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Abstract—The huge amount of streaming information gener-
ated by the new wave of edge devices that are used to monitor
a plethora of everyday aspects, prompts the need for efficient
techniques to handle, process, aggregate, and visualize this stream
of data. One such field is the continuous transport infrastructure
monitoring, where smartphones inside driving vehicles act as edge
sensing and computing nodes to measure the quality of the road
pavement among other things. Although the location accuracy of
such devices is within the acceptable bounds, the accumulated
error can lead to large deviations from the location of interest,
reducing the measurement credibility. The data represent a
geographically vast infrastructure network in need of real-time,
bird-eye visualization. This paper describes the implementation
of such a real-time platform and the challenges the task provides.
By implementing relatively new open-source cross-platform en-
vironments, the platform is scalable and versatile, reducing the
costs associated with cloud-based implementation systems.

Index Terms—Crowd-sensing, predictive maintenance, infras-
tructure health monitoring, computational geometry, Delaunay
Triangulation, map-matching, map generation

I. INTRODUCTION

Nowadays, sensors are becoming becoming the synonym
of ubiquitous. Recent years we witnessed a growth of cheap
sensors, especially sensors found in smart devices like smart-
phones, smartwatches etc. All these sensors generate large
amounts of data with a considerable margin of error. On
the other hand, smartphones nowadays have access to their
location through GNSS services like GPS, Glonass, Galileo.
This provides the opportunity to couple the sensor data with
the location retrieved by the GNSS, representing a spatial
information of the site where the data is generated. One par-
ticular example of smartphones sensors like the accelerometer
and gyroscope coupled with geo-location information is the
measurement of road geometry parameter [1].

When measuring roads, an application collects sensor values
in a buffer and applies filters to enhance the useful part of the
signal and reduce the noise. Then it extracts features from this
buffer and uses these features to calculate an index which can
indicate the roughness or pinpoint road anomalies. However,
one single drive over the road segment cannot provide the full
infrastructural state of the segment when measured with the
sensors found in smartphones. These measurements become
more accurate when combined with results from multiple
phones on the same road segment.

The Netherlands has a registered fleet of 8.222.974 motor
vehicles as per 2017 report of the dutch Central Bureau

of Statistics [2]. If considering only one percent of these
vehicle passengers would use their smartphone to measure
the road quality, there would be about 82.230 active streams
of road measurements connected to the cloud service. This
would result in a strain on the back-end, which will flooded
with torrents of measurements and locations. To increase the
accuracy multiple measurements on the same location can be
aggregated into road segments, that later are used to visualize
the aggregated data.

The challenges in proceeding this path, consist in finding
the optimal solutions for a real-time storing, aggregating and
visualizing system. What database technology is suitable to
store streaming spatial information so that the results can
be queried efficiently? Another crucial challenge is keeping
the application real-time, so results can be processed as they
come in and shown immediately, making the information
useful for a multitude of purposes, Visualization becomes
challenging when the data is growing larger. Loading a large
amount of road segments represented by points increases the
complexity which can make the map unresponsive or cause
crashes. Decisions should be made how to efficiently query
only the points specific to the location of interest, considering
that the user will drag the screen all over the road of interest.
Another problem is the efficiency of processing measurements.
Multiple clients will be sending results and this should be
processed as fast as possible to keep the application real-
time. The processing consists of aggregating the measurements
from multiple clients into road segments with an average index
which indicates the road quality for this segment.

This paper presents an implementation of [3] where real-
time crowd-based infrastructure measurements are aggregated
and visualized using Delaunay Triangulation (DT) for creating
and updating infrastructure segments.

In this paper we describe a real implementation of the ag-
gregation and visualization system to deal with the challenges
stated above. Section II gives a brief overview of existing
works related to aggregation and visualization of spatial data.
Section III outlines the methodological approach used to the
challenges stated above. The results will be evaluated in
Section IV. Concluding remarks, open issues and future work
are discussed in Section V.
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Fig. 1. system overview and candidate technologies

II. RELATED WORK

Due to the fact that crowd-based large scale monitoring
is a relatively a new domain not many works considered
building standalone back-end support for their applications.
Mostly these applications are deployed and rely on pricey
cloud computing platforms such Amazon AWS, Microsoft
Azure, Google Cloud etc.

To the best of our knowledge only SmartRoadSense [4] is
the closest similar project which collects measurements of road
roughness from smartphones and processes them periodically
in their indigenous back-end platform. All the measurements
are stored in a PostgreSQL database with PostGIS extensions.
The measured point locations are pulled to the nearest road and
averaged on a certain radius. The averaged results are uploaded
once per day after the daily processing to the CartoDB server.
The visualization is handled by CartoDB by updating the map
with the latest uploaded results [4]. One downside of this
approach is that it isn’t real-time, processing only occurs peri-
odically (once per day in this case). This method implicates a
large computational load during the processing phase. Another
downside concerns to the stretching of measurements to the
nearest road, there is a chance that the presence of several
lanes is neglected in this approach. Considering that the system
relies on information of existing mapping services, it cannot
foresee the case when the vehicle is driving on a new road
which isn’t present on the mapping service. One last minor
issue is delay on measurement publication, the results will
be available the day after, thus limiting the usability of the
information for other purposes.

CartoDB is location intelligence software which offers ways
to visualize spatial business data. CartoDB can be used to
upload your spatial business data and generate a variety of
customize-able maps. The developers of CartoFB describe
their platform as: ”A one-stop shop of geospatial tools, ser-
vices, and APIs for discovering and predicting the key insights
from your location data, CARTO Engine empowers your
organization with scalable analysis and enrichment solutions
you can fully embed on your web and mobile apps” [5].
Although CartoDB is a very powerful tool, it does not offer
functionality for real-time clustering and visualization. It is
possible to sync tables every hour, but not on every result that
comes in. Requires more development on the back-end side of
the system to handle the real-time aggregation of the incoming
data. However still the transmission of the aggregated results

should be sent and integrated with the CartoDB server, than
the new maps would be generate on hourly bases. Some
CartoDB functionality are restricted to the enterprise edition,
thus becoming more expensive in the long run.

Mapbox [6] has a series of products related to mapping.
They offer products to create custom maps, to do navigation
and Mapbox GL JS. Mapbox GL JS is a JavaScript library
that uses WebGL to render interactive maps from vector tiles
and Mapbox styles. It can be used load location data like
GeoJSON from sources and display it on a map. Another
interesting product is the Mapbox Uploads API. This API
can be used to upload spatial file types such as GeoJSON,
KML, GPX, Shapefiles and CSV. It processes the data into
raster tiles or Mapbox vector tiles readable by Mapbox GL
and Mapbox js. However, these products don’t have solutions
for large real-time changing data sets. For large data sets it
recommends tiling on the server, which is hard to implement
for real-time changing data sets. This implementation would
require regenerating a lot of tiles on multiple zoom levels
when the data set changes slightly. These tiles could be real-
time generated using vector tiles, but this approach can be
complex and requires some extra processing and caching when
possible.

III. METHODOLOGY

The implementation consists of an Android application that
serves as an edge computing device, that buffers the smart-
phone sensors values to feed the information into a machine
learning model. The model among other things, calculates the
road quality indicators comparable to International Roughness
Index (IRI). After IRI calculations, the results are coupled
with the geo-locations of the measured segment and send
to the cloud back-end system where the data is aggregated
and stored. The challenge consists on choosing the most
appropriate back-end system technology, database technology
and visualization system sa well as combining them into a
unified product able to give a real-time bird eye view of
the state of the infrastructure. An overview and candidate
technologies are shown in Figure 1.

A. Database

From the plethora of existing database technologies that
can store data efficiently, only the ones with spatial query
support are of interest. The spatial data handling capabilities



are paramount in this research, because it has to store and
process sparse geo-location information for aggregation and
visualization. We identified two well-known mature databases
with spatial query support. PostGreSQL with the PostGIS
extension and MongoDB. The biggest difference between
these databases is their method of storing the information.
PostGres is a RDMS (Relational Database Management Sys-
tem) database technology that uses SQL (Structured Query
Language) to manipulate the data stored in a predefined
structured schem. Whereas MongoDB is a nonSQL document-
oriented database that uses JSON documents with schema.
Both these database systems are free to use and offer spatial
query support, where as PostGIS offers more spatial query
operations.

TABLE I
COMPARISON MONGODB VS POSTGRESQL/POSTGIS

Database Pros Cons

MongoDB
Speed, Scalability, Flexibility
Geographically Distributed Clusters
Tiered Storage

NoSQL

PostGreSQL/
PostGIS Big variety spatial queries, SQL

Scalability, Speed
Proprietary Extensions
Legacy Relational Overhead

According to a published performance analysis MongoDB
performs faster with spatial queries with and without indexes.
The performance is important for the ability to aggregate new
measurements real-time. [7]

Based on the pros and cons as seen in Table I we’ve chosen
to go with MongoDB over PostGreSQL with PostGIS.

Spatial data is stored in GeoJSON format and indexed with
the MongoDB 2dsphere index. A 2dsphere index supports
queries that calculate geometries on an earth-like sphere.
2dsphere index supports all MongoDB geospatial queries:
queries for inclusion, intersection and proximity. For more
information on geospatial queries [8]. GeoJSON is a geospatial
data interchange format based on JavaScript Object Notation
(JSON) that represent data about geographic features, their
properties, and their spatial extents [9].

There are two important spatial operators in MongoDB
which were used in the implementation.

1) $near operator which can be used to find points near a
given point and sorts the results based on distance from
the given point. This query works with a $maxDistance
operator which is the radius in metres. This query can
be used to find the nearest road segment within a certain
radius when a new measurement with measurement
comes in.

2) $geoWithin operator can be used to find all road seg-
ments within a certain area or box. The results are not
sorted with this operator and can be used for example
to find retrieve all road segments in the view-port of the
user in the visualization.

B. Back-end system

The back-end is written in JavaScript using Node.js with
Express. ”Node.js is a JavaScript runtime built on Chrome’s

V8 JavaScript engine. Node.js uses an event-driven, non-
blocking I/O model that makes it lightweight and efficient.
Node.js package ecosystem, npm, is the largest ecosystem of
open source libraries in the world [10].” The node package
manager (npm) is the package manager for JavaScript and the
world’s largest software registry. It can be used to discover
packages of reusable code [11]. Reusable modules can save
development time by not ”reinventing the wheel” and increase
the quality of the product when the module is of good quality.
The major drawback of code reuse is that the developer is
bound to and dependent to the module architecture and how
it’s supposed to be used. Another drawback is the quality of the
code, the quality of the code could be lower than set standards
and existing bugs in the code get replicated. The source code
can be checked, but understanding and reading the code can
easily becom a e tedious process.
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Fig. 2. Back-end system receive

The server exposes a set of HTTP APIs that can be used
for sending results and retrieving road segments. 2 A result
consists of a index which is a number and the location
coordinates in {Latitude, Longitude} format. The processing
of an incoming measurement is shown in Fig. 2. Smartphones
send measurements in a HTTP post request in JSON-format.
On the back-end a near query will be executed to find the
nearest segment within a 5 metres radius. A segment will
immediately be created if there are no results. If a segment was
found an update will be queued which is processed later. The
processing of the queue is executed every 10 seconds. Updates
within the same cluster are grouped together in the queue. The
queue itself is a MongoDB collection. The MongoDB internal
locking takes care of the concurrency issues when creating
segment and adding items to the queue. It was not possible to
find and update a segment using existing fields from the stored
document in one query. If this was done in multiple queries
concurrency issues would occur. This was the reason why the
queue implementation was used.

To implement the DT a few JavaScript modules were tested
from the npm library. The modules that were tested are De-
launator [12], incremental-delaunay [13] and d3-voronoi [14].
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The Delaunator is fast in creating the triangulation from a
data set, but does not provide functions to retrieve the nearest
neighbour or to build the triangulation incremental.
Incremental-delaunay provides the required incremental func-
tionality, but was already aged and no longer compatible and
non functional.
The d3-voronoi library does offer a find function to search
the nearest site to a point, but does not have the functionality
to build the triangulation incrementally. We tried recreating
the entire triangulation every time a new point was received,
but the procedure was inefficient and sluggish requiring a few
minutes to create a triangulation out of a few thousand points
on the test system.

None of these JavaScript modules could offer the incre-
mental build functionality we required. Instead we opted for
a C++ implementation, namely the CGAL library. CGAL
is a software project that provides easy access to efficient
and reliable geometric algorithms in the form of a C++
library, such triangulations, Voronoi diagrams, surface and
volume mesh generation, geometry processing, convex hull
algorithms, KD trees etc.. CGAL is used in various areas
needing geometric computation, such as geographic infor-
mation systems, computer aided design, molecular biology,
medical imaging, computer graphics, and robotics [15]. This
implementation loads all points from the database and creates
a DT incrementally. The nearest vertex is searched for every
point and the distance is calculated. If the distance is smaller
than 5 metres it will merge with the existing vertex and update
the triangulation. When the distance is smaller than 5 metres
a new vertex is inserted. In order for us to use CGAL library
as active aggregation algorithm, we coded a single threaded
implementation to link with Node.js.

C. Visualization

Geovisualization of the results on a map can be handled
by multiple services. Options include Google Maps, Mapbox,
Leaflet, OpenLayers, CartoDB, Here Maps, ArcGIS Online
etc. All these platforms offer ways to show and manipulate

geo-points on a map. The biggest differences are in the price,
API, speed and backend technology, Table II.

TABLE II
COMPARISON MAPPING TOOLS

Platform Free Speed Syntax
Google Maps Limited Good Easy
Mapbox Limited Good Easy
Leaflet Yes Good Easy
OpenLayers Yes Decent Difficult
CartoDB No Good Easy
Here Maps Limited Good Easy

Based on the comparison Leaflet, a javascript library for
interactive maps, has been chosen for this implementation. The
view-port gets passed to the back-end when requesting for the
road segments. The center, bounds and distance from center to
bounds are passed to the server. All these values are retrieved
or calculated using leaflet functionality.

Using the view-port, the back-end can search for segments
in the database inside this view-port using the geoWithin
operator or the near operator. The bounds are important for
using geoWithin and the center with distance to one of the
bounds for the near query. The entire process of retrieving
segments is shown in Fig. 3.

It is not practical to show all the segments at once on the
map, because the out of memory errors as well as navigation
latency with the map interface becoming unresponsive. The
implementation ensures that only the segments within the area
displayed will be queried. However, this might still cause out
of memory errors if the road network in the area is too dense
and the amount of data points is huge, as the case of urban
centers. The problem is tackled by showing only the amount
of points in which the front-end still navigates smoothly. On
the testing system this was around 5.000 points. Limiting
the query to 5.000 points resulted in seeing only a part of
the area in the way it was stored. This will result in a very
dense small area being shown. To make sure these results are
spread across the area a random field has been added on the
creation of a road segment. This field is indexed and can be
queried efficiently. Using this random field it is possible to
return around 5.000 points using the total amount of points to
determine which random field value was needed in order to be
returned to the client. On lower zoom levels this would result
in showing all available segments. On higher zoom levels it a
bird eye overview of state of the infrastructure.

Filters are available which can be used to only show certain
points where the index is in the chosen range. This results in
only querying points with an index in this range.

D. Concurrency

Real-time aggregation of the incoming measurements can
cause concurrency issues. A race condition occurs when two
or more phones in the same area, while uploading results,
try to access the shared geo-location segment on the database
and update it simultaneously. Because the location has to be
updated consecutively and both phones locked the location for
update, the order in which the phones will attempt to access the



shared location is unknown. Therefore, the update of that geo-
location segment is dependent on the scheduling algorithm, i.e.
both phones are racing to access/change the data.

To solve these concurrency issues we rely on MongoDB
ability to handle the geo-locking. However, this was not always
possible when operations were split into multiple queries.
When finding an existing segment and updating it, it was
possible that other processes took the lock in between and
retrieved the document before it was updated. This can cause
race conditions when this happens on documents which are
found multiple times before the update was done. It was not
possible to execute a find and update or create using one query.
There is functionality for finding and modifying in one query,
but when doing this you are unable to retrieve existing fields
of this document. We required the existing fields in order to
calculate the new field using the new results. It was possible
to execute a find or create functionality in one query with
MongoDB and this left us with only having the problem for
updating segments real-time. To solve this for updating the
segments we have implemented a queue in which the updates
were queued. This queue was processed periodically and made
sure updates which applied the same segment were grouped
together in order to prevent concurrency issues.

IV. EVALUATION

The back-end is set up to run multiple processes based on
the amount of available cores. On the test system there were 4
physical cores and 8 available cores with hyper threading. The
specifications of the test system are as follow: MacBook Pro
15’(2013),2,3 GHz Intel Core i7, 16 GB 1600 MHz DDR3,
500 GB SSD .

OpenStreetMaps was used for GPS-traces with randomized
indexes for test data sets. A JavaScript program has been
written which sends these results to the server in chunks to
simulate a real world situation. It was set up to send chunks
of 100 measurements every 20 ms. This is 5.000 points per
second. At this rate there was a small delay shortly after the
updates were executed periodically, but it caught up soon after.
We’ve also been tested 10.000 per second, but this resulted in
freezes and very delayed responses after a while. The exact
amount of points the implementation can handle on the test
was not measured, but is believed to be between 5.000 and
10.000 for the test system. In a real world scenario where the
servers are scalable the results will be better. The exact amount
of points the test system can handle is not of interest.

For the sake of comparison, the system is also tested on
a Raspberry Pi 3B running Raspbian OS, (Figure 5 shows
the map from a system running in a RaspberryPi 3B). The
amount of points this system handle is a lot lower than the
test machine. The CPU usage was recorded with different rates
of measurements coming in. On the Raspberry delays start to
build up when more than 60 results per second are received.
However, this is not due to CPU capabilities, rather due to
the SDcard lower write/read speeds. The most recent version
of MongoDB is not build for 32-bit operating systems and
we had to use an older version (2.4.1) of MongoDB. This

also implies using an older version of the Node.js, MongoDB
native driver (2.2) and adjusting one line of code that handles
the connection. The CPU usage with different measurement
rates is shown in Table III.

TABLE III
CPU USAGE

Points per second CPU usage Node CPU usage MongoDB
Raspberry (CPU 400% max)

40 5% 20%
50 9% 21%
60 10% 23%

Test system (CPU 800% max)
4000 58% 230%
5000 71% 260%
6000 89% 330%

To compare the performance of the MongoDB near operator
in a query versus the geoWithin operator a few experiments
are conducted. Both the options are implemented and executed
on different zoom levels, which resulted in a different amount
of points in the area. The data is plotted in Fig. 4. It clearly
shows that the near operator works better with fewer points
and the geoWithin works better on larger amount of points.
This can be explained due to the fact that the near operator
uses internal sorting. On higher zoom levels there will be more
points which can be shown. For this purpose the geoWithin
query should offer the best solution unless the data set is
small. For lower zoom levels where there are less points the
near query will outperform the geoWithin query. This is most
likely due to better use of the 2dsphere index. The results are
from executing the query and counting the total amount of
points returned. After the counting around 5.000 results were
randomly selected and returned by the implementation. The
2dsphere index was present in both tests.
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Fig. 4. near vs. geoWithin
The DT has been tested on three different data sets with

a different amount of points to measure the performance and
memory usage. All the points were retrieved from a MongoDB
collection and then inserted into the DT using the methodology
described in the back-end system subsection. All tests were
executed on a single thread. The memory usage was measured



using xCode debug tools. The results of this tests can be seen
in Table IV.

TABLE IV
RESULTS DELAUNAY TRIANGULATION (DT) SINGLE THREADED

Amount of points Time (sec) Memory used Points per second
688.965 317 77.5 MB 2173
152.589 65 28 MB 2347
61.339 25 17.5 MB 2453

There is room for improvement in the current implementa-
tion. Errors in the GPS values can occur. Wrong locations
cause segments to be created on the wrong positions. To
remove errors from the data set periodical checks can be
executed which check the last update date and the amount
of processed measurements into a segment. If a segment only
contains a few processed points and was last updated a while
ago it could be considered as an error. Ways to determine
whether a segment was a GPS error can still be researched
and implemented.

Retrieving the segments is done using the MongoDB near
and geoWithin operators. To decide what segments are re-
turned, the amount of segments in the area is counted first. This
could be optimized by estimating the total count. Another way
to optimize the response times could be finding the optimal
viewport distance to choose the near or geoWithin query.

A series of zooms executed on the front-end trigger multiple
requests to the back-end system. This causes unnecessary load.
Series of zooms could be detected and only the last request
could be sent in that case. Leaflet does not offer functionality
to detect series of zooms, this will have to be detected and
implemented manually.

The implementation weights all results equally into the
segments. The response time for maintenance is proportionate
to the duration it was measured before the maintenance. After
road maintenance the interest are results after the mainte-
nance. A possible way to solve this can be only taking in
consideration the most recent results and creating an UI for
data manipulation. This UI could make it possible to generate
results from other periods using the raw data collection. These
older generated results could then be cached for faster access.

V. CONCLUSION

Currently the system is specific to measurements from
phones and aggregates the measurements in a predefined way.
This implementation is used for real time aggregation and
visualization of streaming transport infrastructure. Querying
the system and retrieving segment information from the cloud
is fast and the most recent segments are retrieved. The cloud
system easily handles large amounts of incoming measure-
ments simultaneously. On the test system this is around 5.000
measurements per second. The DT implementation in C++
is very promising and can handle around 2.200 locations
per second on a single thread. The performance on multiple
threads would be a lot higher and could possibly surpass the
active clustering algorithm used by MongoDB spatial queries.

Fig. 5. Map showing a road segment with calculated DT and convex hull in
street zoom level

In a real world scenario where processing power is scalable
the results will be higher. Creation of segments is real-time in
this implementation and the updates are done periodically to
avoid concurrency issues.

In the future this implementation will be adjusted to create
a real-time spatial data analysis platform to make it multiple-
purposes research and visualization platform. This platform
will be used for real-time crowd monitoring, asset tracking
and monitoring, transport and infrastructure logistics, animal
monitoring for wildlife preservation, animal migration etc..
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