized
edge server

Trust Score Description Label
0 Completely untrustworthy | Extremely harmful
0.3 Risk trust Risky
0.5 Semi-trust Semi-Safe
0.7 Trustworthy Safe
1.0 Completely Trustworthy Completely Safe

with the presence of adversarial cameras. This is because all
nodes including adversarial camera nodes share their inference
with the proximity nodes. Therefore, we need sophisticated
mechanisms such as a centralized trust management [12] in the
edge server to be able to calculate appropriate trust scores for
each camera based on the feedback provided to the edge server.
The trust score could have a range between [0,1]. Table II
provides an example of such a calculated scoring mechanism.
Such trust mechanisms can become extremely important in
military scenarios where nodes may not necessarily trust each
other.

Dealing with small training datasets The term learning
more from less also applies in the machine learning domain
when there are only a few samples to learn from. In camera
deployment setting, sometimes a camera is installed where
it does not receive many useful samples to learn from. For
instance, a camera that is installed in the main hallway may
detect many samples, while another camera detects very few at
the same time. One approach to overcome this challenge could
be to share the samples of the camera with more samples with
the other camera to train its model without sacrificing privacy.
We could also use techniques such as few-shot learning where
we have only a few examples of sample data to learn from.
Few-shot learning methods can be roughly categorized into
two classes: data augmentation and task-based meta-learning.
For example, in [13] the proposed model gave state-of-the-art
results and paved the path for more sophisticated meta-transfer
learning methods.

B. Future Work

Designing a module to model spatio-temporal correla-
tions Cross-camera movements (e.g., people or traffic) demon-
strates a high degree of spatial and temporal correlation. A
movement between two cameras could be defined as the set
of unique objects detected in the first camera that are then
detected in the second camera. Exploiting spatio-temporal
correlations, by itself potentially saves compute resources. In
CONVINCE, we need mechanisms to capture and model such
correlations of detected objects between pairs of cameras’
views.



Identifying collaborative nodes In our experiment, we
have only used four cameras that are calibrated. Thus, it was
easy to identify the collaborative nodes using trial and error.
In a real-world setting, the number of cameras can be as large
as an array of hundred cameras e.g., in Amazon Go stores.
Sometimes cameras are not stationary which can lead to the
change of ideal collaborators. Therefore, we need sophisti-
cated mechanisms to identify potential peer collaborators. One
possible approach would be to cluster cameras with spatial
or temporal correlations and select a supreme camera for the
cluster based on the area of coverage and resolution quality
provided by the camera.

Collaborative privacy-preserving video analytics The use
of computer vision technologies is not limited to the rapid
adoption of facial recognition technologies but is also extended
to facial expression recognition, scene recognition, etc. These
developments raise privacy concerns regarding the collection
and the use of sensitive data. These concerns can grow to
the extent that regulators and authorities take serious actions
about these technologies. Most of the current privacy-aware
video streaming approaches involve denaturing, which means
the content of images or video frames is modified based on
a guided privacy policy. In addition, cheap internet-of-visual-
things (IoVT) along with emergent of vision processing tech-
nologies made video recording and sharing more attractive.
The cycle-consistent GAN [14] is a popular technique to
transform a video frame from one style to another and received
significant attention in the literature. Some of the recent ef-
forts [15] propose CycleGAN for person re-identification task
by using unsupervised classification methods [16]. However, in
practice, there are two privacy/security issues to be addressed
before deploying cycleGANs on to the edge devices. Firstly,
any adversary can recover the original contents of cycGAN-
transformed video frames if it can access the same cycGAN-
enabled edge device for training data collection. Secondly, it
is not easy to verify that the transformed frame is legitimate or
not as shown by a technique in [17]. As a coping mechanism
to such issues, authors in [18] propose to append a watermark
to each input in the training phase that is treated as a secure
key to reduce the cycleGAN shortcomings in terms of privacy.
However, all the stenography-based approaches typically con-
sider a non-collaborative setting. In CONVINCE centralized
approach, privacy can be achieved by using techniques such
as a modified version of federated learning. It allows for a dis-
tributed training scheme where first each device is initialized
by a single model e.g., object detection. When a new object
is detected it updates its local model. It then sends an update
(model parameters and corresponding weights of non-sensitive
data) to the edge server. The update is then averaged over
all other edge nodes’ updates to improve the shared model.
Therefore, there is no privacy breaches between nodes even if
one of the cameras is compromised.

V. CONCLUSION

This paper describes CONVINCE a collaborative intelligent
cross-camera video analytics at the edge, a system in which

video nodes perform vision tasks collaboratively on resource-
constrained cameras on the network edge. We believe that such
intelligent cross-camera collaboration can significantly lower
energy, bandwidth overheads and latency, and provide better
accuracy while ensuring privacy. Our early results highlight
the benefits of such a visionary system that could be brought
to the current systems. We have also discussed some of the
key challenges and future directions in realizing the proposed
system. Although we only focused on collaborative cross-
camera video analytics application, we believe the proposed
collaborative paradigm could be applied to other types of IoT
devices/sensors.
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