Deployment of APIs on Android Mobile Devices
and Microcontrollers

Sergio Laso*, Marino Linaje*, Jose Garcia-Alonso*, Juan M. Murillo* and Javier Berrocal*
*University of Extremadura
Caceres, Spain
Email:{slasom, mlinaje, jgaralo, juanmamu, jberolm}@unex.es

Abstract—The high penetration and acceptance of smart
devices has encouraged the development of IoT applications.
The increase in the capabilities of these final devices has
also led to the development of paradigms such as Fog and
Edge Computing. Through these new architectural paradigms,
developers can exploit the capabilities of the end devices to
store, process and provide services, in order to improve the
application by reducing the response time and the network
overload. Currently, most applications are developed following
a Server-Centric architecture because there are a lot of tools
facilitating their development. However, these types of tools are
not available for these emerging paradigms, which means an
extra effort for developers. This paper shows a tool that semi-
automatize the generation of applications based on the Edge
Computing paradigm, thus reducing the developers’ works and
the application of these new architectural paradigms.

Index Terms—Microservices, Android, Microcontroller, Ope-
nAPI, Edge Computing

I. INTRODUCTION

During the last few years, the capabilities of Internet-
connected devices have increased enormously. Their process-
ing and storage capacity have multiplied in order to be able
to sense and/or process more information [1]. This increase
has led to the development of the Internet of Things paradigm
[2], in which these devices are used and coordinated to make
people’s life easier.

IoT applications require devices to be almost constantly
sensing the environment, processing the gathered data and
executing some actions for adapting the environment. For these
applications to be really useful and accepted by end-users, they
have to fulfill very stringent requirements regarding response
time, location-awareness, etc. [3].

To meet these requirements, new paradigms such as Fog
Computing, Edge Computing or, even, Mobile Centric archi-
tectures [4] have arisen for deploying applications closer to the
end-user [5]. Fog Computing aims to to provide computing,
storage and networking services between end devices and
traditional cloud computing data centers. On the other hand,
Edge Computing brings computational and storage capacities
to the edge devices. Among other benefits, these paradigms
reduce the network load and dependency on the cloud envi-
ronment; improving the response time and providing better
user experience. For example, using data closer or even inside
the end device.

Currently, the predominant paradigm for deploying applica-
tions or APIs has been the Server-Centric or Cloud-Centric.

In which the data gathered by IoT devices is sent to the cloud
where it is stored and processed. Initially, that architectural
style was applied because Internet-connected devices did not
have enough capabilities for processing the gathered data [6].
It is still the most applied and used architectural style. This
is because currently there is a myriad of tools and services
facilitating the development of applications applying this style.
For instance, OpenAPI [7] allows one to generate some of the
code for both the server and the client from an application
specification. Likewise cloud environment providers such as
AWS [8] or Google [9] provide different tools.

Nevertheless, the number of tools providing support for the
application of Fog, Edge or Mobile-Centric styles is much
lower. This is because end devices or IoT devices were initially
conceived as simple clients, not as cloud environment. In
addition, in order to improve the security, they have a closed
operating system. Therefore, implementing application making
use of these paradigms require an extra effort by developers
and a higher cost for software companies.

In this paper, we present a tool that helps developers to
implement and deploy APIs on end devices, in order to
easily apply the Edge and Mobile-Centric paradigms [10].
Concretely, it allows developers to deploy an API on Android
devices and microcontrollers. To that end, common tools that
are usually used by developers when they apply a Server-
Centric paradigm have been adapted, reducing the impact
and the learning curve. The presented approach requires an
application designed with the OpenAPI specification. That
design is used for generating the scaffolding of the application
and all the communication interface required for deploying it
on end devices.

The rest of the paper is structured as follows. Section II
shows several related works. Section III explains the tool. Sub-
section III-A explains the process of deploying applications
to end devices. Section IV describes a demonstration example.
Finally, Section V details the conclusions.

II. RELATED WORK

Few commercial tools support architectural styles such as
Edge or Fog-based styles like AWS IoT Greengrass [11] or
Azure IoT Edge [12]. However, at the research level, more and
more proposals are presented fostering the use of the avail-
able specifications and resources to facilitate the development
process of any application following these paradigms. For

instance, Noura et al. propose the WoTDL2API tool, which
automatically generates a RESTful API for controlling differ-
ent IoT devices [13]. This API is generated from an OpenAPI-
based specification and using its toolchain for code generation.
The generated source code can be deployed on peripheral
devices, such as gateways, routers, etc. Nevertheless, it cannot
make use of the capabilities of end devices.

In [14], the authors present a virtualization of IoT devices
to improve response time for intelligent city applications. In
the proposal, they apply a shared use of microservices and
dynamic scaling of resources to improve the use of computing
resources and the quality of the application. In [15], the authors
also present a modular and scalable architecture based on
lightweight virtualization. The modularity provided, combined
with the orchestration provided by Docker, simplifies the
administration and enables distributed deployments, creating
a highly dynamic system. Both approaches distribute the
computing load among different layers. However, the data is
stored in a cloud layer. Besides, they do not provide tools for
developers to easily apply their approaches.

In this paper, we present the modification of existing tools
for applying the server-centric architectural style in order to
also be able to deploy APIs on end devices, making the
application of the Edge paradigm easier.

III. APIGEND - API GENERATOR FOR END DEVICES

Currently, the specification and development of microser-
vices are supported by a large number of tools that facilitate
the work of the developer. Specifications such as OpenAPI are
widely used to detail an API, generate documentation, perform
tests and even, generate the API skeleton. This type of tools
can generate the source code for different technologies such
as Node.JS, Kotlin, JAX-RS, etc., but they focus on deploying
the API on a server or on a cloud environment.

This section shows an extension of the OpenAPI Generator
[16] to create and deploy an API on Android-based end de-
vices (from API 23) and microcontrollers (ESP32), simplifying
the development of these applications. In this way, these APIs
can be consumed by third parties as if they were deployed on
a cloud environment.

A. Deployment Process

APIGEND is part of a set of steps you need to follow
to deploy APIs on end devices. This process can be seen in
Figure 1. These steps are:

OAI Generator

= - > E

1.-API definition

$7OPEN AP

K

N

4.-Requests

2.-Generate base code 3.-Deployment

Fig. 1. Deployment Process.

1) API Definition. In this step, the API characteristics are
defined, this task will be done through the OpenAPI

Specification following the same notation as if it were
developed and deployed on a cloud environment. The
API specification will describe the different resources
and endpoints that will be available to be invoked.

2) Generate Base Code. In this step, the API base code
is generated with the presented tool. The tool also
generates the source code to simulate the communication
logic of an API Rest, reducing the effort required by
developers. This communication logic has been im-
plemented using Firebase Cloud Messaging [17] (for
Android devices only) and MQTT [18], being able to
decide during the generation of the source code what
type of communication should be used.

3) Deployment. In this step, the developers only have to
finish the implementation of the generated API and
configure the messaging services.

4) Requests. Finally, with the deployed application, one
can invoke the defined resources.

IV. DEMO CASE

In this demo, we will show attendees how to perform the
whole process to deploy an API in an Android device and
ESP32 Microcontroller and invoke the available services. We
are going to define an API called Event Alerts. This API
serves to post different cultural events within an area. You
can also get the preferences of different users to organize
events more adapted to them. Each device will represent a
fictitious user and, therefore, each one will be able to alert
with an event to the other users. They will also be able to
obtain the preferences of each one to know which event is the
most suitable to organize.

The steps to be realized in the demonstration are described
below (following the steps described in Subsection III-A).

1) API Definition. We define the API with the OpenAPI
Specification (OAS). This API will contain two mi-
croservices or endpoints:

a) Post Events: This microservice is a POST type
operation in which in the body of the request
an object Event is included, which contain the
information of the event and the area (lat,long,rad)
in which we want to publish the event.

b) Get Users: This microservice is a GET type op-
eration that will take as parameters the area from
which we want to get the users’ preferences. This
microservice will return the the user’s information
in an object detailing the user’s id and a list of
strings with their preferences.

2) Generate Base Code. In this step, the API base code
is generated with APIGEND. For this demo, the MQTT
communication interface will be used, as is shown in
Figure 2.

3) Deployment. In this case, the MQTT communication
interface of both devices will be configured, indicating
the IP address and port of the MQTT broker and a
small implementation will have to be made to send a
predefined request from both devices.

framework

android-server v

para meters
Example Value Model

{
"openAPTUr1": "https://raw.githubusercontent.com/slasom/specOpenAPI/

"options": {
"library": "mgtt"

H

Fig. 2. Parameters to generate the Android application using the MQTT
library.

4) Requests. After the deployment, we will be able to
make requests. In this demo, both devices will be able
to send predefined requests, the Android device will do
it through a button in the application and the microcon-
troller through a physical button. As for the reception,
the Android device will receive a push notification and
will display the information in the main screen of the
application as shown in Figure 3. The microcontroller
will display the alert information a screen associated to
the microcontroller.

9:39 A 100%

\
0@

Mon, Nov 25

O o =

B Event Alerts Server * now

Resource Execution: Event
Method: postEvent

Event Alerts Server

MQTT Connection

Connected

Notifications

Resource Execution: Event | Method: postEvent

Fig. 3. Notifications received on the Android device

V. CONCLUSIONS

The increase of the computing capacities of the end de-
vices opens the possibility to the application of architectural
paradigms that until recently could only be used in very
specific scenarios, obtaining benefits such as lower latency and
lower consumption of network traffic. This paper discusses the
lack of tools to help in the development of these alternative
architectures. Therefore, it presents a tool that automates the
creation of the skeleton of an API in order to be easily

deployed on final devices such as Android devices or micro-
controllers. This approach is based on tools weel-known by
developers, so it reduces the learning curve and expands the
target audience that could apply it.

ACKNOWLEDGMENT

This work was supported by the 4IE+ project
(0499_4IE_PLUS_4_E) funded by the Interreg V-A Espafia-
Portugal (POCTEP) 2014-2020 program, by the Spanish
Ministry of Science, Innovation and Universities (MCIU)
(RT12018-094591-B-100) (MCIU/AEI/FEDER, UE), by the
Department of Economy and Infrastructure of the Government
of Extremadura (GR18112, IB18030), and by the European
Regional Development Fund.

REFERENCES

[1] J. Berrocal, J. Garcia-Alonso, C. Vicente-Chicote, J. Herndndez,
T. Mikkonen, C. Canal, and J. M. Murillo, “Early analysis of
resource consumption patterns in mobile applications,” Pervasive and
Mobile Computing, vol. 35, pp. 32 — 50, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1574119216300797
D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad hoc networks,
vol. 10, no. 7, pp. 1497-1516, 2012.
[3] H. Qian and D. Andresen, “Extending mobile device’s battery life
by offloading computation to cloud,” in 2015 2nd ACM International
Conference on Mobile Software Engineering and Systems, MOBILESoft
2015, Florence, Italy, May 16-17, 2015, A. Abadi, D. Dig, and Y. Du-
binsky, Eds. IEEE, 2015, pp. 150-151.
J. Guillén, J. Miranda, J. Berrocal, J. Garcia-Alonso, J. M. Murillo, and
C. Canal, “People as a service: A mobile-centric model for providing
collective sociological profiles,” IEEE Software, vol. 31, no. 2, pp. 48—
53, 2014.
[5] K. Dolui and S. K. Datta, “Comparison of edge computing implemen-
tations: Fog computing, cloudlet and mobile edge computing,” in 2017
Global Internet of Things Summit (GIloTS). 1EEE, 2017, pp. 1-6.

[2

—

[4

[6] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das,
L. Foschini, and A. Zanni, “A survey on fog computing
for the internet of things,” Pervasive and Mobile Com-
puting, vol. 52, pp. 71 — 99, 2019. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1574119218301111
“The OpenAPI Specification Repository. Contribute to OAI/OpenAPI-
Specification development by creating an account on GitHub.” [Online].
Available: https://github.com/OAI/OpenAPI-Specification

[8] “Amazon Web Service.” [Online]. Available: https://aws.amazon.com/
[9] “Amazon Cloud.” [Online]. Available: https://cloud.google.com/

[7

—

[10] “Openapi Generator Spilab.” [Online]. Available: https://openapi-
generator-spilab.herokuapp.com/

[11] “Aws TIoT Greengrass.” [Online]. Available:
https://aws.amazon.com/greengrass/

[12] “Azure ToT Edge.” [Online]. Available:
https://azure.microsoft.com/services/iot-edge/

[13] M. Noura, S. Heil, and M. Gaedke, “Webifying heterogenous internet
of things devices,” in International Conference on Web Engineering.
Springer, 2019, pp. 509-513.

[14] K. Ogawa, K. Kanai, K. Nakamura, H. Kanemitsu, J. Katto, and
H. Nakazato, “Tot device virtualization for efficient resource utilization
in smart city iot platform,” in 2019 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom
Workshops). 1EEE, 2019, pp. 419-422.

[15] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen,
“Orchestration of microservices for iot using docker and edge comput-
ing,” IEEE Communications Magazine, vol. 56, no. 9, pp. 118-123,
2018.

[16] “Openapi Generator.” [Online]. Available:
https://github.com/OpenAPITools/openapi-generator

[17] “Firebase Cloud Messaging.” [Online]. Available:
https:/firebase.google.com/docs/cloud-messaging

[18] “MQTT.” [Online]. Available: http://mqtt.org/

