
MBP: Not just an IoT Platform
Ana Cristina Franco da Silva

IPVS, University of Stuttgart
Stuttgart, Germany

franco-da-silva@ipvs.uni-stuttgart.de

Pascal Hirmer
IPVS, University of Stuttgart

Stuttgart, Germany
hirmer@ipvs.uni-stuttgart.de

Jan Schneider
IPVS, University of Stuttgart

Stuttgart, Germany
st117301@stud.uni-stuttgart.de

Seda Ulusal
IPVS, University of Stuttgart

Stuttgart, Germany
st116928@stud.uni-stuttgart.de

Matheus Tavares Frigo
IPVS, University of Stuttgart

Stuttgart, Germany
st165592@stud.uni-stuttgart.de

Abstract—In this demonstration paper, we introduce the
Multi-purpose Binding and Provisioning Platform (MBP), an
open-source IoT platform developed for easy binding, provision-
ing, and management of IoT environments. Furthermore, the
MBP enables the simple realization of IoT applications, such as
heating, ventilation, air conditioning (HVAC) systems, by allow-
ing users to create rules for the IoT environment, in a straight-
forward and event-condition-action fashion. The efficient and
timely data processing of IoT environments are assured through
underlying complex event processing technologies.

Index Terms—Internet of Things, Sensor Integration, IoT
environments, Complex Event Processing

I. INTRODUCTION

Since the popularization of the Internet of Things [1],
many commercial and non-commercial IoT platforms were
developed to help non-expert users with the management of
IoT objects within their IoT environments. Examples of such
IoT objects are sensors, actuators, or devices. However, the
binding and provisioning of IoT objects to these IoT platforms
are still very challenging tasks for non-expert users. In this
context, binding means enabling IoT applications to access
IoT objects on a higher level of abstraction, so that the
required hardware expertise is kept at minimum.

In this demonstration paper, we present our open-source
IoT platform, the Multi-purpose Binding and Provisioning
Platform (MBP) [2], [3]. The MBP was primarily developed
to easy the management of IoT environments, however, we
move a step deeper into supporting users already during the
binding and provisioning of IoT environments. In many IoT
platforms, IoT objects are registered, bound, and provisioned
to IoT platforms in a manual fashion. Such tasks are complex
and require technical knowledge about the IoT objects. That
is, operators (i.e., software code) to extract and provision
sensor data to IoT applications, as well as to receive actuator
control commands from IoT applications are required. Such
operators need to be created and deployed for each sensor
and actuator manually. Furthermore, monitoring functionality
needs to be implemented and deployed manually as well.

This work is partially funded by the BMWi project IC4F (01MA17008)

However, deploying operators manually is error-prone and
time-consuming, since a hardware expert has to configure IoT
objects, install necessary operators for the specific sensors
and actuators, bind them, and provide accessible interfaces to
IoT applications. In real-world scenarios, e.g., for situation
recognition, efficiency and accuracy requirements are of vital
importance. However, these requirements cannot be fulfilled
through manual binding and provisioning.

To tackle the aforementioned issues, the MBP was de-
veloped to support users in the complete life-cycle of IoT
environments, so that the amount of manual tasks are kept to
the possible minimum. This includes the automated deploy-
ment, management, and monitoring of IoT environments. In
the following section, the MBP is explained in detail.

II. OVERVIEW ON THE MBP

The Multi-purpose Binding and Provisioning Platform
(MBP) is an open-source platform, which is provided as a
GitHub repository in [3]. The MBP has as primary goals the
easy deployment, management, and monitoring of IoT envi-
ronments. For this, the MBP provides a user interface, which
is depicted in Fig. 1, as well as a REST API reflecting the
same functionalities provided by the user interface. The main
functionalities of the MPB are explained in the following.

A. Modeling IoT environments

IoT objects can be registered to the MBP either separately
or as part of a specific IoT environment. The second op-
tion additionally enables the user to model the connections
among IoT objects within the IoT environment. For this,
the MBP provides a graphical tool for the modeling of IoT
environments, as depicted in Fig. 2. In this tool, IoT objects
including their properties and connections are specified. These
properties describe specific information about the IoT objects,
such as IoT object type, identifier, or MAC-address. To
automate the modeling of IoT objects, the MBP provides QR
code templates and an Android-based smartphone application
to scan these QR codes and automatically fill properties that
are possible to be inferred for the IoT object being modeled.
Furthermore, following the same fashion, IoT objects can



Fig. 1. The MBP UI

be automatically discovered by connecting themselves to
the MBP registration hotspot. Once an IoT environment is
modeled and saved, it can automatically be registered with the
MBP through the MBP UI. At this point, basic monitoring
information about IoT objects can be already visualized in
dashboards, such as network accessibility, CPU usage, and
CPU temperature of an IoT device.

B. Deploying IoT environments

The MBP provides several ready-to-use extraction and con-
trol operators in the form of scripts. One exemplary extraction
operator reads measurement values of an analog temperature
sensor (TMP36 module) connected to a Raspberry Pi. This op-
erator sends the extracted values to the MBP through MQTT, a
publish/subscribe communication protocol. In the MBP, such
operators can be simply linked to registered devices and,
in sequence, be deployed onto these devices. Through this
approach, sensors are bound automatically to the MBP and
measured sensor values can be live-visualized immediately,
and furthermore, are available as historical data. Nonethe-
less, the MBP also enables the users to provide their own
operators, which can be implemented in any programming
language. The MBP only requires the existence of specific
lifecycle management scripts (e.g., install, start, or stop) for
the operator, in order to be able to automate the deployment
of the user-defined operators. These management scripts are
executed by the MBP onto IoT devices at deployment time.
The application logic of these management scripts can be
still defined by the user, e.g., specifying necessary software
that needs to be installed. In this way, users can create
operators fulfilling their specific requirements, such as the
use of specific hardware types or programming libraries.

C. Monitoring IoT environments

Once IoT objects are bound to the MBP, these IoT objects
can be monitored by the users through provided dashboards.
These dashboards show status and statistical information
about IoT devices, sensors, and actuators. Furthermore, both
live sensor data and historical sensor data can be visualized.

Fig. 2. The MBP UI - IoT environment modeling tool

To realize an automatic monitoring based on sensor data,
and furthermore, to trigger actuators automatically based
on recognized conditions, the MBP provides the means for
creating IoT applications based on user-defined rules. Such
rules, which are based on the event-condition-action approach,
can be defined on the graphical rule modeling tool integrated
in the MBP. These high-level rules are then transformed into
complex event processing (CEP) queries and are evaluated
using corresponding CEP systems [4], which are able to pro-
vide an efficient, timely sensor data processing. An example
of an IoT application that can be modeled with the MBP
is a heating, ventilation, air conditioning (HVAC) system, in
which the temperature of a room is continuously monitored
in order to recognize and react when the temperature exceeds
or goes below the thermal comfort zone.

D. MBP setup

The MBP can be installed by an installation script on Linux
or it can be used as a docker container. After installation,
the MBP user interface can be accessed through an internet
browser (we recommend Chrome or Firefox). The MBP user
interface is based on Bootstrap templates and is implemented
in Angular JS. Furthermore, the data management and pro-
cessing in the MBP is based on a lambda-based architecture,
in which both live and historical data can be managed and
processed. To store measurement data, i.e., sensor data and
timestamp-based data, we use a time-series database. Further
metadata are stored in a NoSQL database to clearly separate
data and metadata. Furthermore, in [5], [6], we provide an
approach realizing the placement of operators of a data stream
processing model onto IoT environments. In this approach,
requirements of operators (e.g., minimum required storage)
and capabilities of IoT objects are searched and matched by
algorithms for an optimal placement decision.

III. MBP DEMONSTRATION

In this section, we explain how a simple IoT scenario,
a smart office, can be realized with the MBP. An office is
defined as a room in which people conduct their work tasks.
In order to make an office smart, it can be enhanced with



Fig. 3. Prototype: Lego miniature smart offices

computing power and sensing and acting capabilities through
IoT devices, sensors, and actuators. A common practice in
real-world scenarios is to integrate a heating, ventilation, air
conditioning (HVAC) system into rooms. The goal of such
a system is to keep the indoor environment comfortable for
its occupants, while taking over tasks that can be executed
automatically. For example, the room’s temperature can be
automatically regulated for its occupants based on user-
defined goals and continuous sensor measurements.

In this demo, we enhance several Lego miniature offices
with IoT devices, sensors, and actuators, in which many
IoT applications, including a HVAC system, can be realized.
Our Lego prototype is depicted in Fig. 3. To implement
the HVAC system, we use two IoT devices: (i) a Bosch
XDK device embedded with eight sensors, including humidity
and temperature sensors, and (ii) a Raspberry Pi, which is
connected to a relay actuator controlling a cooler fan.

A. Setting up the IoT environment

At first, the IoT devices are registered through the MBP
Android-based smartphone application by scanning the QR
code templates for the two different IoT device types, i.e.,
Bosch XDK and Raspberry Pi. The MBP smartphone appli-
cation is depicted in Fig. 4.

Afterwards, the sensor and the actuator are registered and
are each linked to the corresponding IoT device. Then, the
sensor and actuator are bound to the MBP. For the sensor
and actuator, we use extraction operators for temperature and
humidity sensors of the XDK, and a control operator for the
relay actuator. These operators are Python and Shell scripts
and are provided in the MBP GitHub repository.

Finally, once the IoT objects are registered and bound to
the MBP, the sensor values can be visualized in the detailed
sensor view of the MBP. Moreover, several rules can be
created for the set up IoT environment.

Fig. 4. The MBP smartphone application

B. Creating rules implementing the HVAC system

In the graphical rule modeling tool of the MBP, we create
a rule in the form of an event-condition-action construction.
The event part corresponds to the temperature values of the
aforementioned sensor which form the input of the rule. The
condition part is defined as “if the temperature values are
under or above the thermal comfort zone inside the office, e.g.,
from 20 to 22 Celsius degrees”. If the condition evaluates to
true, the action part is executed which corresponds to sending
control commands to the actuator controlling the cooler fan.

In this way, room temperature can be automatically regu-
lated based on user-defined conditions and continuous sensor
measurements.

REFERENCES

[1] O. Vermesan, and P. Friess, Internet of Things: Converging Tech-
nologies for Smart Environments and Integrated Ecosystems. River
Publishers, 2013.

[2] P. Hirmer, U. Breitenbücher, A. C. Franco da Silva, K. Képes, B.
Mitschang, M. Wieland, “Automating the Provisioning and Config-
uration of Devices in the Internet of Things,” in Complex Systems
Informatics and Modeling Quarterly (CSIMQ), Vol. 9, pp. 28–43, 2016.

[3] IPVS – University of Stuttgart, Multi-purpose Binding and Provisioning
Platform (MBP), https://github.com/IPVS-AS/MBP.

[4] D. C. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[5] A. C. Franco da Silva, P. Hirmer, R. Koch Peres, and B. Mitschang,
“An Approach for CEP Query Shipping to Support Distributed IoT
Environments,” in Proceedings of the IEEE International Conference
on Pervasive Computing and Communication Workshops: IEEE, 2018.

[6] A. C. Franco da Silva, P. Hirmer, and B. Mitschang, “Model-based
Operator Placement for Data Processing in IoT Environments,” in
Proceedings of the IEEE International Conference on Smart Computing
(SMARTCOMP): IEEE, 2019.


