
SwiftPad: Exploring WYSIWYG TEX Editing on
Electronic Paper

Elliott Wen
The University of Auckland
jwen929@aucklanduni.ac.nz

Gerald Weber
The University of Auckland
g.weber@aucklanduni.ac.nz

Abstract—Electronic paper (i.e., e-paper) is a display technol-
ogy that aims to imitate and substitute the conventional paper.
Previous studies of e-paper mainly focus on evaluating or making
practical use of its readability. However, there is little research to
explore the potential of e-paper on input-oriented applications.
In this paper, we introduce a document composition system
named SwiftPad for e-paper. Specifically, SwiftPad renovates the
famous TEX typesetting system, enabling users to compose high
typographic quality documents on e-paper in a WYSIWYG (what
you see is what you get), offline-first, and collaborative fashion.
Building such a system on resource-constrained e-paper with low
screen refresh rate creates unique challenges. In this paper, we
identity these challenges and provides workable solutions. We
also provide a preliminary evaluation of the new system.

I. INTRODUCTION

E-paper is a display technology that mimics the appearance
of ordinary ink on printed paper. Owning to its excellent
viewing experience (e.g., high contrast, wide viewing angle
and non-glowing panels), e-paper has been widely adopted
for various scenarios demanding high readability such as book
readers and post signs.

More recently, many manufacturers are producing 13.3-inch
e-paper. They advertise it as a digital device for writing and
reading that feels like standard A4 paper. This design philoso-
phy, however in reality, is not entirely implemented. Many
devices indeed deliver decent reading experience to users,
nevertheless few of them ever attach importance to the writing
experience. Their built-in documentation composition applica-
tions such as sketching or note-taking are mostly rudimentary,
in a sense that they lack necessary typesetting capabilities to
generate documents with aesthetics and formality. Therefore,
they are seldom applicable for scenarios such as education or
scientific work.

To bridge this gap, we introduce SwiftPad, a novel docu-
ment composition system for e-paper devices. SwiftPad reno-
vates the acclaimed TEX (we use TEX and LATEX interchange-
ably) typesetting system, aiming to meet the following user
experience goals:
High Typographic Quality: The system delivers an excellent
typographic quality in the generated documents. They can be
used in scenarios that demand formality such as scientific
publications.
WYSIWYG: The system provides a WYSIWYG user inter-
face similar to a word processor, allowing users to concentrate
on document composition rather than tedious TEX typesetting

procedures.
Offline-first and Collaborative: Users are able to edit and
compile documents even if there is no Internet connection.
Users are also allowed to edit documents collaboratively with
colleagues.

Implementing such a system entails multi-fold challenges.
The first challenge is that WYSIWYG editing has a strict
latency requirement: users expect to see resulting documents
in the order of milliseconds after they make some edits.
However, existing decade-old TEX engines work in a slow
batch processing fashion and may take the order of seconds
to compile a long document in e-paper devices with low-
spec CPUs. The second challenge stems from the fact that
off-the-shelf e-paper devices lack a standardized operating
system (OS). The diversity of the OSs renders a portable
implementation of SwiftPad rather difficult. The last challenge
derives from two notable drawbacks of e-paper screens: low
refresh rate and ghost effects. They make e-paper not directly
suitable for displaying our WYSIWYG editor, whose contents
change frequently.

In this paper, we present practical solutions to cope with the
above challenges. Firstly, we conduct a ground-up rewrite of
the TEX engine and incorporate a compilation checkpointing
technique to meet the latency requirement of WYSIWYG
editing. Secondly, to make our implementation portable, we
compile SwiftPad into the WebAssembly binary format, which
can be directly executed in every major browser in a near
native speed. Lastly, SwiftPad exploits the concurrent update
feature of e-paper screen controllers to combat the low refresh
rate and ghost effects. We consolidated the above techniques
and implemented a prototype of SwiftPad on off-the-shelf
13.3-inch e-paper devices, based on which we conducted a
preliminary user study involving six participants to evaluate
the usability aspects of the system. The participants reacted
positively to the innovative WYSIWYG editor for e-paper.

II. SYSTEM OVERVIEW

Fig.1 demonstrates the general hardware setup of SwiftPad,
consisting a 13.3-inch e-paper device and an optional wireless
bluetooth keyboard. We argue that keyboards are so far the
most reliable input instrument for SwiftPad because of their
popularity and users’ familiarity. Nevertheless, we will investi-
gate the possibility of other input technologies such as speech
recognition and handwriting input in the near future.



Fig. 1. General Hardware Setup

SwiftPad is equipped with a simple-yet-powerful user inter-
face as shown in Fig. 2. Note that the screenshot is directly
captured from a e-paper device’s graphics memory in pursuit
for better presentation purposes. It can be seen that SwiftPad
offers two different editors. The first one is the source editor,
which allows advanced users to directly manipulate TEX
source code in a classical ASCII editor. The second one is
the WYSIWYG editor, which allows the user to directly edit a
document in its print form, but with effect on the source. More
specifically, the WYSIWYG editor possesses the following
features:

1) At editing quiescence (i.e., a moment when the editor
has processed all previous edits of the user), the editor
shows the print layout of the document, i.e., acts as a
faithful print viewer.

2) At editing quiescence, the user can position the cursor
anywhere in the document with the mouse/touchscreen,
arrow keys or a combination thereof.

3) The user can perform edits at the cursor position by
simply typing the keys or backspace and get instance
visual feedback.

4) Meanwhile, the user’s editing operations will also be
applied at the corresponding position of the TEX source
code.

SwiftPad also provides a file browser to facilitate users’ file
management (e.g., uploading or creating source files). The file
browser incorporates an underlying storage protocol named
RemoteStorage, which provides offline data access, automatic
cloud synchronization and collaborative editing functionalities.

III. IMPLEMENTING A PERFORMANT TEX ENGINE

Implementing SwiftPad on e-paper devices entails unique
challenges. One main challenging issue is to achieve high
responsiveness of our WYSIWYG editor, in order words,
allowing users to instantly see what the end result will look
like while a document is being edited. It is not trivial because
compiling documents like a 10-page scientific paper may cost
the order of seconds by conventional engines. The long turn

WYSIWYG View

Source View

Cursor

Fig. 2. User Interface of SwiftPad.

around time may be attributed to the following two reasons.
Firstly, most existing engines were invented decades ago and
may have applied certain obsolete computing technologies.
For instance, the PdfTeX engine, which has most user base,
was implemented in a legacy and undocumented programming
language WEB and adapted 7-bit character encoding. To keep
using PdfTeX in a modern computer, software compatibility
layers have to be enabled at the cost of performance. Secondly,
TEX is a batching system, which implies that every time a
compilation is initiated, the TEX engine must process the input
files from the very beginning till the end. Such behavior is
undesirable considering that, in most cases, users only append
or modify characters located at the end of the input file, while
leaving the preceding contents unchanged. It can be seen that
recompiling the unchanged contents leads to a considerable
amount of repeated computation.

To mitigate these drawbacks, we decided to conduct a
group-up rewrite of a TEX engine. Our engine adopts up-
to-date computing technologies such as high performance
programming language C++, Unicode encoding and multi-
threading. This mitigates the use of software compatibility lay-
ers from old engines and thus boosts the overall performance.
Nevertheless, the main contribution of our engine lies in the
introduction of checkpointing, which allows us to save and
reload the engine’s states (i.e., snapshots). This functionality
can be used to accelerate compilation by skipping repeated
computation. Specifically, the engine can create checkpoints
periodically (e.g., after outputting each page) and mark down
the corresponding input file positions in the first compilation.
When an user modifies somewhere in the input file, the engine
then can determine the closest checkpoint and start the next
compilation from there. We can further reduce compilation
time by instructing the engine to stop right after generating
the page the user is currently viewing or editing. For instance,
when the user is working on page 5, the engine can start from
the checkpoint on page 4, only re-typeset the page 5 and ignore



page 6 onwards. This ensures the compilation time remains
nearly constant regardless of the page number of a document.

One core step for the checkpointing functionality is to
save/reload application memory, specifically, static memory
(i.e., global variables) and dynamic memory (i.e., mostly
heap). Static memory has a pre-determined addresses and
sizes during the compile time. Thus, checkpointing the static
content is merely a memory copying process. In contrast, the
heap memory is allocated by OSs and has constantly varying
memory addresses and sizes during the runtime. Saving or
recovering the heap memory layout requires a series of system
calls, which are non-portable and error-prone. To solve this
issue, our engine does not use the OS heap allocator. Instead,
it exploits another dynamic memory management scheme,
namely, memory pool. Memory pool pre-requests a fixed-size
memory chunk at a known memory address and later allocates
it to programs in user space. This deterministic memory layout
enables us to treat the memory pool almost the same as the
static memory, thus simplifying our implementation.

IV. BROSWER-IFY SWIFTPAD

Another hurdle for us to overcome is that off-the-shelf
e-paper devices lack a standardized OS and programming
interfaces. In other words, we may have to adapt and opti-
mize SwiftPad for different devices, which is labor-intensive.
SwiftPad addresses this issue by exploiting an observation
that almost every e-paper device is now bundled with a web
browser, which provides a standard runtime environment for
web applications. Therefore, if we can implement SwiftPad
as a web application, we then can execute it in every e-paper
device in an installation-free fashion.

To browser-ify SwiftPad, the first step is to trans-compile
our TEX engine from C++ to browser languages, specifically,
WebAssembly or Javascript. WebAssembly is preferable, as
it is a modern binary instruction set designed to run in
a main-stream browser in a near native speed. Javascript
has a relatively worse performance (approximately 2 times
slower), but can be served as a fallback for old Javascript-
only browsers. The trans-compilation can be achieved using
Clang compiler along with LLVM WebAssembly backend.

After getting a runnable TEX engine in a browser, we can
now proceed to implement the WYSIWYG editor. One core
functionality is to display the typesetting result, in other words,
PDF files. However, we notice that many browsers do not
provide intrinsic PDF format support. For these browsers, we
have to rely on external Javascript libraries (e.g., PDF.js) to
parse PDF, which can cost the order of seconds. To address
this performance issue, our engine is enhanced to emit HTML
rather than PDF files, considering that browsers have always
been highly optimized to render HTML pages even for low-
specs devices.

One crucial step for HTML emission is to express vec-
tor graphics elements in original PDF with efficient HTML
markup. For instance, to display embedded PDF fonts, we
could take advantage of a CSS rule named ‘font-face’. To

Hello

(a) stage 1 (b) stage 2

Hello World

(c) stage 3

Hello World

Fig. 3. Concurrent Update and Repainting

support PDF geometric commands, we translate them into
Scalable Vector Graphics markup, which then can be directly
rendered by a browser. Regarding the text elements, they are
positioned with absolute coordinates in a PDF document. To
preserve the locations, one simple method is to convert them
into CSS absolute position rules. This, however, would render
the resulting page bulky because each text element is now
associated with a unique CSS rule. Instead, we convert the
absolute coordinates to relative position rules. Specifically, we
first attempt to merge PDF text segments to text lines based
on their geometric metrics. Afterwards, we measure the space
width between words in each line and turn them into CSS
rules. Finally, these rules can be used to construct HTML
spacer elements (i.e., empty span elements in a certain width)
to help position each text element from left to right in each
line. The advantage of this approach is that the number of
generated CSS rules tends to be tiny since there are usually
limited number of spacers with different widths in a PDF page.

V. OPTIMIZATION FOR E-PAPER DISPLAY

An e-paper screen is internally controlled by a specifically-
designed circuit: Electrophoretic Display Controller (EPDC).
It is responsible for driving corresponding electrical signals
to the e-paper panel upon receiving draw commands from
the CPU. Each draw command contains not only image
data and position, but also a parameter called update mode,
whose possible values include 2, 4, 8, or 16 graylevels. The
16-graylevel update mode delivers the best display quality
(i.e., highest contrast and little ghost effect) but consumes
the longest timespan to finish (approximately 1 second). In
contrast, the 2-graylevel update mode enables fast animation
of screen contents (approximately 150 ms) but may generate
poor contrast texts and significant ghost effects.

We can notice that there exists a trade-off between display
quality and latency, which are equally important to our editor.
In this paper, we propose a method to automatically strike
balance between them. The core idea is that we process a draw
command twice; we first paint a region use 2-graylevel mode
in pursuit of screen responsiveness, afterwards we repaint
the same region using 16-graylevel mode to improve display
quality. This process is parallelizable thanks to the concurrent
update feature of the EPDC, which allows multiple draw
requests to be processed at the same moment if their regions
do not overlap with each other. This condition frequently holds
true for our editor application. A demonstrating example has
been depicted in Fig. 3; at stage one, the user types a word
‘hello’, which is drawn in 2 graylevel mode. At stage two,
the user types another word ‘world’, this word is still drawn



in 2 graylevel mode while the previous word ‘hello’ can be
repainted using 16 graylevel mode at the same time since the
painting regions of the two words do not collide. At the last
stage, the user stops typing, so the word ‘world’ is repainted
and all the words are now in 16 graylevel mode.

VI. PRELIMINARY EXPERIMENTS

We conduct a preliminary performance evaluation of our
system on a popular off-the-shelf 13.3-inch e-paper device
BOOX MAX. It is equipped with a single-core 1GHz ARM
CPU and 512 MB RAM. We first use a predefined set of TEX
code snippets to generate sample documents with 100 pages.
We compile each sample document for 100 times. Before each
compilation, we insert/modify some texts randomly to mimic
users’ editing behaviors. We then report the average compila-
tion time. The experiments show that the average compilation
time for our new engine is 126 ms, significantly outperforming
the conventional engine PdfTeX, which takes 7812 ms. Our
engine ensures the responsiveness of our WYSIWYG editor.

We also carried out a simple Discount Usability Test, which
involves a small number of participants with a focus on
qualitative studies on prototype design [1]. Existing studies
[2] have suggested that a discount usability test with only
5 participants can offer reliable evaluation results and may
identify up to 85% of the usability problems. In our work, we
invited 6 participants from academia to evaluate our system.
Specifically, we instructed them to compose an essay with
at least 500 words describing their current research focus.
Afterwards, we required them to complete a System Usability
Scale (SUS) questionnaire, which is a commonly-used reliable
tool for perceived usability evaluation even with a small
sample size. The mean SUS score of SwiftPad is 71 (in a
range spanning from 0 to 100). It exceeds the threshold score
of 68 which indicates a decent level of usability. In addition,
we also computed the mean values for the usability sub-scale
and learnability sub-scale, which are 70 and 75 respectively.

VII. RELATED WORK

E-paper has been generally considered to be a promising
display technology in the field of reading. A small number
of research [3], [4] has been done to evaluate the readability
of e-paper. The results suggest that the reading experience of
e-paper is highly similar to printed paper and e-paper triggers
significantly less visual fatigue compared with growing LCD
screens. E-paper have been successful applied in some useful
application scenarios. For instances, Chiu et al. [5] evaluates
the potential of using the e-paper to encourage users to
cultivate healthy reading behaviors. Blankenbach et al. [6]
proposed a smart medicine package, aiming to address the
issue that today’s packaging for pharmaceutics provides no
information about individual medicine intake. Flexkit [7] and
PaperTab [8] explored the possibility of using E-paper as
accessory displays for document presentation.

However, most existing research works solely focus on
evaluating or making use of readability of e-paper. There is

little research on applying e-paper in scenarios other than
reading. To bridge this gap, we have identified that a TEX
WYSIWYG editor would be a useful input-oriented extension
for e-paper. Though several attempts have been made to
implement TEX based WYSIWYG editors like LyX [9] and
SwiftLaTeX [10], they were originally designed for PCs and
have high system requirements that e-paper cannot meet.
Moreover, these systems do not take special properties of e-
paper screens (i.e., low refresh rate and ghost effects) into
consideration, potentially leading to a poor user experience.
In contrast, SwiftPad presented in this work is specially
optimized for resource-constrained e-paper devices.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present SwiftPad, a novel document com-
position system for e-paper. It integrates the TEX typesetting
engine with the WYWIWYG editing concept, enabling users
to compose high typographic quality documents on e-paper.
Nevertheless, SwiftPad still bears several limitations that need
further improvement. Currently, SwiftPad adopts keyboards as
the main input technology. Other alternative input options,
for instance, voice input and handwriting input need to be
explored. Besides that, the WYSIWYG editor needs to be
enhanced for structural edits (e.g., inserting sections, tables
and images). We are also planing to carry out a comprehen-
sive usability study, which involves more participants from
different domains.

REFERENCES

[1] J. Nielsen, R. L. Mack et al., Usability inspection methods. Wiley New
York, 1994, vol. 1.

[2] J. Nielsen, “Discount usability: 20 years,” Jakob Nielsen’s Alertbox
Available at http://www. useit. com/alertbox/discount-usability. html
[Accessed 23 January 2012], 2009.

[3] E. Siegenthaler, P. Wurtz, P. Bergamin, and R. Groner, “Comparing
reading processes on e-ink displays and print,” Displays, vol. 32, no. 5,
pp. 268–273, 2011.

[4] S. Benedetto, V. Drai-Zerbib, M. Pedrotti, G. Tissier, and T. Baccino,
“E-readers and visual fatigue,” PloS one, vol. 8, no. 12, p. e83676, 2013.

[5] P.-S. Chiu, Y.-N. Su, Y.-M. Huang, Y.-H. Pu, P.-Y. Cheng, I.-C. Chao,
and Y.-M. Huang, “Interactive electronic book for authentic learning,”
in Authentic Learning Through Advances in Technologies. Springer,
2018, pp. 45–60.

[6] K. Blankenbach, P. Duchemin, B. Rist, D. Bogner, and M. Krause, “22-
2: Smart pharmaceutical packaging with e-paper display for improved
patient compliance,” in SID Symposium Digest of Technical Papers,
vol. 49, no. 1. Wiley Online Library, 2018, pp. 271–274.

[7] D. Holman, J. Burstyn, R. Brotman, A. Younkin, and R. Vertegaal,
“Flexkit: a rapid prototyping platform for flexible displays,” in Pro-
ceedings of the adjunct publication of the 26th annual ACM symposium
on User interface software and technology. ACM, 2013, pp. 17–18.

[8] A. P. Tarun, P. Wang, A. Girouard, P. Strohmeier, D. Reilly, and
R. Vertegaal, “Papertab: an electronic paper computer with multiple
large flexible electrophoretic displays,” in CHI’13 Extended Abstracts
on Human Factors in Computing Systems. ACM, 2013, pp. 3131–
3134.

[9] D. Kastrup, “Revisiting wysiwyg paradigms for authoring latex,”
COMMUNICATIONS OF THE TEX USERS GROUP TUGBOAT ED-
ITOR BARBARA BEETON PROCEEDINGS EDITORS KAJA CHRIS-
TIANSEN, vol. 23, no. 1, p. 57, 2002.

[10] G. W. Elliott Wen, “Swiftlatex: Exploring the true wyswiyg editing for
publication,” DocEng, 2018.


