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Abstract—Evolving amendments of 802.11 standards feature
a large set of physical and MAC layer control parameters
to support the increasing communication objectives spanning
application requirements and network dynamics. The significant
growth and penetration of various devices come along with a
tremendous increase in the number of applications supporting
various domains and services which will impose a never-before-
seen burden on wireless networks. The challenge however, is that
each scenario requires a different wireless protocol functionality
and parameter setting to optimally determine how to tune these
functionalities and parameters to adapt to varying network
scenarios. The traditional trial-error approach of manual tuning
of parameters is not just becoming difficult to repeat but also
sub-optimal for different networking scenarios. In this paper,
we describe how we can leverage a deep reinforcement learning
framework to be trained to learn the relation between different
parameters in the physical and MAC layer and show that how
our learning-based approach could help us in getting insights
about protocol design optimization task.

Index Terms—MAC Protocol, Deep Reinforcement Learning,
Wireless Networks

I. INTRODUCTION

With the advent of microprocessors, the number of con-
nected wireless devices continues to grow at a steady pace. A
very recent forecast from International Data Corporation (IDC)
estimates that there will be 41.6 billion connected wireless
devices in 2025 [2]. This significant growth and penetration
of various devices come along with a tremendous increase
in the number of applications supporting various domains and
services. Hence, it is widely accepted that this impressive scale
of devices and applications will impose a never-before-seen
burden on wireless networks. To cope with the emergence
of various device characteristics and application requirements,
complex and custom design of high performance networking
protocols is needed. Networking protocols such as WiFi and
Bluetooth, traditionally, are manually designed as "general-
purpose” protocols for different network characteristics and
scenarios through long-time and hard-work human efforts.
However, while this approach is increasingly becoming dif-
ficult to repeat, these designed protocols are deeply rooted in
inflexible, cradle-to-grave designs, and thus unable to address
the demands of different network characteristics and scenarios.
Therefore, it has now become crucial to re-engineer protocols
designing process and shift toward a vision of an intelligent
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designing process that adapts and optimizes network protocols
under various environment contexts such as device character-
istics, application requirements, user objectives, and network
conditions. In case of only physical layer, no single physical-
layer design can work well under all scenarios, hence the
natural response of the standards bodies has been to specify
designs with a large number of control parameters ranging
from modulation order and coding rate, to OFDM sub-carrier
spacing and cyclic prefix length, to transmit power, etc., such
that a medium can be tuned to the specific deployment scenario
in the field. Each of these parameters has numerous settings
leading to a large number of choices, and it becomes extremely
difficult for domain experts to design a control algorithm that
chooses the right algorithm depending on the scenario and the
varying network conditions.

Deep learning (DL) techniques have recently been applied
to various protocol and radio optimization tasks including
routing [5], congestion control [11] and MAC protocol [12],
just to name a few. Applying DL techniques can reduce manual
human-based efforts to tune protocol parameters. Joseph et
al. [6] show how to design a DL-based control algorithm
to jointly control two parameters namely modulation order
and transmit power scaling. In their work, they show that
applying DL technique may work well to control the two
aforementioned parameters, but depending on the context (dif-
ferent devices, throughput targets, etc.,) it becomes extremely
complicated to get enough insights about how black-box DL
technique works, although they only tune two parameters from
a large set of available control parameters. Such observations
reveal why it is extremely hard for domain experts to manually
design control algorithms that could capture optimal solution
for each scenario.

To the best of our knowledge, the current efforts in applying
DL to enhance protocol performance focus only on funing or
controlling protocol parameters. Table I points to a few of the
recent DL-based approaches proposed in different layers of
the network stack. However, we believe that optimizing a pro-
tocol performance goes beyond individual protocol parameter
tuning. In this paper, we propose a novel Deep Reinforcement
Learning (DRL)-based framework, that is not only capable
of tuning protocol parameters, but also optimizing the main
functionalities for each protocol. In the proposed framework, a
protocol is decoupled into a set of parametric modules as DRL
inputs, each representing a main protocol functionality referred



TABLE I: Example approaches of using DL for communication protocol parameter tuning in different network stack layers

Network Function/ s Learning Control
’ Layer ‘ Sub-Layer Objective Algorithm Model Input Parameter ‘ Ref. ‘
Data Link MAC Maximizing the sum throughput ResNet State of Channel Transmition of a packet [12]
Allocation fairness
Maximizing the minimum allocated
Network Routing bandwidth between possible source Graph—Basgd Graph of network topology Each router locally controls [5]
L S Deep Learning which output interface to be used
destination pairs in the network
T ot Congestion Max1m12:ng thzoo(;/e;':lll utility l]j)s?nL States of C " ind (1
ranspo Control &~ goodput, & all active TCP flows ongestion window
delay, a-fairness) LSTM

as Building Blocks (BBs). This modularization technique helps
to better understand the generated protocols and optimize the
protocol design and analyze them in a systematic fashion.
We feed into DRL agent, a high-level specification for a
scenario, including the communication objective, the protocol
BBs, measurements, and network configuration. The DRL
agent then is able to learn what protocol blocks (components)
are important to be included or to be neglected in the protocol
design. Therefore, this framework could provide a tool for
protocol designers to re-think the blocks used in a designed
protocol. In addition, our framework can be utilized as a multi-
variant optimization tool that helps in alleviating the current
protocol design process. When designing a protocol, domain
experts should keep different application requirements, user
objectives, device constraint and network conditions in mind.
Considering these parameters all together is a daunting task
as discussed in [6].

As a case study, we narrow down our focus to propose a
DRL-based framework for designing MAC protocols hereafter
DeepMAC. In DeepMAC framework, MAC protocols are de-
coupled into a set of parametric modules, each representing a
main functionality across popular flavors of 802.11 WLANSs
(IEEE 802.11 a/b/g/n/ac amendments). As we showcase in
Section III-B, the DRL agent learns that when the load of the
network is very low, it could eliminate control and sensing
mechanisms (ACK and Carrier Sensing blocks, respectively)
to increase the throughput of the channel by reducing the
bandwidth overhead and waiting time introduced in these
mechanisms. Therefore, this framework could serve as a tool
for protocol designers to re-think the blocks used in a designed
protocol. In addition, our framework could be utilized as a
multi-variant optimization tool that helps in alleviating the
current protocol design process. When designing a protocol,
domain experts should keep different application requirements,
user objectives, device constraint and network conditions in
mind. Considering these parameters all together is a daunting
task. By using this framework, domain experts provide the
required specifications (objective) for a specific scenario as
DRL input and could identify/capture the role that each proto-
col component (block) plays in varying scenarios for different
objectives. It could also help domain experts to get insights
about the relation between different protocol components for
different objectives, although such components may not have
a direct dependency/relation on each other if considered alone.
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Fig. 2: Realizing IEEE 802.11 DCF using coarse-grained MAC
blocks and their corresponding parameters

II. DEEPMAC FRAMEWORK

MAC protocols are required to be designed with a rich set of
requirements to satisfy the needs of the overlaying applications
(e.g., Augmented/ Virtual Reality, video conferencing) and
scenarios. Due to the limited channel resources and a large
number of devices accessing the channel, it is desirable that
the MAC protocol minimizes the time wasted due to collisions
or exchange of control messages.

In our previous work [8], we proposed a Reinforcement
Learning (RL)-based framework to optimize the MAC protocol
using a simple set of functionalities. However, we discovered



that the RL-based approach may face instability since the agent
has to find a balance between exploration and exploitation.
In [7], [9] we provided a complete overview of the whole
protocol design framework using machine learning techniques.
We described the key design considerations for the learning
agent (e.g., centralized, distributed or hybrid agents) and
explained how these agents should communicate with one
another. We then expanded our framework [10] to use deep
architecture along with new set of building blocks. In this
work, we use the same framework as [10] but with the
objective to get more insights about protocol design through
a deeper analysis of the DRL agent. Figure 1 illustrates
DeepMAC framework for optimizing the design of wireless
MAC protocols. We describe the key modules of this frame-
work in the following.

A. Building Blocks and Logic Controller

Building blocks A network protocol is structured into
several layers. Each layer is broken into a set of blocks with
its own specific functionality. As described, building blocks
are a set of separated parametric modular components, each
of which is in charge of one (or several) specific well-defined
functionality [1], [4]. The combination of different building
blocks and the interactions between them determine the overall
behavior of a network protocol for a given environment. In
our framework, we have extracted a set of MAC protocol
blocks from Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications [3] which includes
MAC functionalities across all 802.11 amendments. Figure 1
shows the extracted blocks and instances of their dependencies
captured based on non-Directional Multi-Gigabit (non-DMG)
MAC architecture.

Once the blocks and their interactions are established, the
network protocol could be represented as a graph, where the
parameterized blocks are the vertices and the edges connecting
the blocks represent the transition between them. Conducting
the operations of individual blocks in an appropriate order,
we are able to implement the protocol mechanisms. As an
example, Figure 2 shows how IEEE 802.11 DCF is realized
using the extracted coarse-grained blocks. The network proto-
col is operated under a variety of conditions and environments,
which trigger events causing the protocol to act. Therefore,
when describing a building block, we should also capture the
dynamic behavior of a protocol caused by different events.
Building blocks should react to incoming events, conducting
their main operation while interacting with each other. The dy-
namic behavior of a BB could be estimated if the input events
are known since the behavior of the BBs is deterministic. To
be exact, we could describe a building block and its dynamic
behavior as the following tuple:

Block .:< E,P,S,F,D > (1)

Where F is the Event that triggers the block, P is a Parameter
inside the block that could be adjusted, S is the internal State
of the block, F' is the main Function that is executed in the
block, and D represents the possible internal Dependencies

between a block with other blocks. In our framework, the logic
controller is responsible to check the sanity of a generated pro-
tocol. To show an example using tuple 1, lets consider Backoff
mechanism as a single building block. A tuple that describes
this block could be: <ACK_timeout, CW, Freeze/Countdown,
Avoid Collision, ACK>.

Logic Controller In each iteration, DeepMAC agent takes
a numerical vector of building blocks, objective and network
measurement as input as described in more detail later, and
outputs a set of selected blocks that logic controller uses
to generate the protocol. In Figure 2 example, if DeepMAC
agent decides that for the underlying scenario carrier sensing
mechanism (framed by red color) should be excluded from
the design, then it is the logic controller’s responsibility
to rewire a new version of DCF without carrier sensing.
In addition, some functional blocks are dependent on each
other. The logic controller is also in charge of checking
the block execution sequences, their interdependencies, and
interaction rules between blocks to ensure logically correct
protocol design. We extracted the interdependencies between
blocks from PHY and MAC specification [3] and incorporated
them into the logic controller using if-then-else rules. In our
design, all dependencies are uni-directional meaning if Block
A depends on Block B it only shows restrictions of A — B but
not B — A. In the Backoff example, this mechanism is strongly
dependent on ACK block; if there is no ACK, there will be no
ACK timeout to signal frame retransmission. However, ACK
mechanism can be used without Backoff. Sometimes blocks
are weakly dependent on each other (see Figure 1).

B. DeepMAC As A Reinforcement Learning Problem

DeepMAC uses RL to learn the best set of protocol blocks
for different scenarios. In DeepMAC, we consider a centralized
agent for the design of 802.11 MAC protocols. This centralized
agent, in practice, can be based on a single supernode (e.g., the
Access Point) that periodically updates its model. Meaning it
decides the selected set of MAC layer blocks and parameters
to be used with all other nodes in the network. The reward
function can be any objective function that is required to be
optimized. The reward function in DeepMAC, is the average
throughput of the link. The state of the agent is a vector of
numerical representation of the set of the building blocks, and
a history with a fixed length of the average link throughput
values which are used as the input to DeepMAC agent. In this
set, a value except 0 indicates that the corresponding block is
included in the protocol design (each of the elements in the
input vector can have different values which indicate what
parameter or algorithm/method/mechanism should be used
in the design), while 0 means the component is completely
excluded from the design. The action in this framework, is the
act of choosing the next state among all the available states
from the current state such that the reward is maximized.

DRL agent architecture The neural network we have
adopted is equipped with three hidden layers and an output
layer. We find through experiments that this simple archi-
tecture can provide satisfactory performance, and increasing



the complexity of the neural network does not contribute to
performance improvements. The data is flattened before going
through the hidden layers which utilize Relu as the activation
function. The output layer consists of multiple neurons, each
producing the Q-value of the corresponding action.

C. Building Block Design

Following the modular design principle in context of pro-
tocol design, two main branches exist on how to divide
protocols and define the components: FSM and Data Flow.
FSMs are graphical formalism that have become widely used
in specifications of embedded and reactive systems. Their
main drawback is that even for a moderate complicated
system, they result in large diagrams. In order to support the
dynamic design of the MAC protocols and the flexibility in
selecting the optimum set of building blocks (components)
by the RL agent in designing efficient protocols, capturing
the interactions and dependencies between components is of
crucial importance. Therefore, a desirable solution would be a
flexible modular design that captures all possible interactions,
dependencies, and relations of all possible design options. Yet
among the main challenges to develop flexible and reusable set
of building blocks is how to decide on the level of granularity
of each block, and to evaluate different block granularity
levels of the same function. One approach could be a brute-
force in which the interactions, relations, dependencies, and
conflicts between every couple of build blocks is defined by
design experts. However, this approach is complex and time-
consuming. Therefore, to address these issues, there should be
further research on exploring how to reduce this complexity
through approximation techniques, as well as whether this
process could be automated.

D. Reward Function Design

Another important design decision is how to design and
optimize the reward function. In a global optimization, both
centralized and distributed agents work towards optimizing
the same goal, while in local optimization, distributed nodes
can optimize their own goals. Each of these approaches have
their own challenges. Different applications have different per-
formance requirements. Therefore, defining the "right" global
optimization objective is not straightforward. Optimizing the
objective function relies on the assumptions that all end-
hosts employ the same prescribed protocol. Thus, there is a
limited support for network heterogeneity, as well as, fulfilling
different applications’ objectives. On the other hand, each node
in a distributed optimization tries to optimize its own objective
function in which it might not converge.

III. DEEPMAC EVALUATION

Performance Metrics This section presents the numerical
results and evaluation of DeepMAC regarding block selection
by the agent under different scenarios. Before we delve into the
experimental evaluation of our analysis, we clarify that we run
the pre-trained DRL agent for every scenario. After training
our DRL agent on a MacBook Pro with 2.9 GHz Intel Core

i5 with 16 GB of memory, the agent took on average 1 ms to
execute [10]. We assume that the supernode (centralized agent)
uses hardware accelerators which can reduce the execution
time by an order of magnitude and comfortably meet the
time constraint requirements. We have not considered the
convergence time of the DRL agent as a performance metric
to evaluate since we have already shown the convergence of
the agent in [8].

A. Simulation Configuration

We consider an ad-hoc network where individual nodes
communicate with each other directly. To carry out our simu-
lations, we use our own C++ event-driven simulator. Table III
includes the blocks and their corresponding algorithm, mech-
anism, or parameters that are used by DeepMAC framework
for the experiments. Without loss of generality, we assume
that each node has always a packet to transmit, and the packet
generation rate follows a Poisson process. In our experiments,
we consider eight different networking scenarios described in
Table IV.

B. Selected Blocks in Different Scenarios

The selected blocks by the agent are shown in Table V.
In the following, we divide our observations about DeepMAC
behavior in two parts and discuss each in more detail.

Low load with/without noise In scenarios with the low
load when the noise is absent ( Scenario #1) no control
packet such as ACK or RTS/CTS is selected by the agent.
This is justifiable. Even though the control packets are much
smaller than the data packets, the time spent for control packet
transmission is not negligible.

Therefore, when the network is under-saturated, and the
number of competing stations are small, the DRL agent avoids
control packet overheads to maximize the throughput. Intu-
itively, to reduce the relative percentage of the time loss due to
packet overhead and MAC coordination, frame aggregation is
also selected by the agent. While for the same scenario, when
the noise is present, the agent adds Career Sensing (CS) block.
This could be because the agent learns such a mechanism can
be useful when the throughput drops. For scenarios with the
average level of noise (Scenario #3,4) except common ACK
mechanism selection, there is no obvious pattern.

High and saturated load with/without noise We discuss
the following observations for this set of scenarios: 1) The
first observation for Scenario #5 to 8 is the ACK mechanism
selection by the agent. Intuitively, this could be because the
agent learns such a mechanism can contribute to prevent more
number of collisions and corresponding retransmissions to
enhance the throughput. 2) When comparing scenario 5 with
6, we observe that the agent uses the Fragmentation block.
The size of the sub-frames in practice plays an important
factor that can influence network throughput performance for
a given channel condition. The larger fragments, possibly the
higher Packet Error Rate (PER) which would cause throughput
drop due to a large number of retransmissions. 3) When the
network is saturated, the agent selects protection mechanisms



TABLE II: Simulation configuration

TABLE III: Blocks and their associated algorithm/mechanism/parameter

Parameters \ Values Building Block Algorithm/Parameter Default
Frame Size 1500Bytes (Default) Backoff BEB, EIED BEB
Time Slot 0.2 msec ACK No ACK, ACK ACK
Channel Capacity 10 Mbps Fragmentation (Fr) Packet Size =200, 500, 1000 bytes | Packet Size = 1500 bytes
Learning Rate (o) 1 Aggregation (Ag) Packet Size =2000 bytes Packet Size =1500 bytes
History Length (H¢) 15 RTS/CTS Enabled/Disabled N/A
Discount Factor (v) 0.8 CwW 0-1023 CWiin = 15
Carrier Sense (CS) Enabled/Disabled N/A
Data Transmission Rate (DR) 6/9/12/24/36/48/54 (Mbps) 54 Mbps

TABLE IV: Simulation scenarios

TABLE V: Blocks selected by DeepMAC agent

Scenario | Nodes Load Noise

# | DR |BEB|EIEB| CS | CW | No |[ACK RTS/
1 5 Low No ACK CTS
2 S Low | Ye 5 [ o O B3
> 1> | Average | T 2| || = ] ]
e - 3 || £ £
5 20 High No
6 20 High Yes 4+ |EsC) [ L]
7 50 Saturated No 5 i L]
8 50 Saturated | Yes 6 |24 e ] ] Selected BB
7|86 COE £ ) W befauit
8 24 El l:l I:l Value BB

such as ACK and RTS/CTS along with smaller frame sizes and
lower bitrate. However, it is not clearly obvious if the smaller
frames contribute much to enhance the throughput. This is
due to the fact that small fragments with the extra introduced
overhead could also decrease the throughput performance. The
varying results reveal why it is extremely hard for an algorithm
based on manually-specified rules and thresholds to capture
the optimal solution, and why it is instead better to use such
a deep learning-based tool to optimize the design of control
algorithms and get insights about what functionality is useful
under what scenario.

IV. CONCLUSION

In this paper, we proposed and evaluated a framework
for MAC protocol design optimization using a DRL-based
approach. We have shown that by observing the decisions of
the DeepMAC agent and using a method such as input modu-
larization (protocol decomposition into building blocks), it is
possible to extract information about the associated component
selection by the agent. We envision this method could offer
useful insights, especially to protocol designers to build deeper
perception about the significance of an individual or a set
of protocol blocks (functions) under different scenarios. This
could help them focusing on enhancements/ modifications of
important components than focusing on the whole protocol
performance in order to enhance the protocol design and
performance.
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