
A Feature Space Focus in Machine Teaching
Lars Holmberg

Supervised by Paul Davidsson and Per Linde
Department of Computer Science and Media Technology Malmö University Malmö, Sweden

lars.holmberg@mau.se

Abstract—Contemporary Machine Learning (ML) often fo-
cuses on large existing and labeled datasets and metrics around
accuracy and performance. In pervasive online systems, condi-
tions change constantly and there is a need for systems that
can adapt. In Machine Teaching (MT) a human domain expert
is responsible for the knowledge transfer and can thus address
this. In my work, I focus on domain experts and the importance
of, for the ML system, available features and the space they span.
This space confines the, to the ML systems, observable fragment
of the physical world. My investigation of the feature space is
grounded in a conducted study and related theories. The result
of this work is applicable when designing systems where domain
experts have a key role as teachers.

Index Terms—Machine learning, Machine Teaching, Human
in the loop

I. INTRODUCTION

Contemporary Machine Learning (ML) is often data-hungry
and/or compute hungry and focused on finding correlations
in datasets. These systems give impressive results in areas
like self-driving cars and image recognition. This currently
dominating connectionist approach has its limitations since
it lacks logic reasoning and the possibility to identify causal
relations.

There is increasing interest in identifying causal rela-
tions [1], interpreting predictions [2] as part of a quest for
trustworthy AI [3]. The approach I take is to compensate
for ML shortcomings by increasing a human domain expert’s
agency during the total lifetime of the system.

Development of ML systems traditionally starts with data
gathering and labeling followed by analysis, algorithm selec-
tion, etc. until the trained model can be deployed [4]. Models
developed as outlined above risk to become static, hard to
evaluate and risks degrade due to changes in the context they
are deployed into. When unacceptable degrading is identified
the model has to be updated, which can be challenging since
ML experts and domain experts could work on other projects
and many parts of training and feature engineering is hard to
document using traditional tools and processes [5].

An alternative path is some approaches that invite domain
experts in a short training loop and consequently can retrain
the model continuously so the model can adapt to changes
in demands or in the deployment context. Approaches in line
with this are, for example, Active Learning (AL), Interactive
Machine Learning (IML) and Machine Teaching (MT) [4]. The
endpoints in this continuum of human agency are AL and on
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the other end MT. In AL the ML system remains in control
of the learning process and treats the human as an oracle as
opposed to MT where a human domain experts have control
of the learning process by delimiting the knowledge that they
intend to transfer to the ML model.

Fig. 1. Overview of machine teaching in this work.

In my work, I focus on MT as an approach and consequently
envision an ML system that allows domain experts to control
the model building process. A domain expert has, in addition
to an ability to label examples, knowledge about the domain
as such. This knowledge can, for example, be used to identify
unreachable parts of the feature space, missing features that
are needed in order to separate classes or identify features
not needed for the task at hand. This moves focus in the ML
system towards the domain expert’s ability to transfer domain
knowledge to an ML-model. The purpose of my work is to
answer the following question:

• How does an MT approach change the domain expert’s
role?

An MT system targets a domain by offering a domain-
specific language including features to select from, a user in-
terface (UI) and possibilities to interpret predictions made [4].
Initially, a system like this faces a cold start problem a situation
where no training data exists. This can then be handled using
one or a combination of approaches:

• As a transfer learning situation where a pre-trained model
is imported.

• By importing an existing labeled/unlabeled training set
from a related domain and label, add, modify or tweak
this data.

• By collecting and label new data from the intended
deployment context or generate this data.



Fig. 2. Prototype where upcoming
journeys are predicted using contex-
tual features.

Fig. 3. Teaching interface that shows
how labeling a sub-space in the fea-
tures space is done.

• By labeling sub-spaces in the feature space so examples
representing these spaces can be generated and used for
training (figure 3).

Teaching in an MT system is as Simard et al. [4] points
out an iterative process and if a system is well designed the
need for an ML expert can be marginal during teaching and
usage. The MT system, as such, has to be updated if it, for
example, lacks features available to separate classes or if the
chosen ML method(s) cannot learn the intended task.

This approach is outlined in figure 1, inspired by Zhu [6].
The cold start situation is here addressed by allowing a human
teacher to select and label sub-spaces in a feature space
C1, ..., Cn and synthetic examples are then generated for this
sub-space and used to train a model. That model is then
assessed by the human to evaluate if the model’s knowledge
maps the, by the human teacher envisioned, model knowledge.
The teacher moves the actual model in the model space
towards the envisioned in an iterative process where labeled
sub-spaces are added or removed (C1+, C2−, ..., Cn+) and the
model M̂ retrained until it fulfills the teacher’s expectations.

II. CASE STUDY

My initial case study targeted the domain commuting. As a
domain, commuting is well-known whereas commute patterns
are individual and the commuters themselves are experts in
their own patterns. A commuter can use the prototype to
teach journeys from their commute patterns, they do this by
labeling sub-spaces in the feature space. By connecting a time-
span, day and location to a journey such as commute-to-work
CToWork the system generates labeled examples that represent
that sub-space. By using the commuters context the prototype
predicts taught upcoming journeys in real-time (figure 2).
This MT system was evaluated using qualitative methods in a

Participatory Design study that involved eight users over eight
weeks.

III. ANALYSIS AND RESULT

From our study of MT, we see a focus shift from the
labeled examples towards the gap between the domain expert’s
knowledge and the ML systems knowledge. A domain expert
could, given the right tools, bridge this gap by for example
include new features such as weather data, calendar bookings
or restrict journey predictions at nights. Personalizing the user
experience is possible by connecting higher-level concepts
with feature sub-spaces using names, so the app can predict
”To rugby training” instead of a journey from station A to
station B.

IV. FUTURE WORK

We are interested in further research in pervasive machine
teaching settings. Domains like indoor climate and human
activity recognition are interesting application areas that build
on, as commuting, understandable feature space, and under-
standable labels. For activity recognition features could be:
number of persons, multiple speakers, etc and labels could
be: presentation, seminar, etc. This situation can be addressed
by building systems where a domain expert bridge the gap in a
teaching process by identifying the current status of the system
and the real world status in order to make adjustments to the
ML-system. This puts demands on the control interface so it
can present current status in an interpretable and actionable
fashion. The goal is to build a trustworthy ML-systems where
the domain experts are in control of adjusting the system so
it matches real-world demands. Systems like these can, for
example, be implemented to save energy since they can match
needs and demands closer.

We are open to cooperation with other researches to target
domains in for example the areas of assistive technology,
intelligent personal assistants or personal informatics.
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