
Performing WiFi Sensing with Off-the-shelf Smartphones

Steven M. Hernandez and Eyuphan Bulut
Department of Computer Science, Virginia Commonwealth University

401 West Main St. Richmond, VA 23284, USA
{hernandezsm, ebulut}@vcu.edu

Abstract—WiFi sensing has recently attracted a lot of
attention in providing a method for device-free sensing
with standard WiFi devices through the use of Channel
State Information (CSI). However, access to CSI from user-
level applications is not provided by most WiFi devices,
specifically ubiquitous smartphone devices. In this demon-
stration, we present our custom developed application for
collecting, labeling and processing CSI on-device, in real-
time, for standard off-the-shelf Android smartphones. We
additionally demonstrate the use of our application on
select device-free sensing tasks.

I. INTRODUCTION

WiFi sensing uses the WiFi communication between
connected devices to enable device-free sensing [1],
[2]. Channel State Information (CSI) is the metric used
to describe phase and amplitude information for the
received signal across multiple subcarrier frequencies.
Each subcarrier is uniquely affected based on obstruc-
tions within an environment thus providing insights into
actions occurring within that environment. Given access
to CSI by toolkits such as the Linux 802.11n CSI Tool [3]
and Atheros CSI Tool [4], it is possible for researchers
to evaluate WiFi Sensing with Network Interface Cards
(NICs) such as the Intel 5300. However, very few other
WiFi NICs or WiFi-enabled devices provide application-
level access to this rich CSI data source. Recent additions
to the Espressif IoT Development Framework (ESP-
IDF) introduce the ability to collect CSI directly from
user-programmed software on an ESP32 WiFi microcon-
troller. We leverage this new functionality to give CSI
access to standard Android smartphones. In this work,
we demonstrate how a smartphone with our custom
developed app can collect, process and label CSI through
a number of WiFi sensing experiments.

II. IMPLEMENTATION

Our implementation allows off-the-shelf Android
smartphones with our custom developed app to collect,
label and process Channel State Information directly on-
device. This can allow for more ubiquitous deployment
of CSI collecting devices beyond what is currently
possible. Our system diagram in Fig. 1 shows the target

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship Program under Grant No.
1744624. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

TXRXR
aw

 C
S

I

Smartphone

Target

Signal

Processing

Machine

Learning

Fig. 1. Our system consists of a transmitter device (TX) sending
packets to a receiver (RX). CSI values are affected by the presence of
a target near TX and RX. Raw CSI is then sent to our custom built
smartphone application for processing and labelling.

person located between an ESP32 WiFi transmitter (TX)
and a receiver (RX). As TX sends packets to RX, the
presence and actions performed by the target uniquely
changes the amplitude and phase across different subcar-
rier frequencies for the received signal. These changes
are then used by the RX to compute the raw CSI which
is then sent directly to our custom designed smartphone
application through a wired connection. From here, the
application allows us to label samples which can then
be stored for later analysis such as signal processing
and machine learning classification tasks.

A. ESP32 based CSI Collection

Using the Espressif IoT Development Framework
(ESP-IDF) that provides CSI access to user-level pro-
grams with recent additions, we developed a toolkit1

with ESP32 microcontrollers to collect and record CSI.
Our toolkit consists of code for WiFi access points and
stations in both active transmitting and passively receiv-
ing modes. Our toolkit can be used both for WiFi sensing
tasks as well as related tasks such as localization [2]. The
goal of our toolkit is to leverage added benefits enabled
by the ESP32 microcontroller; namely, the small size,
low cost and thus mobile-capabilities of the device.

B. ESP32 with Smartphone

ESP32 microcontrollers are limited by both memory
and CPU frequency; thus, computationally expensive

1https://stevenmhernandez.github.io/ESP32-CSI-Tool/



(A) (B) (C)

TX TX

TX

RX RX

RX

Fig. 2. Experiments performed: (A) Timed experiment with states sit
and stand, (B) Experiment where the only recorded event is when the
target is in the LOS of TX and RX, (C) Continuous experiment, where
RX travels around a circular target area marking angular position.

tasks can instead be offloaded to a smartphone attached
to the microcontroller. Standard Android smartphones
allow UART serial communication through the use of
an On-The-Go (OTG) USB cable. We use this cable
to transmit raw CSI directly from the ESP32 to our
application. By doing this, we enhance the abilities of
the ESP32 further by also allowing access to power, real-
time clock, sensors and networking capabilities (i.e., cel-
lular) available from the smartphone. Currently, smart-
phone apps are not given access to CSI data. Instead,
with our ESP32 to smartphone connection, we develop
an Android app which can receive CSI from the ESP32
without requiring any special firmware manipulation.
Further, by collecting CSI at the smartphone, we can
label this experimental data in real-time. To facilitate
these experiments, we develop three methods for record-
ing and labeling CSI data with our application:

1) Timed - For experiments requiring a set of actions
to be performed every t seconds.

2) Press and Hold - For experiments where actions
occur only when a button is held.

3) Toggle - For experiments where actions switch
immediately as a continuous stream.

Providing these three methods promotes a standard-
ization in experimental recording techniques for many
commonly performed WiFi sensing tasks. Existing CSI
tools give programmatic access to raw CSI, but require
users to then develop their own system for retrieving and
labelling this data for their applications. By providing
standardized methods through our application, this study
allows fellow researchers to focus on experimental de-
sign and performing experiments rather than the design
and development of a low level system for CSI extraction
and labelling.

III. EXPERIMENTS

To demonstrate the use of our system for WiFi sensing
tasks, we detail three example use-cases. First, we con-
sider a timed experiment, where during the labeling time,
a target is instructed to stand-up for a few seconds, then

0 50 100 150 200 250
Packets

0

10

20

30

40

50

60

Su
bc

ar
rie

rs

stand sit stand

Fig. 3. Heatmap representing standing/sitting actions of a target
showing that different actions produce unique effects on subcarriers.

told to sit down for a few seconds, illustrated in Fig. 2
(A). Next, we consider a target moving across the line of
sight (LOS) of the transmitter and receiver, illustrated in
Fig. 2 (B). Finally, we consider a third experiment, where
the tracker walks a continuous path around a target area
while collecting CSI as shown in Fig. 2 (C).

A. Sitting/Standing

Our first experiment makes use of the Timed labeling
method provided by our application. For this, we place
the ESP32 and smartphone 4 meters away from the
transmitter. The target is positioned directly in the LOS
of these two devices as shown in Fig. 2 (A) and is then
instructed to sit, then stand at given intervals by the
application. Fig. 3 shows the resulting CSI amplitude
across 64 subcarriers as the target performs these actions.
Visually, we can recognize when sitting, subcarriers
become darker indicating that the amplitude increases.
As the target changes position, their effect on the LOS
signal also changes causing greater or lesser effect on
the signal. In this case, sitting produces less LOS-
blockage than the standing case. Recognizing the activity
performed by a target (e.g. sitting or standing) in an
indoor environment without requiring attached sensors
has been a common task for CSI-based device-free
activity-recognition research [5], [6].

B. Detecting Mobile Human Targets

For our next experiment, we demonstrate the use
of the Press and Hold labeling method. This method
is useful for experiments where the execution time of
different human movement patterns has more variance
than in the timed case. For this experiment, we place the
transmitter and receiver 2.5 meters apart. The target then
walks perpendicular to the LOS of the two devices as
shown by the arrows in Fig. 2 (B). As the target reaches
the LOS, the tracker presses the button indicating the
target has reached the LOS. Then, the tracker releases
the button as they exit the LOS area. Notice in the figure,
the dotted lines indicate when the target exits the target
LOS, in which case no label is specified. We can see that
the CSI amplitude heatmap in Fig. 4 (Top) shows distinct
signal variations while the target is travelling through the
LOS. Considering the received signal strength indicator
(RSSI) collected at the same time (Fig. 4 (Bottom)), we



0 50 100 150 200 250
Packets

0

20

40

60

Su
bc

ar
rie

rs

LOS

0 50 100 150 200 250
Packets

−80

−75

−70

RS
SI

Fig. 4. (Top) Heatmap representing subcarriers effected by a passing
target. (Bottom) Corresponding RSSI revealing a possible transition
point.

can recognize the target most likely reached the central
LOS around the 125 packets mark, where the RSSI
reaches the lowest point. Identifying targets passing
through a LOS area has been shown to allow for device-
free tasks such as localization [7] and crowd-counting,
even in through-wall situations [8].

C. Detecting Targets with Mobility

For our final experiment, we consider a case which
requires continuous label changes, which we accomplish
by using our Toggle labeling method. For this, we have
two individuals, a static target and a mobile tracker
holding our ESP32-smartphone system. Additionally, a
static transmitter module is positioned in the middle of
the target area. The target stands in a single position
approximately 1 meter away from the transmitter. The
tracker then walks around the central transmitter slowly
while keeping a distance from the transmitter of ap-
proximately 2 meters. As the tracker moves, they press
a button on the app each 45° segment to mark their
position on the circumference of the target area. Com-
pleting one revolution around the target area provides
the tracker with the circular CSI amplitude heatmap in
Fig. 5. We can recognize the target position at 225°
point visually by recognizing the brighter areas in the
heatmap across most of the 64 subcarriers. We do notice
however that the target affects the signal from 180° up
to 270°, meaning that the presence of the target affects
a 90° arc of movement. Identifying static targets can be
a harder task to solve with device-free sensing because
the lack of movement causes less obvious variance and
noise in the received signal as shown in [9]. With our
addition of movement with the receiver device, we see
that static targets can be visible as they pass the LOS
of the mobile receiver. Further work in this area will
include identifying ways to limit the noise introduced
by the mobile-receiver.

IV. CONCLUSION

In this work, we demonstrate our system for collect-
ing, labeling and processing Channel State Information

Fig. 5. Heatmap showing the amplitude of all 64 subcarriers as device
travels a circular path around a target located at the 225° point.

directly on-board a common off-the-shelf smartphone
device connected to an ESP32 microcontroller pro-
grammed with our ESP32-CSI-Tool. We demonstrate the
use of our system through three experiment collection
methods using our system. We present the CSI collected
in these experiments, demonstrating that targets can have
noticeable effect on CSI. Future work includes exploring
further the use of mobility for WiFi sensing tasks as
well as using labeled CSI to perform on-device Machine
Learning for an even more comprehensive WiFi sensing
solution on standard smartphones.

REFERENCES

[1] D. Wu, D. Zhang, C. Xu, H. Wang, and X. Li, “Device-free wifi
human sensing: From pattern-based to model-based approaches,”
IEEE Communications Magazine, vol. 55, no. 10, pp. 91–97, 2017.

[2] J. Wang, H. Jiang, J. Xiong, K. Jamieson, X. Chen, D. Fang,
and B. Xie, “Lifs: low human-effort, device-free localization
with fine-grained subcarrier information,” in Proceedings of the
22nd Annual International Conference on Mobile Computing and
Networking. ACM, 2016, pp. 243–256.

[3] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release:
Gathering 802.11n traces with channel state information,” ACM
SIGCOMM CCR, vol. 41, no. 1, p. 53, Jan. 2011.

[4] Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with
commodity wifi,” in Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, ser. MobiCom
’15. New York, NY, USA: ACM, 2015, p. 53–64. [Online].
Available: http://doi.acm.org/10.1145/2789168.2790124

[5] M. Al-qaness, F. Li, X. Ma, Y. Zhang, and G. Liu, “Device-
free indoor activity recognition system,” Applied Sciences, vol. 6,
no. 11, p. 329, 2016.

[6] H. Zou, Y. Zhou, J. Yang, H. Jiang, L. Xie, and C. J. Spanos,
“Deepsense: Device-free human activity recognition via autoen-
coder long-term recurrent convolutional network,” in 2018 IEEE
International Conference on Communications (ICC). IEEE, 2018,
pp. 1–6.

[7] J. Wang, J. Xiong, H. Jiang, K. Jamieson, X. Chen, D. Fang,
and C. Wang, “Low human-effort, device-free localization with
fine-grained subcarrier information,” IEEE Transactions on Mobile
Computing, vol. 17, no. 11, pp. 2550–2563, 2018.

[8] O. T. Ibrahim, W. Gomaa, and M. Youssef, “Crosscount: A deep
learning system for device-free human counting using wifi,” IEEE
Sensors Journal, vol. 19, no. 21, pp. 9921–9928, 2019.

[9] Z. Yuan, S. Wu, X. Yang, and A. He, “Device-free stationary
human detection with wifi in through-the-wall scenarios,” in Inter-
national Conference on Wireless and Satellite Systems. Springer,
2019, pp. 201–208.


