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Abstract—Smart connected homes are integrated with hetero-
geneous Internet-connected devices interacting with the physical
environment and human users. While they have become an
established research area, there is no common understanding
of what composes such a pervasive environment making it
challenging to perform a scientific analysis of the domain. This
is especially evident when it comes to discourse about privacy
threats. Recognizing this, we aim to describe a generic smart
connected home, including the data it deals with in a novel
privacy-centered system model. Such is done using concepts
borrowed from the theory of Contextual Integrity. Furthermore,
we represent privacy threats formally using the proposed model.
To illustrate the usage of the model, we apply it to the design of
an ambient-assisted living use-case and demonstrate how it can
be used for identifying and analyzing the privacy threats directed
to smart connected homes.

Index Terms—Internet of Things, system model, privacy, pri-
vacy threats, home data, smart home, smart living.

I. INTRODUCTION

The smart connected home is a System of Systems (SoS)
involving heterogeneous Internet of Things (IoT) devices en-
capsulating both information and physical spaces. Along with
the conveniences and efficiencies brought by these Internet-
connected devices, e.g., by smart thermostats, privacy threats
in smart homes are resulting in a potential for abuse, misuse,
and appropriation of user data.

Despite considerable theoretical and practical contributions
from the scholarly and industry communities a standardized
representation that accounts for the smart home entities and
its data flows is missing. Such a system model is needed for
the systematic identification of privacy threats affecting smart
homes and as a precursor for privacy risk analysis [1].

To address this need, we present a privacy-centered system
model for smart connected homes. This model captures the
dynamics of a smart connected home, and the properties
and requirements for modeling privacy. In doing so, we
leverage Nissenbaum’s theory of Contextual Integrity (CI) [2].
CI is based on the premise that privacy is defined as the
appropriateness of information flows. Inappropriate informa-
tion flows are those that violate context-specific informational
norms, a subclass of general norms governing respective social
contexts. The model usefulness is illustrated by applying it
to an ambient-assisted living use-case, and its effectiveness
is demonstrated by identifying and exemplifying potential
privacy threats occurring in this system.

The remainder of this paper is organized as follows. In
Section II we provide a review of related work. The privacy-
centered system model is presented in Section III. Next, we
identify how the proposed model can be used for privacy
threat analysis in Section IV. Then, in Section V we for-
mally describe an ambient-assisted living setup, including
the identification of its privacy threats. Finally, in Section
VI, conclusions and possible directions for future work are
outlined.

II. RELATED WORK

Barth et al. [3] formalize some aspects of CI using Linear
Temporal Logic. While this framework allows for the precise
specification of privacy laws, it is mostly suited for compliance
more than on the identification of privacy threats.

Ni et al. [4] introduce a group of Privacy-Aware Role Base
Access Control (P-RBAC) models allowing for expressing and
reasoning about privacy policies. While the models proposed
are generic, they are concentrated on permission assignments
and conflict detection.

Omoronyia et al. [5] presented a privacy framework that
supports the selective disclosure of personal information in
software applications. While this framework can be applied to
smart connected homes it requires the explicit representation
of states and transitions making it challenging to model a
realistic smart home scenario.

Moshin et al. [6] propose a risk analysis framework to
formally analyze risks using probabilistic model checking.
While this framework includes a system model and is used
for similar purposes to ours, it is focused on security threats.

Although this is only a brief account of the relevant con-
tributions, we observe a shortage of privacy models tuned
for smart connected homes. It is also evident that some
models, while providing a solid theoretical foundation they
are challenging to apply in use-cases involving commercial
devices. Part of this problem is the lack of a standard model
that describes a smart connected home. This is the research
gap that we seek to address in this paper.

III. PRIVACY-CENTERED SYSTEM MODEL

Based on our previous work, e.g., [7], about the smart con-
nected home, and using the CI as an overarching framework,
an IoT-based smart connected home setup, S, can formally be



described as a tuple (H,N,U, L,D, P ) where H: house, N :
nodes, U : users, L: links, D: data, and P : policy.

• H is the physical building which the residents inhabit.
• N is a set of physical components of the smart connected

home space. Effectively, N = {C ∪M ∪ B} where C:
connected devices, M : mobile devices, and B: backends.

• U is a set of human users interacting with the smart
connected home space.

• L is a set of communication channels between the nodes
and users.

• D is a set of data being collected and processed by the
smart connected home setup.

• P is a set of rules describing how data are transmitted
between the different entities.

A. House

House represents the physical building where the residents
live and perform their daily activities, e.g., cooking, cleaning,
sleeping, etc.

From a privacy modeling perspective, we can define H =
{z1, z2, . . . zn}, where zi ∈ H . zi represents a zone, i.e., a
specific space (area), e.g., the living room, inside the home.

B. Nodes

• Connected devices: Hardware units, e.g., domestic
appliances, that can sense, actuate, process data,
and communicate. These devices differ by their
purpose and capabilities but tend to be static and
located in a fixed zone in H . A connected home
device can implement several core capabilities ⊆
{connectivity, sensing, actuating, interaction, storage,
processing, gateway, programming, remote−admin,
. . .}. At a minimum, they incorporate one transducer
(sensor or actuator) for interacting directly with the
physical world; and involve at least one network interface
(e.g., Zigbee) [8]. A set of connected devices is denoted
as: C = {c1, c2, . . . cn}, where ci ∈ C.

• Mobile devices: Portable devices such as smartphones,
tablets, and wearables that are often used to configure and
manage the smart connected home system. These have
similar capabilities as C but are in addition mobile. A set
of mobile devices is denoted as: M = {m1,m2, . . . mn},
where mi ∈M .

• Backends: Infrastructure, often managed by a third-party
vendor, that stores and processes data on behalf of
connected devices and users. We distinguish between
two main backend types ⊂ {edge, cloud}, with edge
(e.g., dedicated gateways/hubs) having the storage and
processing performed inside H , and cloud outside of H .
A set of backends is denoted as: B = {b1, b2, . . . bn},
where bi ∈ B.

C. Users

Users are the stakeholders that utilize, enable, or maintain
the services provided by nodes. Excluding the data attacker,

from a privacy standpoint, there are three role types in an IoT
system: data subject, data controller, and data user [9].

Data subjects are the human individuals that can be person-
ally identified through the data in question. Typically, this is
the device owner but may also include other family members
and guests that interact with the smart connected home [10]
through M and sometimes directly via a physical interface
offered by C. Data controllers, e.g., a cloud service provider,
are responsible for B, and often are involved in collecting
and processing data on behalf of data subjects. Data users,
are frequently the data subject, but can also include, e.g.,
employees of the data controller, that access the released data.

D. Links

A smart connected home may use a variety of network
protocols ranging from wired/wireless, short-range/long-range,
and IP-based/non-IP based. We use the term link to represent
a communication channel.

Links are associated to nodes and users, via a mapping
function, to form a graph with (N ∪U ) representing vertices,
and L representing edges.

Essentially, this graph indicates the possible paths over
which information between subjects, senders, and recipients
can be exchanged.

E. Data

Data represent the data attributes that are collected/pro-
cessed by a smart connected home configuration during system
setup and/or operation.

Formally, this can be represented as a set of tuples
(di, ds, dp, dt) where di: data item, ds: data subject, dp:
processing purpose, and dt: retention time.
di represents specific attributes that the system is col-

lecting/processing. This ranges from specific granular data
items such as the data subject’s "weight" to more generic
data categories such as "usage" information depending on the
device type [10].
ds represents the data subject. This can be a human user

in particular to represent cases involving personal data. It can
also include "system" representing nodes, such as connected
devices, that may generate data automatically.
dp indicates the purpose for collecting/processing di, e.g.,

"marketing," "user authentication," "billing," etc.
dt describes the general condition for storing di with pos-

sible values ∈ {indefinite, purpose, date} with: indefinite
indicating there is no time constraint for the deletion of the
data; purpose indicating that the data has to be deleted after
the completion of the corresponding purpose, i.e., after dp
is attained; and date indicating the actual date/time for the
deletion of di.

F. Policy

Policy represents the rules (norms) pertaining as to how data
are transferred between the different entities.

Formally, this can be represented as a set of tuples
(lgi, dpi, s, r, c) where lgi: link group identifier, dpi: data



permissions, s: sender ∈ (N ∪ U), r: recipient ∈ (N ∪ U),
and c: condition for transmission specifying when the data are
transferred to the recipient(s). To c we also include null (∅)
condition signifying that the transmission link is always active.
lgi represents a link group identifier, lgi ∈ L. This can refer

to a group e.g., lHAN | lHAN = {doorbell, speaker, lock}
or otherwise a single logical channel e.g., doorbell_speaker.
This especially allows for scalability of the model.
dpi is a set of pairs (di, op) specifying authorized operations

⊆ {read,write, . . .} that can be performed on di by r.
For c, we adopt Ni et al. [4] notation where c consists of a

conjunction (∧) of context variables as exemplified below:
• Time, domain={9:00–17:00}; it represents different tem-

poral periods.
• Date, domain={20190101–2020101}; it represents a

range of dates.
• Location, domain={zone ∈ H , city, state/country}; it

represents the place where the sender has to be located.
Other examples could be for instance: TransmissionFrequency,
OwnerInform, OwnerConsent, etc. All links have a corre-
sponding rule that is represented in the policy.

IV. PRIVACY THREAT IDENTIFICATION

For identifying privacy threats we leverage Ziegeldorf et al.
[1] enumeration of IoT privacy threats. However, we formalize
the threats and contextualize them using the proposed system
model introduced in Section III. Also, we present a set of
primitives to help express the privacy threats:

– Φds

di
=⇒ returns true if di is an explicit identifier,

e.g., name, biometric identifier, or a quasi-identifier, e.g.,
birth date and gender, that can be used to identify ds.

– θds

di
=⇒ returns true if di has location information

that can be used to identify ds or his/her household.
– γn =⇒ returns true if a system identifier, e.g., MAC

address, or a quasi-identifier, e.g., power and time, are
transmitted by n allowing for its identification.

– permsudi
=⇒ returns the set of authorized operations,

op, permitted on di for u.
– readlidi

=⇒ di is received over li. This operation results
in the recipient learning about di.

– writelidi
=⇒ di is sent over li. This operation results in

storage of di.
Identification: This characterizes the threat of linking a

persistent identifier, e.g., name, address, and age, with a data
subject and thus revealing the identity of the individual.

Formally, identify def
= ∀p ∈ P , ∃ (dpi <> ∅) ∧ (Φds

dpi.di
=

true).
Localization and tracking: This allows for the recording

of a person’s location and thus track movement.
Formally, tracking def

= ∀p ∈ P , ∃ (dpi <> ∅) ∧ (θds

dpi.di
=

true).
Profiling: This represents the threat of collecting and corre-

lating information about individual activities to generate new
information from the original data.

Formally, profiling def
= ∃ (l ∈ L) ∧ (Φds

di
= true) ∧

writeldi
.

Linkage: This consists in linking different separated sys-
tems such that the combination of data sources reveals infor-
mation that the subject did not disclose or intended to.

Formally, linkage def
= ∀li, le ∈ L ∧ (li <> le) ∧ (readlidi1

∧ readledi2 =⇒ readlednew
) ∧ (read /∈ permsudnew

).
Privacy-violating interaction and presentation: This

refers to exposing personally identifiable information to in-
dividuals who are not supposed to have access to it.

Formally, interaction def
= ∃ (l ∈ L) ∧ (u ∈ U ) ∧ readldi

∧
(read /∈ permsudi

).
Inventory attacks: This represents the unauthorized collec-

tion of information about the existence and characteristics of
personal things.

Formally, inventory def
= ∃ (n ∈ N) ∧ (γn = true).

Lifecycle transitions: This refers to when nodes disclose
private information during changes of control spheres in their
lifecycle.

Formally, lifecycle def
= ∃ (l ∈ L) ∧ (u ∈ U ) ∧ writeldi

∧
(write /∈ permsudi

).

V. AMBIENT-ASSISTED LIVING USE-CASE

To illustrate the usage of the proposed model, we apply it to
the setup illustrated in Figure 1. Using S=(H,N,U, L,D, P )
we describe the smart home setup:

• House, H = {house}
• Nodes, N = {doorbell, lock, speaker,manufacturer, smartphone}

C(speaker).capabilities =
{gateway, storage, processing, interaction}

B(manufacturer) = cloud

• Users, U = {owner}
• Links, L = {doorbell_speaker, lock_speaker, speaker_cloud,

cloud_smartphone, owner_smartphone, owner_speaker}
• Data, D = {(lock_status, system, lock open/close, indefinite),

(cmd, system, application command, purpose),
(video, visitor, video of guest(s), purpose),
(audio, owner, voice interaction, purpose)}

• Policy, P =

{(doorbell_speaker, {(video, {read})}, doorbell, speaker,∅),
(lock_speaker, {(lock_status, {read})}, lock, speaker,∅),
(speaker_cloud, {(audio, {read})}, speaker,manufacturer,

T ime = {8 : 00− 24 : 00} ∧ Location = {house}),
(cloud_smartphone, {(cmd, {read})}, smartphone,

manufacturer,∅),
(owner_smartphone, {(cmd, {read})}, owner, smartphone,∅),
(owner_speaker, {(audio, {read})}, owner, speaker,∅)}

In Table I, a summary of the identified privacy threats
including reasons for their occurrence is provided.

VI. CONCLUSIONS

IoT technologies deployed inside the home challenge the
long-held notion that the home is a private, protected, and inti-
mate place. To help in the systematic identification and formal
modeling of privacy threats we developed a novel privacy-
centered system model based on the theory of CI. Overall,
this also contributes towards adding more transparency about
risks emerging out of other IoT systems.



Fig. 1. Smart connected home setup consisting of three connected devices – smart speaker, video doorbell, and smartlock; mobile device – smartphone; and a
cloud endpoint. This configuration allows the homeowner the possibility to unlock a door using his or her voice as input and remotely through a smartphone.

For future work, it would be useful to evaluate the com-
pleteness of the proposed model through empirical studies,
possibly involving a combination of case studies and ex-
ploratory descriptive studies. Second, it would be beneficial to
express the system model, especially the policy, using a formal
specification language such as Z3, S4P, or Promela. This would
allow for the verification and analysis of desired functionality.
Finally, it would be valuable to develop a threat model with
vulnerabilities and attacker capabilities as an extension to
the privacy-centered model for risk analysis of the smart
connected home.
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TABLE I
SUMMARY OF THE IOT PRIVACY THREATS AND THEIR POTENTIAL OCCURRENCE IN THE USE-CASE PRESENTED IN SECTION V. FOR EACH THREAT, A

REASON IS PROVIDED JUSTIFYING WHY THE POTENTIAL THREAT MAY EXIST BASED ON THE REFERENCED FORMULA. THE SYMBOL:  INDICATES THAT
THE THREAT IS PRESENT; G# INDICATES THAT THE THREAT IS A POTENTIAL FUTURE THREAT; AND # INDICATES THAT THE THREAT DOES NOT EXIST.

Privacy threat Occurrence Reason Formula
Identification  p = owner_speaker, dpi.di = audio, ds = owner identify
Localization and tracking # No location data are collected tracking
Profiling  Audio data are sent over l = speaker_cloud profiling
Linkage  li = doorbell_speaker, le = lock_speaker, di = video, de = lock_status.

Possibly, the speaker may learn the time a user is at home linkage
Privacy-violating interaction and
presentation

# Only the owner has access to the smart home system interaction

Inventory attacks # No device fingerprint data are revealed inventory
Lifecycle transitions G# No write operations are in P , but speaker has storage capabilities lifecycle


