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Abstract—Internet of Things devices are becoming a pervasive
technology of the contemporary world. As the transceivers are
typically battery-powered, their energy efficiency is crucial. This
has to consider not only the spectral efficiency of the utilized
modulation but also the energy consumption for reception, signal
processing and keeping radio ON. The paradigms observed in
human brains for communications between millions of closely
distanced neurons can be utilized in wireless networks to improve
communications energy efficiency. The paper presents the main
features of brain communications and maps them to the closest
solution in wireless communications technology. Multi-hop, low
power, on-off keying transmission with diversity and sleep mode
is proposed, as a neuron-inspired scheme. Its advantage is shown
in numerical terms.

Index Terms—Internet of Things, Wireless Sensor Network,
Energy Efficiency, Brain Inspiration

I. INTRODUCTION

Internet of Things (IoT) is becoming a pervasive technology
of today’s world, ranging from the industrial environment
to agriculture and private people. By 2022 there will be
on average 1.8 IoT connections for each member of the
global population [1]. The density of IoT devices will be
significant, requiring a significant reduction in setup cost
and time, e.g., by changing fixed connections to wireless
connections. In addition, to be cable-free, the devices must be
battery powered. This requires the wireless communications
to be highly energy-efficient in order to allow for long battery
lifetime. The technologies that are typically highly spectrally
efficient, e.g., Orthogonal Frequency Division Multiplexing,
turbo codes, Massive MIMO, require relatively high energy
for signal processing, transmission and reception. Therefore,
these are not the optimal solutions for battery-powered IoT
devices. It has been shown in [2] that these technologies
are energy-efficient (energy efficiency is defined as a ratio
of the achieved rate to the total power consumption) only
for relatively long transmission distances. In the case of a
dense IoT network, simpler modulations are considered, e.g.,
Pulse Position Modulation (PPM), On-Off keying (OOK) or
Frequency Shift Keying (FSK) [3], [4]. From the point of
view of spectrum access, Time Division Multiple Access
(TDMA) is considered, in which long sleep time in between
access allows for energy consumption reduction [5]. However,
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these approaches lack a holistic approach to network energy
consumption.

A new trend in wireless systems design is to follow the
rules used in nature as a result of years of evolution. One of
the examples is to copy the behavior of bumblebees to design
wireless communications in Vehicle-to-Vehicle connections
[6]. From the perspective of dense, energy efficient networks,
it is interesting to have a closer look at the human brain.
It is a structure composed of around 1011 neurons that are
interconnected, and can operate over a long period of time with
relatively low power consumption. One of the first approaches
to this problem is [7], where microglia activity is copied to a
wireless sensor network in order to increase fault tolerance.

In this paper, the electro-chemical activity of a single neuron
will be analyzed in order to provide some design rules for
a dense, energy efficient IoT network. First, a simplified
description of a single neuron operation will be presented in
Sec. II. Next, a neuron-inspired IoT communication protocol
will be presented in Sec. III. Its initial performance evaluation
will be presented in Sec. IV. Future work and conclusions will
be presented in Sec. V.

II. PARADIGMS OF NEURON COMMUNICATIONS

Neurons utilize electro-chemical reactions to convey infor-
mation [8]. First, an input signal arrives to the dendrites using
their endings called synapses. The synapses obtain the signal
from the previous neurons using either an electrical signal
(through gap junction) or, more commonly, using neurotrans-
mitters (chemical substances that are typically synthesized
from amino acids). A given neuron may receive signals from
many connected neurons. These signals are summed electri-
cally at the axon hillock, creating some initial membrane po-
tential. The summation is done both over many input neurons
(spatial summation) and over time (temporal summation). As
visible in Fig. 1, the resting potential of a neuron with no input
signal equals about -70 mV. When the summated input signals
exceed the threshold of about -55 mV, an action potential is
launched, causing depolarization to a voltage of 40 mV. This
impulse has constant amplitude, no matter how significantly
the input signal exceeds the threshold potential. This behavior
is called a one-or-none event. Such an electrical signal travels
across the axon to its end, where it is passed to another neuron
using synapses. An important neuron feature is a refractory



period, i.e., a period of time over which the neuron that has
just released an impulse is unable to release another impulse.
First, during depolarization and while the voltage drops to
the resting potential, an absolute refractory period is observed
even when a very strong input signal cannot make the neuron
fire another impulse. Afterwards, a relative refractory period
is observed, during which the membrane potential is lower
than the resting potential (denoted as Refractory period in Fig.
1). This requires the input signal to increase the membrane
potential more, to reach -55 mV, in order to fire another
impulse.

Fig. 1. Voltage in time at a neuron conveying information.

III. PROPOSED NEURON-INSPIRED IOT
COMMUNICATIONS PROTOCOL

A. Digital modulation: ON-OFF Keying

The above-presented basics of inter-neuron communications
can be viewed as a digital communication system. This obser-
vation comes from the one-or-none neuron behavior, resulting
in the generation of an impulse of constant parameters (dura-
tion, amplitude) if the input signal exceeds a given threshold.
If this threshold is not exceeded, no impulse is emitted.
This resembles the ON-OFF Keying (OOK) transmission. The
potential of this modulation has been proved mathematically
for dense networks. It has been shown in [2] that coding is
not energy-efficient for short-range communications, because
of the energy required for computations. Similarly, advanced
multicarrier modulations, e.g., Orthogonal Frequency Division
Multiplexing, provide a significant computation energy burden
for short-range communications. Single carrier modulations,
namely, Frequency Shift Keying (FSK), Pulse Position Mod-
ulation (PPM) and OOK, have been compared for wireless
sensor networks in [3], [4]. While PPM outperforms FSK in
terms of energy efficiency for short-range communications
[4], it is outperformed by OOK in the same scenario [3].
OOK is a simple modulation scheme that requires, in the
simplest approach, a transmitter being a local oscillator (LO)
connected to an antenna (for low-power transmission). The LO
is powered only while bit 1 is transmitted and can be turned off
for bit 0 [9]. This can significantly reduce transmitter energy
consumption. The required low-power OOK transceivers have
already been designed, e.g., for wake-up radios [9]. The wake-
up radio is a low-power, low-rate radio working in parallel

to a main, high-rate radio. It is to detect a wake-up signal
(typically OOK) directed to a given transceiver, and activate
the main radio. However, these designs can potentially work
as stand-alone radios, as suggested by the neuron’s nature.

B. Transmitter diversity

A neuron sums many incoming signals from many neurons.
This can be mapped to a transmitter diversity technique, i.e.,
signals from many previous transmitters, transmitting the same
signal, add up at the receiver antenna. The advantage of this
approach is the additional power of the wanted signal at the
receiver, increasing the signal-to-noise ratio (SNR). Moreover,
the deep shadowing of a channel from one transmitter is rare
to occur at the other links. To present a diversity gain, two
transmit nodes can be considered, each transmitting identical
symbol d of mean power 1, scaled by

√
P to obtain transmit

power P . Assuming each channel is described by a single,
complex coefficient, i.e., h1 and h2, the received signal, after
the addition of noise sample n, equals

y = (h1 + h2)
√
Pd+ n. (1)

As channel coefficients are typically random variables (e.g.,
Rayleigh or Rice distributed), the mean SNR Γ can be
calculated, assuming that h1 and h2 are uncorrelated, i.e.,
E[h1h

∗
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]
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]
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= Γ1 + Γ2. (2)

It is visible that the mean SNR is a sum of mean SNRs from
each link, i.e., Γ1 and Γ2 for reception from the first and
second transmitters, respectively. The mean SNR is always
higher than in the case of no diversity.

However, this diversity scheme requires the transmitters to
be somehow synchronized, so that inter-symbol interference is
limited. In addition, it is important that channel delays from
each link are similar in comparison to symbol duration. This
can be obtained by increasing the symbol duration (decreasing
data rate). On the other hand, the physical nature of the
propagation medium allows us to obtain this condition, e.g.,
according to [10], in the case of indoor propagation, the
channel delay spread is the lower the shorter is the link.
All these conditions allow the receiver not to implement the
equalizer, thus simplifying it and reducing power consumption.

C. Receiver: non-coherent detection

The other kind of summation used during reception in
a neuron is summation in time, i.e., incoming signals are
integrated in time before the result is compared to the detection
threshold (threshold potential). This can be a description of
a non-coherent detection of the OOK signal. This detection
does not require the channel coefficient to be estimated at
the receiver. The receiver can be implemented by a band-pass
filter centered at the utilized carrier and an envelope detector.
These are elements that are low-energy consuming, as it has



been shown in the case of the wake-up radio design [9]. This
structure estimates the energy of the symbol at the input, i.e.,
in a low-noise environment the result should be close to 0 for
no impulse transmitted and a value close to the received signal
energy when bit 1 has been received.

D. Medium Access Control: multi-hop & sleep

From the Medium Access Control point of view, a neuron-
inspired IoT network should naturally utilize a multi-hop
protocol. It is a natural way of inter-neuron communication.
In the case of wireless transmission, it can allow the transmit
power to be limited, reducing the energy consumption at the
transmitters and reducing the number of far-away neurons to
be interfered. As an example, let us consider a simple, line
network topology. The received power can be calculated using
the pathloss-exponent pathloss model as

PRX = αPd−γ , (3)

where α is a constant coefficient dependent on antenna gains
and frequency, P is the transmission power, d is the distance
between the transmitter and receiver, and γ is a pathloss coeffi-
cient (varying typically from 2 for Line-of-Sight propagation
to 5.5 in highly urban environment). Assuming the network
consists of N nodes, each of equal TX power P , the power
required for single-hop transmission PSH can be compared
with P considering equal RX power in each case, i.e.,

αPd−γ = αPSH (N − 1)
−γ

d−γ . (4)

This results in
PSH = P (N − 1)

γ
. (5)

For fair comparison, the transmission duration has to be taken
into account, i.e., one slot for single-hop transmission and N−
1 slots in multi-hop transmission. As such, the mean power
for single-hop transmission ˆPSH is related to mean power of
multi-hop transmission P̂ as

ˆPSH = P̂ (N − 1)
γ−1

. (6)

Even in LoS propagation (γ = 2) the emitted mean power is
N-1 times higher in single-hop case than in multi-hop case.

The other problem is interference between adjacent nodes
when transmitting different packets. This can be solved by the
utilization of the refractory period concept used by neurons. A
given node deactivates its input while transmitting in a given
timeslot and over next M timeslots. As the node is not to trans-
mit neither receive any signal over M slots, it can change its
state to sleep mode, significantly reducing power consumption.
An example of such a network operation is depicted in Fig. 2
for line topology, M=1 and M=2. The color of a given node
defines its current state. It is visible that a given node will be in
transmit (TX) mode in 1 out of M+2 slots. The same applies to
the receiver (RX) activity. While the wanted received power is
independent of the utilized M value and equals S = αPd−γ ,
the interference is the sum of contributions of other TX nodes
on the left and right-hand sides of a given RX. IRi and ILi can
be denoted as the interference power from the ith interfering

Fig. 2. Neuron-based multihop protocol for M=1 and M=2 sleep slots.

node (i ∈ {0, 1, ...}) on the right-hand and left-hand sides,
respectively. They can be calculated as

IRi = αP ((1 +M + i(M + 2)) d)
−γ

, (7)

ILi = αP ((3 +M + i(M + 2)) d)
−γ (8)

giving, for an infinitely long network, a total interference of

I = αPd−γ
∞∑
i=0

(3+M+i(M+2))
−γ

+(1+M+i(M+2))
−γ

.

(9)
The infinite sum in the above formula constitutes the reci-
procity of the Signal-to-Interference ratio (SIR). This SIR
increases with γ and M , starting at about 3.4 dB for γ = 2 and
M = 1. As M is a design parameter, SIR in a network can be
reduced at the cost of decreased bitrate. Most importantly, this
interference power is a worst case, as typically the network
has a finite number of nodes and the propagation conditions
change with distance, i.e., the longer the interference path, the
higher the probability of NLoS propagation (γ > 2), while the
wanted signal path has the highest LoS probability (γ = 2)
[11].

The refractory period helps not only to increase SIR.
Additionally, the number of multiple receptions of the same
packet is decreased. However, to ensure a given node does not
transmit a given packet multiple times, a post-reception check
of the packet number is proposed (in the digital domain).

IV. INITIAL EVALUATION OF NEURON-INSPIRED
COMMUNICATIONS PROTOCOL

The proposed neuron-based network has been simulated
on a system level. It is assumed that nodes are randomly
distributed in a 500m x 500m area. While the transmitter
of each node has 10 mW output power, the receiver is
characterized by a noise floor of -61 dBm and the required
SNR for successful OOK packet reception of 12 dB according
to the values measured in [12]. The system operates with 20
kbps bitrate at the carrier frequency of 1.9 GHz. The pathloss
is modeled using [10], assuming commercial environment
(γ = 2.2). In order to accurately model the non-coherent
diversity, each channel has a random phase. It is assumed that
there is only one packet emitted that is transmitted from the
random node in the first timeslot.



An example of TX, RX and sleeping nodes location in the
5th timeslot for 5000 nodes is shown in Fig. 3 for the proposed
scheme with and without diversity (artificially neglecting at
each RX the wanted signals from sources other than the
strongest ones). It is visible that diversity allows for faster
flooding of the network and a higher transmission range.

This observation is confirmed by the number of timeslots
required for a given message to reach a given RX. It is a
random variable (dependent on node location and channel
coefficients), represented by the Cumulative Density Function
(CDF) in Fig. 4 for 2000 (i.e., 0.008 nodes/m2), 4000 (i.e.,
0.016 nodes/m2) and 10000 (i.e., 0.04 nodes/m2) nodes.
The denser the network, the faster the message distribution.
While for 10000 nodes fewer than 5 timeslots are required to
distribute a message among half of all nodes, for 4000 nodes
it requires about 7 timeslots. For 2000 nodes, this level of
message distribution is not achieved even for 40 timeslots. This
shows that the sparser the network, the higher the probability
of not obtaining a given packet by a given node. This can
be solved by increasing TX power or increasing sensitivity.
Additionally, the dashed lines in Fig. 4 show the results for
systems without diversity. Both the typical time for message
reception and the probability of not receiving a given packet
(even for infinite waiting time) are increased in this case.
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Fig. 3. Comparison of packet propagation with and without diversity for 5000
nodes in the 5th timeslot (node color: white-RX, black-TX, grey-sleep).
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number of slots required with and without diversity.

The refractory period prevents a given node from repeat
reception of a given message, thus reducing RX power con-

sumption. The effectiveness of this mechanism is shown for
10000 nodes in Fig. 5 as the probability of repeat packet recep-
tion in the function of node’s sleep duration. This probability
falls exponentially with the sleep duration. The sleep duration
can be adjusted to find a balance between the probability of
repeat packet transmission and transmission speed.
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Fig. 5. Probability of repeated reception of a given packet as a function of
node sleep duration. 10000 nodes considered

V. CONCLUSIONS

A neuron-based network design offers a simple, in terms
of hardware and network management, and energy-efficient
solution for dense IoT networks. Its analytical and numerical
assessment shows a potential that should be further confirmed
in a more complex simulation environment in the future.
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