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Abstract—We envision robots in cities will be increasingly
pervasive - forming new computational nodes, connected to each
other and to the Internet, adding to the already proliferating
mobile, wearable and fixed ubiquitous computing devices. This
paper discusses the notion of cooperation schemes to enable such
urban robots to work together with each other, with IoT devices
and with humans in different modes, and outlines prototype
distributed middleware we are building towards this end.

Index Terms—edge-cloud computing, Internet of Things,
Robots, Cooperation Schemes

I. INTRODUCTION

Emerging is the notion of Internet-connected robots in

private and public spaces, in particular in cities, from homes,

offices, aged care homes, shopping malls, museums, exhibition

halls, walkways, streets, to city canals [9], [13], [14], [18].

Such robots would be cloud-connected, but also utilise edge

computing infrastructure where desirable. Recent work has

seen a number of initiatives going beyond cloud robotics to

edge-cloud robotics [7], [17].
This paper first outlines the idea of the multirobot-

multihuman IoT ecosystems, where robots and humans occupy

shared spaces and work together, cooperating in different

ways, in a vision of a smart city. Then, we describe the concept

of cooperation schemes, representing abstractions of patterns

of cooperation among robots, and among robots and people.

We then describe our current prototype implementation of

three cooperation schemes, and conclude with future work.

II. MULTIHUMAN-MULTIROBOT COOPERATION SCHEMES:

CONCEPT AND ARCHITECTURE

There can be a number of different types of robots coop-

erating for different tasks in public spaces. As an illustration,

Figure 1 illustrates different collections of robots, some acting

as tour guides, some acting as information kiosks and some

as security guards.
The idea is that a distributed platform, with components

installed on each robot, enables different collections of robots

to work together in different ways. Minimally, the platform

should enable the robots to communicate with each and

exchange information while at the same time connecting to

the cloud (as needed) to connect to centralised control, which

includes (i) the manufacturer to receive software and con-

figuration updates, (ii) administrators for reconfiguration and

Fig. 1. Illustration of different collections of robots cooperating for different
tasks, one could imagine, in a marketplace (shopping mall) or a large art
gallery. Robots labelled T are tour guide robots - a group of two T robots are
guiding one group and another group of three T robots are guiding another
group. The S robots are security robots and work together and distribute
themselves to monitor mall at different places, including stores and walkways,
and the K robots are mobile kiosks robots containing advertisements and act
as information booths which users can interact with via a screen or voice
dialogue. Although the robots are depicted as having the same form, it is
possible that physically, the robots have different forms as customised for
their purposes.

commands, and (iii) maintainers who maintain and manage

the robots in their day-to-day operation.

Figure 2 illustrates the distributed architecture of our plat-

form comprising fog nodes providing additional resources to

edge nodes, edge nodes (as robots), and the centralised cloud

platform to which fog nodes connect to. Humans are in the

loop and can control the robots, via the cloud, fog nodes or

directly send commands to robots. Each edge node depicted

is a robot, containing components to support each cooperation

scheme - illustrated are three components on each robot so

that three cooperation schemes are supported. The aim is also

that robots can, as needed, download (or human managers can

push to robots) components for cooperation schemes, enabling

new cooperation behaviours for the robots. Humans can also

download and install on their mobile devices components for

cooperation schemes to work with robots in new ways, as

needed.

Each cooperation scheme specifies and implements a pattern

of interaction among the edge nodes, or a type of cooperation

possible among robots, e.g., robots can work together as a

“supercomputer” to process sensor data (workload sharing co-



Fig. 2. Illustration of our edge-cloud platform. Each robot is viewed as an
edge node - the illustration shows three shaded rectangles on each edge node
(diagonal lines, vertical lines, and squares) showing three different (types of)
components installed on each robot, each for a different cooperation scheme.
Humans can also cooperate, via their smartphone, in a particular cooperation
scheme with robots (illustrated via the component depicted by the rectangle
with vertical lines on smartphones and robots). For certain applications, the
remote cloud platform need not even be involved - just fog/edge nodes.

operation scheme), robots can send/receive messages to/from

each other and humans (messaging cooperation scheme), and

robots can recognize collective activities of multiple humans

(a group activity recognition cooperation scheme) and react to

this. The three example schemes mentioned here are discussed

in detail in the next section.

III. PROTOTYPE OF COOPERATION SCHEMES

A. Multirobot-Multihuman Messaging

Messaging mechanism in any cooperative Multirobot-

Multihuman Ecosystems would be an essential components of

such systems. In the proposed architecture, both p2p and cen-

tralized messaging can be used depending on the availability of

communication technology on the edge/fog devices. We have

used WiFi-Direct as p2p communication technology. Mahmud

et al. [11] categorizes nodal collaboration in fog computing

into cluster, p2p and Master-Slave collaboration. In context

of fog/edge nodes messaging, we have used Firebase Cloud

Messaging (FCM)1 which can be used in both p2p and cluster

messaging. Although there have been messaging tools [19]

and protocols [8], still most of the non-ROS (Robot Operating

System) robots suffers from lack of standardized messaging

protocols. Firebase broadcasts messages in real-time to all the

registered devices or to a custom group. We have used JSON

format in which the receiver parses the JSON message and

responds to it accordingly. The body of the message might be

a command to the robot or a context data received from other

robots/humans.

B. Working Together Opportunistically

Localised work offloading, where a group of locally avail-

able devices form ‘device clouds’ and share resources to

collectively complete a task, has been shown to be a viable

option to complement remote cloud servers [2], [4], [10], [12],

1https://firebase.google.com/

[15]. Such device clouds are needed in scenarios where the

remote cloud is not accessible due to connectivity issues, not

practical due to latency issues, or not feasible due to the partic-

ular task requiring specialised capabilities such as sensing. In

previous work, Fernando et al. [4] proposed an opportunistic

offloading model for mobile edge crowds, called ‘Honeybee’,

for forming device clouds on the fly. In the Honeybee model,

mobile devices can share work using p2p connectivity, and

extensive experiments showed considerable performance gains

and energy savings. Honeybee uses an adaptation of work

stealing to load balance a set of independent jobs among

heterogeneous mobile nodes, without any information about

the resourcefulness of the participating nodes a priori. In

Honeybee, the ‘delegator’ device is the originating node of

the task to be completed, which is decomposed to a pool

of independent jobs. The delegator shares the processing of

these jobs with willing ‘worker’ devices in the vicinity, while

also doing a portion of the jobs by itself. The Honeybee

model also contains fault-tolerance methods to handle un-

foreseen disconnections, as well as mechanisms to exploit

random resource node encounters, and uses Wi-Fi Direct for

p2p communication among the participating nodes. In this

work, we extended the existing Honeybee model and API2 to

accommodate robot-machine opportunistic collaboration, and

to support a dynamic job pool where the delegator is adding

new jobs in parallel with the job stealing and processing, as

illustrated in Figure 3. Here, the robot has the role of the

delegator, and enlists mobile devices in the vicinity to share

some of its workload.

Fig. 3. On the left: A robot continuously taking photographs of people passing
by, and sharing the workload of processing the photographs with nearby
devices of X, Y and Z. On the right: Proof of concept prototype with the
Temi robot continuously taking photographs and collaboratively processing
them with two tablets

For example, consider a scenario where a child has been

reported missing in a busy shopping mall, and robots are

assisting with the search. As shown in the leftmost illustration

in Figure 3, a robot is standing near to where the child was last

seen, and continuously taking photographs of people passing

by. The photographs are then run through image processing

algorithms to check if the missing child appears in any one of

them. To ease the robot’s workload, and to speedup the image

detection, it enlists three other worker nodes in the vicinity;

2https://github.com/niroshini/honeybee/tree/robot



Fig. 4. Load balancing work among the robot and unknown heterogeneous
worker nodes. Work stealing enables efficient sharing of workload among
the collaborating devices, even if the current capacity of the devices is
heterogeneous, subject to change, and unknown a priori.

nodes X and Z, which are two smart phones belonging to two

people having a coffee in the food court nearby, and node

Y, which is a fog computing server installed by the shopping

mall. The rightmost image in Figure 3 shows a photograph

of our extended Honeybee proof-of-concept application being

executed on a Temi robot and two Android tablets. The

application was implemented using the extended Honeybee

API, where the task is to take photographs and to detect

human faces in each photograph taken. Here, the Temi robot

as the delegator, is continuously creating ‘jobs’ that are added

to the job pool by taking photographs until a condition is

met (e.g. keep taking photographs every 1 second for 10

minutes, or until 100 photographs are taken, or until a user

notifies the application to stop). At the same time, the robot

is also continuously looking for available worker devices. In

the photograph showing our proof of concept prototype in

Figure 3, there are two Android tablets who take the role

of workers. The two tablets connect to the robot and start

‘stealing’ jobs from the robot’s job pool, while at the same

time, the robot is also consuming jobs from the same pool.

This process is further illustrated in Figure 4 where a robot and

three workers X, Y and Z are working together. Here, at time

t1, the robot, and the workers X and Z are busy consuming

their local job lists, while the robot is also adding more jobs

(e.g., photographs of passers-by) to the pool. However, Y

being the strongest node, has exhausted its stolen jobs. Instead

of idling, Y steals jobs from the robot’s job pool. At time

t2, the robot has stopped taking photographs, and has also

exhausted its job pool. Therefore, the robot then steals jobs

from X, as X still has jobs to spare. Finally, at time t3, all

jobs have been completed and returned to the originating robot.

In this way, load-balancing is automatic across heterogeneous

devices, and the idle time of the participating nodes can

be minimized despite the robot (delegator) not knowing the

capabilities of the workers.

C. Group Activity Recognition by Robots

Recognizing human activities has been one of the chal-

lenging topics in context-aware computing. Scaling up from
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individuals to groups, that is, Group Activity Recognition

(GAR), has attracted significant attention recently. In previ-

ous work, Abkenar et al. [1] proposed a framework named,

GroupSense for recognizing physical group activities using

multi-device embedded sensing and IoT devices. In this work

we extended GroupSense to be able to interact with Temi

robots using Firebase messaging. As can be seen in Figure

5, GroupSense consists of three layers. Sensing layer collects

sensor data and context information using mobile IoT devices

which they are called observers. Sensing layer transfers the

data to the individual activity recognition layer in order to

recognize individual activities using pre-trained models. Then

the group activity recognition layer which consists of a set of

rule-based queries and a rule-based reasoning engine on the

master device, infers a group activity. Master Device receives

the detected individual’s activities from the observers and

context information to be analyzed.

Figure 6 illustrates our prototype implementation of recog-

nizing group activities by the Temi robot using GroupSense.

In this implementation, the master device can be an Android

smart device or a Temi robot which receives data messages

from observers via Firebase. The Rule-based engine on Temi

detects the group activities that have taken place, and can

activate a service to that group accordingly. In the proposed

solution the GroupSense can be employed to brings more

context awareness to edge-fog nodes.
Listing 1. A Multihuman-Multirobot Message Protocol Examle



{
” msgBui lde r ” : ” p i x e l 3 ” ,

” msgBuildTime ” : ” 19 / 11 / 2019 17 : 45 : 16 ” ,

” msgSender ” : ” p i x e l 3 ” ,

” msfSentTime ” : ”” ,

” msgRece iver ” : ”” ,

” msgExiryTime ” : ”” ,

” dev iceType ” : ”” ,

” l o c a t i o n : ”” ,

” c o n t e n t ” : [

{
” t y p e ” : ”command” ,

” body ” : ” goToKi tchen ”

} ,

{
” t y p e ” : ” c o n t e x t D a t a ” ,

” body ” : [

{ ”name” : ” l i g h t ” , ” v a l u e ” : ” 30 ”} ,

{ ”name” : ” t e m p r a t u r e ” , ” v a l u e ” : ” 22 ”}
]

} ,

]

}

Tour Guide Scenario Using Robots. In section III-C, we

demonstrated our prototype in which a robot can communicate

with other context-aware frameworks (GroupSense). Let us

assume a group of tourists who are visiting a museum; as

part of their tour program, it is required to obtain more details

about the tourists’ activities. Robots (one or more) can play a

tour guide role, locate that group and provide more informa-

tion. Also, the robots can take the group to different places

of museum; e.g., two or three robots could cooperatively

“herd” the people through the different parts of the museum

while tracking their collective movements and progress (via

GroupSense). Moreover, if a person leaves a group, it can be

detected by the nearby robot and can be tracked by another

robot in the museum. The extended HoneyBee (section III-B)

can be exploited to support opportunistic offloading in our

Multirobot-Multihuman cooperative environment. Social and

privacy concerns always have been a serious challenge in

those IoT systems in which sensor data are collected from

individuals. However, it is not our focus in this research work.

IV. CONCLUSION

Cloud robotics suffer from technical challenges such as

computation, communication, and security [6]. Singh et
al. [16] discussed the major challenges of decentralized multi-

agent systems in the context of IoT. Gudi et al. [5] showed

the effectiveness of using Fog computing in Human-Robot

interaction by comparing latency. But in this work-in-progress,

we envision IoT devices, wearables and robots cooperating and

working together in an IoT ecosystem. We have described

prototype implementations of three cooperation schemes -

which are based on integrating and customizing existing

edge-cloud platforms for messaging, work sharing and group

activity recognition. Future work will integrate more schemes

and provide a generalized distributed middleware to support

a wide range of such multirobot-multihuman cooperation and

explore their applications. Also, an ontology can be employed

to further improve our context information sharing [3].
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