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Abstract—The number of Internet of Things (IoT) devices
is growing at an unstoppable pace. In most cases, the proper
functioning of these devices requires human intervention. Due
to this growth, people will have to configure more and more
devices leading to the investment of a considerable effort and
time. Nowadays, some works try to automate the user actions
with IoT devices by using machine learning algorithms based
on the relationships among devices or the previous human
behaviour. However, these proposals do not make use of contex-
tual information obtained from the devices themselves or they
employ complex sets of prediction models. This paper proposes a
neural network-based solution to predict the devices behaviour by
using previous interactions and contextual information as input
variables. Thanks to this, device interactions can be predicted and
automated, even without having previous records, by knowing
behaviours of devices of the same type in similar environment.

Index Terms—IoT Device interactions, Context-awareness, ma-
chine learning, neural networks.

I. INTRODUCTION

IoT devices make people’s lives easier by offering them
improvements in their daily routines [1]. This is one of the
reasons why these devices have a high penetration in many
environments such us smart homes, smart cities or smart
offices, for instance. However, although in so many cases these
devices simplify people’s lives, nowadays, they usually require
a direct command from the user each time a person needs to
perform an action or to change the defined configuration.

This supposes an effort that increases when the number of
devices in the environment raises, to the point that the per-
ceived benefit of applying the IoT paradigm is not the expected
one. To manually change a single configuration is not hard but,
when the number of devices and the interactions among them
increase, the required effort increases overwhelmingly. Based
on some predictions [2], in 2025 will be 75 billion IoT devices,
which means an average of 9 devices per person, and even
more in the developed countries. Therefore, managing these
devices and their interactions will require a great effort [3].

In order to reduce this effort, different approaches have been
proposed for automating some of these tasks. For instance,
by analyzing the relationships between devices [4] [5] or by
defining custom operating models for each device [6], but
again each time an interaction changes, the models have to
be reconfigured. Other works are based on machine learning
algorithms that are able to predict and adapt future interactions
with the devices based on the previous interactions [7] [8].

Nevertheless, these proposals make use of complex systems
that combine different techniques and employ each one de-
pending on the environment and the number of the devices,
reducing the responsiveness and increasing the computational
load.

Therefore, in this paper we propose a neural network-based
solution for predicting the interactions among IoT devices
that can be used in almost any environment. To that end, it
makes use of contextual information provided by the devices
themselves such as its kind, how they interact, the status of the
environment, etc. From this information, the neural network
is able to predict actions and the interaction among devices
when the contextual information changes (users, time, devices,
specific values, etc.).

One of the advantages of this solution is that the predictions
can be made with a small amount of information and, every
day, the model can be refitted with new records. Thanks to
this, the system can re-adapt the predictions to the changes and
user’s needs. The solution has been tested with semi-synthetic
data and in a real environment for three weeks obtaining a
probability of success of 85.34%, highly reducing the effort
required to interact and reconfigure these devices when the
user’s needs change.

The rest of the document is structured as follows. Section
II shows the motivations of this work and some related works.
Then, Section III describes the proposed neural network-
based solution. Section IV details the validation performed
to evaluate the proposed solution. Finally, in Section V the
conclusions of this work are exposed.

II. MOTIVATIONS AND RELATED WORKS

IoT devices allow users to automate their daily tasks. There
are IoT devices for a wide range of tasks. However, when the
number of IoT devices with which the user must interact grows
a lot, the number of actions and configurations to be performed
also grows, being difficult to manage all these devices. To
better understand this problem, an example is proposed below:

Suppose an user named Peter, who is an enthusiastic of
technology and interacts with IoT devices in their common
environments. Every time Peter arrives home, he turns on
the light and the television in the kitchen. Peter feels the
need for these devices to recognize that he arrived home and
automatically do these tasks for him. He tried to program
their actions at a certain time, but since his work schedule



is flexible, he does not always arrive home at the same time,
which means that the devices are turned on before or after the
appropriate time. After dinner, he usually goes to his living
room, where he has a bulb with a dim light and turns on the
television to watch his favourite program. However, during the
last few weeks he is starting to read, so that every day he has
to manually turn the television off and increase the luminosity
(or change the configuration). These manual interactions make
Peter to start thinking that the deployment of these intelligent
devices does not provide any advantage.

As shown above, there is a need for approaches learning
from the user behaviour and from the contextual information
in order to automate these actions without the need for the
user to configure and reconfigure them whenever her/his needs
change. Thus, the user can focus on performing actions that are
not usual or do not follow a pattern of behaviour over time.
This would reduce the number of actions done by the user,
something important in environments with a growing number
of IoT devices [2]. Therefore, technological alternatives for
predicting future actions of the user, based on their previously
registered behaviour and the contextual information, should be
developed.

During the last few years, for the device interactions pre-
diction, different techniques and methodologies have been
proposed. This is an important topic in researches linked
with IoT, especially in Ambient Assisted Living (AAL) [9],
a paradigm oriented to improve people quality of life using
Information and Communication Technologies (ICT). In this
sense, Machado et al. [4] propose a solution using ontologies
for establishing relationships between devices of the same
environment. Ciocarlie et al. [5] also propose a solution for
predicting behaviours using action links between devices in
the same environment. In addition, Paternò et al. [6] pro-
pose the definition of customizable rules that can be used
in trigger-action programming paradigms. These rules can
be customized by any user and they will be triggered by
a machine learning system to recommend future rules for
the device. Other proposals are focused on the prediction of
device interactions by using context-awareness information
instead of the relationship between devices. Alhafidh et al.
[7] [8] propose some comparisons about different machine
learning classification models, by using them in an isolated
way or assembling them. However, chaining different models
require for these proposals to find a balance between the
system responsiveness and the accuracy of prediction. Both
dimensions are crucial for IoT applications [10].

The work presented in this paper is focused on the use of
contextual information to predict the interactions that will be
performed among IoT devices; using a single model. Besides,
the proposed solution has been evaluated in five real scenarios
obtaining very good accuracy in all of them.

III. PREDICTING THE INTERACTIONS

The proposed solution is divided into four sections: a) first,
the synthetic data were generated to evaluate the technological
alternatives to make the predictions; b) then, each alternative

was evaluated with the generated data in order to know which
one provides the best results in a simulated environment; c)
next, the best technique was selected and adapted in order to
get the best predictions regarding the responsiveness and the
accuracy; and d) finally, the developed prototype was evaluated
in five real scenarios.

A. Generation of the synthetic data

To measure the available algorithms and techniques, it is
required a dataset to train the models and evaluate them.
Currently, in the moment of developing this work, there is
no available dataset with the contextual characteristics that
this proposal requires for automating the IoT interactions
(users present, type of devices, connection type, environment
status, etc.). So that, it is necessary to generate our own
data. Generating synthetic data is the quickest method to start
collecting data that serve us to identify the technique or the
set of techniques more appropriate to solve our problem [11].

Synthetic data was generated to make a first validation
in order to choose the best prediction model. These data
are generated with TheONE Simulator [12]. Initally, The is
aimed to to simulate message routing between nodes with
various Delay-tolerant Networking (DTN) routing algorithms
and sender and receiver types. Nevertheless, although its
objective is different, this tool was chosen because it can
simulate different movement patterns, among which are the
movement patterns of a person in his day-to-day life through
different environments (office, home, car,...). This tool allowed
us to simulate the interaction among IoT devices in different
environments. In order to generate the synthetic data its
core library has been modified to make the simulation more
realistic.

In the TheONE Simulator, a series of environments were
defined (such as the one defined in Section II), in which there
were different types of devices that can be used to perform
different actions. The action to be performed is selected based
on a probability and also is based on the time of day, the
context of the environment and the context of the user.

In a first version of the data generation, a relationship
between the probabilities of performing each action with a
device and the time, was not stipulated –only some contextual
information about the environment and the devices were
considered– (Fig. 1.a). For instance, the probability of turning
on the kitchen oven was the same at mealtime than at 3 in
night. This resulted in a poor generation of synthetic data,
which had to be modified

to obtain more realistic data. In a second step, the time was
considered as another contextual characteristic together with
the device information and the contextual data (Fig. 1.b).

In the data collection, certain data from the environment
have been collected (context-awareness information), such as
the day of the week, the time at which the action is performed
(rounding to the nearest o’clock time) and a timestamp (which
are not used still in the selected model); and device data,
such as its identifier and its device type. Also, the performed
actions were always recorded. In total, we simulated 163.039



Fig. 1: Synthetic data generation: (a) Without relating actions
and hours; (b) Relating actions and hours.

interactions among IoT devices, in four different environments,
with a total of 14 devices. We simulated the interactions of
an user in his/her everyday environments with devices such as
smart bulbs, speakers or plugs, for example.

B. Machine Learning algorithms

Different machine learning techniques have been analyzed
to predict and automate the device interactions, based on
contextual data and previous human behaviours with the same
devices or devices of the same type.

Before analyzing the different machine learning models, it
is necessary to understand the data pre-processing. Thanks
to this, better performance in predictions can be obtained. In
this process, all fields were serialized, based on their different
values, in binary fields.

Once the data were pre-processed, different techniques were
evaluated to identify their accuracy and responsiveness. To
increase the responsiveness and reduce computation load, we
are focused on using a single model. The evaluated models
and their results can be seen in Table I. Please, note that
these results are with synthetic data. Once they are applied in
real scenarios, the accuracy can be slightly lower since some
actions can be executed without following a predefined pattern.

TABLE I: Table of accuracy per model.

ML Model Accuracy Delay (s)
Logistic Regression 0.5329949 10.92
SVM 0.9999182 8(>600)
Decision Tree 0.6666667 0.0019
Random Forest (80) 0.9999386 22.58
KNN (n=17) 0.9999182 247.60
Neural Network 0.9996013 163.73

As can be seen in Table I, Random Forest, KNN and Neural
Networks provide promising results. For KNN, we evaluated
the optimal number of neighbours (from K=1 to K=30) in
terms of accuracy, obtaining K=17. However, the algorithm

was quite slow (it took 30 minutes to find the optimal number
of neighbours and be trained with the synthetic dataset), with-
out offering so much superior accuracy to other alternatives
studied. Therefore, it was discarded.

Because of the performance and the short time needed to
train the model and make predictions, we decided to use neural
networks. Random Forest also offers good times, however, in
other tests performed, where the number of devices increased
and the relationships were more complex, its accuracy de-
creased with respect to the neural network. The definition
of this neural network will be explained in section III-C.
Combined models will not be used, as proposed by other
solutions, because the performance obtained with this single
model is good enough and it reduces the computational load.

C. Neural Network for predicting interactions

Fig. 2: Neural network definition.

The neural network (Fig. 2) has as many input neurons as
characteristics our data have (after obtaining their dummies
or serializing the attributes to binary fields). The number
of outputs offered by the network was equal to the number
of different actions that exist in the devices. When new
devices are added, the number of outputs also change, and
the network is redefined. The network gives as output the
probability that each action is the action to be performed, after
applying the softmax function, that convert output values to
probability values (softmax output sum of values must be 1,
that indicates that the probability of every outputs is 100%).
A argmax function is applied to that output to obtain the most
probable action. To the rest of the layers, a sigmoid function
as activation function is applied. The sigmoid functions are
more specifically defined as a squashing function. Squashing
functions limit the output to a range between 0 and 1, making
these functions useful in the prediction of probabilities. All
these functions are used, therefore, to be able to predict the
action or the interaction that should be executed among IoT
devices.

The number of hidden layers and the number of neurons for
these layers were decided after testing different combinations,
and trying to reduce the probability of overfitting. Also, it has
been added a bias neuron in each layer, to reduce the bias



of data. This was determined by using the synthetic dataset
generated.

To train the model, it was decided to divide the data with
a batch size of 100, making 3000 epochs. This number of
iterations is necessary, as it has been stipulated a very low
learning rate (0.000125) for the selected learning algorithm
(AdamOptimizer). This algorithm was used because it is well
suited for problems with large quantity of data and it requires
little memory resources. A sparse softmax cross-entropy with
logits was used for training. This is a method employed
when the prediction is based on a classification problem with
probabilities. The value of the coefficient has been set based
on the graph of the loss coefficient generated with the loss
value of each epoch [13].

To do the implementation of this neural network the tech-
nology used was TensorFlow. This is due to the generated
models are compatible with their execution in mobile devices
with TersorFlow Lite [14].

D. Prototype

A prototype has been developed that allows us to validate
the predictions performed by the selected model to automate
the device interactions. In this sense, a client-server archi-
tecture has been chosen for the prototype, consisting of an
Android client and a Python server. A server in the cloud
is used to define and train the model. The trained model is
downloaded by the Android application to be able to predict
the interaction of that device with the rest of IoT devices in
the environment. This allows us to predict and automate the
interaction of the owner of the mobile device.

(a) (b)

Fig. 3: App views: (a) IoT devices of each environment; (b)
Simulation of device interactions predictions.

In this sense, a specific model is created for each
user/mobile device. The generated model is linked to the user
using her/his Google Advertising ID.

The developed application can execute the defined model
and simulate the interactions with IoT devices. Currently, it
can simulate different environments with different not-real IoT
devices (Fig. 3a). With these devices, the different actions can

be performed manually and saved in a registry. This registry is
used for refitting the model every day. Then, the model is used
to automate the interactions with the devices. If an interaction
is incorrectly predicted, the user can correct it (Fig. 3b). This
information is used to provide feedback to the model in order
to improve future predictions. All the information generated by
the application is stored in a log (such as the context of the
prediction, the predicted action, if the action was corrected,
the correct action, etc.). That log was used to evaluate the
performance of the selected techniques.

IV. VALIDATION

To validate the system, the developed application has been
used by five users in their daily routine. Five different sce-
narios and IoT devices were defined where each user had to
use the application in those devices depending on their usual
behaviour.

A. Scenarios definition

Each of the defined scenarios was used to generate metrics
separately. On the one hand, three of the five scenarios were
used to record information on tasks that are performed when
the user arrives at a specific environment (Scenarios 1 to 3). On
the other hand, the other two scenarios were used to record
all the actions that the user performs when s/he already is
in a specific situation (Scenarios 4 and 5). The scenarios are
defined as follows:

• Scenario 1: A scenario that represents the behavior of a
person who works from Monday to Friday morning. In
the afternoon, s/he is usually at home watching TV.

• Scenario 2: A scenario that represents the behavior of a
person who works from Monday to Friday (morning and
afternoon). On Saturday s/he is at home and on Sunday
s/he goes to her/his parents’ home.

• Scenario 3: A scenario that represents the behavior of a
person who works from Monday to Friday morning. In
the afternoon, s/he does not follow a pattern of behavior.

• Scenario 4: A scenario that represents the behavior of
a person who works from Monday to Friday, morning
and afternoon (except Fridays). On weekends s/he goes
to her/his parents’ home.

• Scenario 5: A scenario that represents the behavior of a
person who works from Monday to Friday morning. In
the afternoon, s/he goes to her/his parents’ home by car.

The validation lasted three weeks. The two first weeks
were used for training the model with information about the
different actions that the users performed with the present
devices in each environment. And the last week was used for
the testing phase in order to get prediction and evaluate them.
Some predictions were also made during the two weeks of
training, to check how much data were needed for the system
to start learning new behaviours and how the predictions
improved with new records. However, this depended a lot on
how frequent the behaviour is.



B. Results

First, regarding the responsiveness, it is interesting to in-
dicate that on average 11.05 seconds are required to refit the
neural network with the inputs of each user every day and 1.35
milliseconds on average are required to make a prediction.
As can be seen, the responsiveness is very good for almost
any IoT application. Other similar proposals [8], are getting
prediction times of 896.1 milliseconds (when the number of
devices is small) and 1.21 seconds (when the number of
devices is higher). Training times are not included in these
proposals.

Second, regarding the accuracy, the results obtained for each
scenario can be seen in Table II. In this table, the number of
predictions, the correct and the incorrect ones are detailed.
This table also shows the total row that represents the joint
results for every scenario.

TABLE II: Table of predictions.

Scenario Predictions Correct Failed Accuracy
Scenario 1 109 83 26 0,76
Scenario 2 245 212 33 0,86
Scenario 3 69 64 5 0,92
Scenario 4 78 67 11 0,85
Scenario 5 72 63 9 0,87
Total 573 489 84 0,85

By analyzing the joint results for every scenario, we have to
notice that 84 predictions were not correct. According to this,
we detected that 76 were produced by trying to predict actions
that do not have a specific behaviour pattern, since there were
records of different actions for the same device in the same
context, and for the same user. For example, imagine a person
who sets a different television channel every day when arriving
at home. If the system tries to predict which channel the person
will choose, the probability of getting a correct prediction is
low. For the other 8 incorrect predictions, the model was not
able to learn the action. Therefore, it can be said that only 8
out of the 573 predictions were not correct.

Fig. 4: Probability of predictions per environment.

Besides, if it is assumed that the number of failures is
mainly due to actions that cannot be predicted, it can be
observed in which environments (Fig. 4) and for what types
of devices (Fig. 5) the behaviour is more changing and our
model can obtain worse results. As can be seen in Fig. 4 and
Fig. 5, the environment with a higher probability of failure
is the ”Car” and the type of device with the most failures

Fig. 5: Probability of predictions per type of device.

is the ”Speaker”. Evaluating the obtained logs, we identified
that this is because the users make short trips by car and the
speaker is turned on and off in a short time and because they
do not listen to the same type of music on the same route. In
these situations, the presented system is more likely to fail.

TABLE III: Table of measures over probabilities.

Measure Correct predictions Failed predictions
Min. value 0.3266 0.2347
Max. value 0.9970 0.9667
Average 0.7762 0.5817
Typical Deviation 0.1763 0.1563

In addition, we also evaluated the probability of success for
every prediction in order to identify a threshold that allows us
to know when a predicted action should be performed or not.
In Table III can be appreciated the average, the maximum and
the minimum value and standard deviation for the probability
of the correct and the failed actions.

(a) (b)

Fig. 6: Univariate distribution of probabilities: (a) for correct
predictions; (b) for failed predictions.

TABLE IV: Table of measures over threshold.

Threshold False neg. False pos. Correct % Success
0.40 41 55 477 0.832461
0.42 54 44 475 0.828970
0.44 67 42 464 0.809773
0.46 76 41 456 0.795812
0.48 84 36 453 0.790576
0.50 99 34 440 0.767888

Finally, to determine the threshold, an univariate distribu-
tion has been created with the value of the probability of
success of the correct (Fig. 6a) and failed (Fig. 6b) predictions.
Thanks to these data, and reducing the number of false



positives even if the accuracy is reduced, it can be determined
that the best threshold is over 0.4 and 0.5. Besides, in Table IV
it can be observed that a threshold of 0.42 is better, because
a lower threshold include more false positives.

In conclusion, it can be stated that the algorithm has been
able to correctly predict 85% of the interactions, failing only
in 1% of the predictions or when the performed actions do not
follow a pattern.

V. DISCUSSION AND CONCLUSIONS

In this paper, a system that allows us to predict interactions
with the IoT devices in an environment has been proposed.
This approach makes use of contextual information from the
environment, previous interactions and the devices’ informa-
tion. To do this, a neural network was used after evaluating
the performance in accuracy and prediction time.

These solutions are required in order to be able to implement
a true IoT paradigm in which devices are used to automate
tasks instead of leading the user to be constantly interacting
and re-configuring the different devices depending on people’
needs. In addition, the presented system is able to learn and
adapt the prediction to the new needs.

We are currently working on integrating the defined model
with real and heterogeneous devices. To that end, we are com-
bining the presented model with a framework already defined
to improve the interactions among heterogeneous devices by
means of semantic web [15]. It is also intended to be able to
define and to train the model in the final device, without the
need for a server to train the model and send it to the device
to make the predictions.

Finally, we are also working on deploying this model in
social environments, in which the behaviour is not the same
depending on whether a person is accompanied or not, who
accompanies them and what are the needs of each one.

For this experiment, the model is executed in the user’s
mobile device, which will be the only one performing the
interactions with the real IoT devices. However, this solution
will not work in social environments, where we will need a
network of mobile devices that communicate with each other
or a master device to which all IoT devices and smartphones
are connected.

RESOURCES

• Full validation document [16].
• Dataset of synthetic data [17].
• Datasets of actions performed by each person in valida-

tion phase [18].
• Logs of results of predictions in validation phase [19].
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