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Abstract—In population and clinical-based studies, UV wear-
able sensors are increasingly being used to estimate UV exposure
and time spent in physical activity outdoors, which is critical for
understanding people’s sun exposure behavior. This is particu-
larly important in young adults at risk of developing melanoma
as well as melanoma survivors, who want to continue engaging
in outdoor activities which are a normal source of recreational
physical activity. While wearable sensors provide objective and
timely measures in free-living populations, self-report data are
needed to provide important contextual information (e.g. sun-
screen applied, clothing to protect from the sun) that improve our
understanding of health behaviors. However, lack of proper time
alignment between sensor and self-report data hinders analyses
incorporating these data streams. We formulate this problem of
alignment as a network flow graph and propose a Sensor Self-
Report Alignment (SSRA) framework to fuse and align data
from a chest-worn UV sensor, a hip-worn physical activity sensor,
and a self-report. We performed a study on 40 participants
(20 melanoma survivors, 20 young adults, who were first-degree
relatives of melanoma survivors) who wore a chest-worn UV
sensor and a hip-worn physical activity sensor for 7 consecutive
summer days (total of 254 days assessed) and provided end-of-day
self-reports of sun protection. The proposed SSRA framework
provides a new approach to aligning sensor and self-report
data, which results in significant changes in measures of time
outdoors, as assessed by UV or physical activity sensors. This
paper highlights the importance of using wearable sensors and
alignment to self-report to reduce sun exposure assessment error,
while laying the groundwork for integrating such a framework
into population-based studies.

Index Terms—alignment algorithm, wearable sensors, mobile
health, self-report, sun exposure, physical activity

I. INTRODUCTION AND BACKGROUND

Subjective self-reports of behavior are prone to measure-
ment error and response bias [1], [2]. To mitigate these
problems, objective wearable sensors are being developed to
provide more automated measures of participant behavior.
Researchers are increasingly deploying both types of measures
[3]. However, alignment of sensor and self-report data is often
not a straightforward process, due to the need to correct

Fig. 1. Challenges in data collected from subjective self-reports: (a) The
person misreports the time of the basketball game. The actual and reported
times do not align. (b) The person forgets to log taking their dog out for a
walk even though sun exposure time was greater than 15 minutes in duration.
(c) The person misreports the time they walked their dog. In addition, the UV
sensor hasn’t captured this exposure event.

for errors in each measure, thus hindering our ability to
correctly account for the unique information each measure
can offer [4]. Forgetfulness in end-of-day self-reports can
lead to misalignment of data. For example, an individual may
misreport an outdoor basketball game as starting at 11:30am as
opposed to 10:30am (Fig. 1a), or miss a self-report all together
(Fig. 1b).

Existing wearable physical activity measures, such as actig-
raphy (ActiGraph GT3X-BTLE, FL), have been used as ob-
jective measures to estimate sedentary, light, moderate, and
vigorous physical activity. However, given inaccurate self-
reports of time spent outdoors, the estimates provided by
actigraphy will not correspond to self-reported activity. As



depicted in Fig. 1a and Fig. 1c, this misalignment can lead
to inaccurate estimates of sun protected outdoor activities. As
a result, alignment between self-report, UV sensor readings,
and actigraph is needed to improve estimates of UV exposures.

Melanoma survivors are known to be at risk of developing
another melanoma [5], and the same patterns of sun exposure
that caused the initial melanoma contribute to the risk for
a second melanoma [6]. First degree relatives of melanoma
survivors also have an increased risk of melanoma [7]. Despite
the importance of sun protected UV exposure, even individuals
at a risk of melanoma do not generally display high levels
of knowledge about UV and are often unaware of the extent
of exposure they have received and sustain sunburns. Yet,
melanoma survivors also report decreases in their level of
physical activity following treatment, potentially in an attempt
to decrease their sun exposure [8]. Thus, there is a need
for more research designed to understand and intervene upon
melanoma survivors’ sun exposure and physical activity.

While there has been an attempt at using both self-report and
sensor measures of physical activity [9], eating [10], sun expo-
sure [4] and psychological factors (e.g. stress [11]), validation
of measures often occurs separately and in different research
communities. Behavioral scientists often validate self-report
measures using techniques such as Multitrait-Multimethod
Matrix (MTMM) [12], and more recently, computer scientists
are validating objective measures either through in-lab or in-
field visual confirmation [13], [14] or in the event of stress,
through in-lab stress induction protocols [11]. However, the
focus is often on developing accurate objective measures or
combining self-report and sensor information, as opposed to
mitigating the errors between the two measures to combine the
two and inform a more accurate measure. Our work provides
a first step in identifying a framework for alignment of self-
report and sensor data by using the strengths and weaknesses
of each measurement modality to inform our understanding of
the construct.

Recent work has looked into assessing recall of sun ex-
posure by integrating UV dosimeter and self-reported data
using a network flow framework [15]. Our effort attempts
to validate this approach, while also incorporating a physical
activity tracker, to see if alignment not only has a significant
effect on estimating time spent outdoors, but also in estimating
minutes of physical activity.

Contributions: In this paper, we develop the Sensor Self-
Report Alignment (SSRA) framework to align self-report,
chest-worn UV sensor and hip-worn physical activity sensor
to adjust for misalignment between them. We believe this
method is robust to errors resulting from both subjective and
objective measures. We evaluate our proposed methods on
40 participants in the real-world with 254 days and 373.32
hours of self-report data, 586.93 hours of UV sensor data and
2467.35 hours of physical activity data. Our proposed methods
provide the pervasive community with an ability to understand
more accurately the validity of different measures, and a way
to more precisely compare subjective and objective measures.

Fig. 2. Framework for aligning self-report measures to sensor data.

II. STUDY OVERVIEW

Forty participants consisting of 20 adult melanoma survivors
and 20 young adult first-degree relatives of melanoma sur-
vivors, who were not related to the participating melanoma
survivors, were recruited to participate in this observational
study. Participants without daily access to a computer, smart-
phone, and wireless internet and those who did not affirm
that they would be outdoors for at least 1 hour a day with at
least 30 consecutive minutes throughout a 7-day assessment
period were excluded from the study. Each participant received
an email explaining the research followed by a phone call
to schedule an in-person meeting to receive the sensors and
install the UV sensor app onto their smartphone. If participants
preferred, the sensors and written directions for installing the
UV sensor app were mailed to the them. The participants were
provided with a UV sensor (Shade ®v1, YouV Labs Inc.,
NY) to be worn on the left shoulder and a physical activity
sensor (ActiGraph GT3X-BTLE, FL) to be worn on the hip
and written instructions on using the devices. Informed consent
was obtained online prior to completing the baseline survey on
the first day of study participation. A link containing the Daily
Minutes of Unprotected Sun Exposure (MUSE) and Physical
Activity survey was emailed to the participants each day. At
the end of each day, participants used this REDCap survey to
self-report their outdoor activities and sun protection habits.
The survey provided space to record problems with wearing
the devices or performing data download from the UV sensor.
The study lasted 7 days, and participants received a $100 gift
card at the end of the study when the devices were returned.

III. METHODS

Our framework for aligning self-report measures to sensor
data is depicted in Fig. 2, and is a modified version of prior
work [15]. In our current algorithm we provide a method for
correcting UV sensor start and end times, and incorporate
a physical activity search algorithm to improve alignment
during missing UV sensor readings. The data collection phase
describes the self-report, UV sensor and physical activity
measure. The data pre-processing step prepares the data for
analysis, filtering self-report and sensor readings outside the
predefined time, and corrects the start and end times of UV
sensor readings. The density clustering groups fragments of
UV sensor readings into single events and removes readings
shorter than 15 minutes. The next step is where self-reports
are aligned to UV and physical activity sensors. The final step
is of evaluation where we evaluate different metrics reported
prior to and post applying the framework.



A. Data Collection for self-report and sensor measures

1) Self-report: The Daily MUSE Inventory [16] is a com-
puterized measure, administered using REDCap [17], and
assesses sun exposure based on the outdoor activities that a
participant completes during a specific period of time. Each
day, participants were asked to report details of all outdoor
activities performed for more than 15 minutes between 6am
and 6pm. After selecting an activity description (e.g. walking,
biking), participants added start and end times, and reported
the clothing they were wearing on four separate body regions
(head, torso, legs, and feet) by selecting pictures of clothing
options with varying coverage, represented by 5 pictures each.
Additional items assessed whether they sweat or got wet, and
whether they wore sunglasses, or gloves. Participants then
reported all instances of sunscreen use, including the time,
body sites and SPF of sunscreen applied (or reapplied).

2) UV Sensor: To measure minutes of outdoor exposure
and UV dose, the Shade sensor was used [18]. The sensor
affixes to clothing with a magnetic ring, which makes it easy
to wear and prevents damage to clothing. The Shade UV
sensor is shown to provide accurate estimates of UV dose and
time spent outdoors [19]. The battery lasts 5 days on a single
charge. The sensor is paired to a mobile app (iOS; Android)
with transmission of data using Bluetooth Low Energy. This
device maintains an internal data log of accumulated UV dose
(J/m-2) every 6 minutes; estimates of exposure minutes are
rounded up to the closest multiple of 6. Participants wore the
UV sensor affixed to their clothing when outdoors; however,
it was removed for water-based activities.

3) Physical Activity Sensor: To measure counts of physical
activity, the ActiGraph sensor was worn affixed to a belt
around the waist with the sensor positioned on the non-
dominant hip. Participants wore the sensor when awake;
however, it was removed if the participant was engaged in a
water-based activity. The ActiGraph data was collected in one-
minute intervals (epochs). Each valid minute of wear time was
classified according to intensity (counts/min) using commonly
accepted cut-points: sedentary (<100), light (100-2019) and
moderate to vigorous physical activity (MVPA; ≥2020) [20].

B. Pre-processing

The analysis was performed on 40 participants and 254
days. From a total of 280 days (7 for each participant),
26 were removed (8 days were removed due to participant
noncompliance, minor technical issues, such as dead battery,
or lack of sensor wear; 18 days were true zeros with no sun
activity recorded). For the time of year and the location where
participants were recruited, sun exposure before 6am and after
6pm is known to have minimal adverse effect on the human
skin. Hence events recorded before 6am and after 6pm were
removed from all three data sources (self-report, UV sensor
and physical activity sensor).

After pre-processing, there was a total of 373.32 hours
of self-reported data, 586.93 hours of UV sensor data and
2467.35 hours of physical activity sensor data. On average, a
participant recorded 9.33 hours of self-report data, 14.67 hours

of UV sensor data and 61.68 hours of physical activity sensor
data across the 7-day study. An average of 2.13 hours of self-
report data, 2.35 hours of UV sensor data, and 9.71 hrs of
physical activity sensor data were recorded per day.

C. UV Sensor Start and End Time Correction

Objective sensors often collect data at fixed intervals (e.g,
every 1 minute, 6 minutes, 10 minutes etc.) to optimize battery
lifetime. The UV sensor used for the study stored UV data at
6 minute intervals (e.g. if a participant had between 1 seconds
and 5 minutes 59 seconds of sun exposure, the sensor would
record these instances as 6-minute events). An estimation of
time outdoors that simply sums all 6-minute readings will
overestimate outdoor time. Hence, we devised a method to
trim the length of the 6-minute segments that were either
first or last in a series of exposure events by extrapolation
based on UV dose of the interior 6-minute readings. For events
comprised of three 6-minute readings, the ‘interior’ UV dose
was the second event. For events comprised of four 6-minute
readings, the ‘interior’ UV dose was the average of second and
third readings. For events longer than 4 6-minute readings, the
two most proximal events to the first and last readings were
averaged to serve as the ‘interior’ UV dose. In all UV sensor
events more than 3 segments in length, the UV dose for these
‘terminal’ segments were divided by the average UV dose for
the corresponding interior segment(s) and then this value was
multiplied by 6 minutes to obtain the minutes of exposure in
‘terminal’ UV sensor segments. Fig. 3 illustrates this method
using a UV sensor event with 7 segments.

Fig. 3. Illustration of UV Sensor Start and End Time Correction.

D. UV Sensor Data Clustering

Sensor data is often fragmented because the sensor captures
participants going into and out of the shade when they are
outdoors. However, participants may not report going in-and-
out of the shade. Due to the large fragments of UV sensor
measurements, clustering of these measurements is necessary
to identify isolated events for alignment with self-report. We
adopt a similar UV sensor data clustering approach [15] which
filters single isolated 6 minute events (since these may range
from a few seconds of sun exposure to 6 minutes) and they
are shorter than the minimum required duration for a self-
report event. We then cluster sensor events that are separated
by 6 minutes in duration (this represents a potential in-and-out
activity while the individual is outdoor), and so we merge these
events together. Once clustering is applied, any remaining



Fig. 4. Illustration of the graph flow solution: (a) Illustration of the flow graph construction from self-reports and sensor events. The network optimizes the
false negative minutes, by adding the effect of displacement between self-report and sensor events on the flow of the network. (b) Illustration of the residual
flow network upon applying Edmonds-Karp algorithm and the aligned self-reports and sensor events.

sensor events that are shorter than the 15-minute minimum
duration for self-report are removed prior to alignment.

E. Alignment Optimization
End-of-day self-reports are prone to misalignment in time,

due to forgetfulness. We re-align self-reports with the clusters
of sensor data by determining an optimal assignment with the
objective of reducing false negative minutes, while minimizing
the displacement of each self-report.

1) Exhaustive Solution: Given participants may forget the
order of their exposure events, given m self-reports and n
sensor events, looking at every combination of self-reports
with sensor events requires a time complexity of O(m!+mn).
Since the order of assignment will impact the total reduction
of false negative minutes, an exhaustive approach would be to
analyze every combination of self-report alignments.

2) Bounding Exhaustive Solution: Since individuals are
unlikely to misalign events that occur farther apart, we attempt
to define a bounding box within which self-report can be
assigned to a sensor event. To determine the optimal bounding
box size, we analyze the distance in time between every
unassigned self-report and its nearest sensor event. Based on
the difference in start times or end times (the minimum of the
two), we then take the mean distance md as the bound for
assigning a self-report to a sensor event.

3) Graph Flow Solution: Given a large number of self-
reports the exhaustive approach of identifying every possible
assignment combination will take a long time to compute and
does not account for a self-report being assigned to more
than one sensor event. To solve this problem, we reduce the
problem to that of a max-flow min-cut problem.

In optimization theory, maximum flow problems involve
finding a feasible flow from a single-source to a single-sink
such that the flow in the network is maximized [21]. The flow
in our problem is considered the number of misaligned minutes
that we aim to re-align to sensor measurement events.

Every self-report and sensor event is represented with a node
SRi and SEj , respectively, in the network. A directed edge
is defined between each self-report and sensor event that is
within md distance of the self-report start time or end time,
where the edge capacity is the maximum number of self-report
minutes that can be aligned to a sensor event.

The source node (S) is connected to each self-report node
with a directed edge where the capacity is the duration of the
respective self-report. Every sensor event node is connected to
the sink node (T) with a directed edge where the capacity is
the duration of the respective self-report.

We apply the Edmonds-Karp algorithm which is an imple-
mentation of the Ford-Fulkerson method and computes it in
O(V E2) time [22], where V is the number of nodes and E is
the number of edges in the network. V and E can be further
expressed as m+n+2 and m+n+mn respectively where m is
the number of self-reports in a day and n is the number of
sensor-events in a day.

The problem with this network is it will assign self-reports
to sensor event clusters independent of the displacement in
time between the self-report and the cluster. As a result, we
add a penalty to the flow between self-report and sensor event
clusters. We define fij = Cdij , where dij represents the
minimum of the displacement in start time time or end times
between SRi and SEj , and C is a weighting that adjusts the
effect of d on the network.

Fig. 4a illustrates an instance of misalignment between self-
report and sensor reading and the resultant false negative
minutes. The participant reports 2 outdoor events (SR1 and
SR2), however, the UV sensor captures 4 sensor events after
clustering (SE1, SE2, SE3, and SE4). By not aligning the data,
it seems the participant missed completely reporting on SE3
and the majority of SE2, suggesting 108 false negative minutes.
When in reality the participant was probably not as accurate
with their start and end times, and SE1, SE2, and SE3 belong
to one outdoor activity, with 3 false negative minutes (Fig.
4b). Fig. 4b shows how the self-reports and sensor events are
aligned using the SSRA framework.

F. Physical Activity Search

For the self-reports that remain unaligned to UV sensor
events after alignment, we examine the description provided
for them in the self-reports. Participants choose from a list of
14 responses to answer this question. One of 14 responses
(i.e., Seated Activities) implies sedentary physical activity.
Other activities imply the participant is performing light to
vigorous physical activity. Based on this information, we



Fig. 5. Illustration of the Physical Activity Search method

search within a bounding box md before the start and after
the end of the self-reported outdoor activity. We search at an
increment of 1 minute within the bounding box to identify the
time frame in which the self-report would overlap with the
maximum number of sedentary minutes (for Seated Activities)
or non-sedentary minutes (for the remaining 13 non-sedentary
activities) reported by the physical activity sensor. Fig. 5
illustrates this technique, with a 1 hour bounding box where
a light-intensity walking activity is self-reported to start at
9:45am, when in reality it started at 8:45am, which was found
using our search technique.

G. Evaluation

We report the following minute level metrics: 1) false
positive self-reported minutes: number of minutes in a day
where the participant reported positive sun exposure in the
self-report and was recorded as negative sun exposure by
the UV sensor; 2) false negative sensor minutes: number of
minutes in a day where the participant reported negative sun
exposure in the self-report and was recorded as positive sun
exposure by the UV sensor; and 3) Jaccard: fraction of the
minutes reported in the self-report in agreement with the
UV sensor data over the sum of total minutes of positive
sun exposure recorded by the UV sensor and false positive
exposure reported in the self-report.

Paired two-sided t-tests were performed on the minute-level
metrics to assess whether a significant change was observed in
them after applying the SSRA framework. Additional paired
two-sided t-tests were done on sedentary, light, moderate, and
vigorous activity minutes reported by physical activity sensor
before and after our framework.

We present the run time (in seconds) and the asymptotic
time complexity analysis of the SSRA framework, Exhaustive
and Bounded Exhaustive solutions, and report average false
negative minutes and Jaccard for each alignment solution.

IV. RESULTS

A. Alignment Algorithm

To determine the optimal size of the bounding box md,
we analyzed the offset of the misaligned false positive self-
reports from the nearest false negative self-report within a day.
The mean offset was 62.37 ± 60.89 minutes. Offsets that
were more than 3 standard deviations from the mean were

considered as outliers and not included in the analysis. We set
the size of the bounding box md (the farthest distance a self-
report can be assigned to a sensor cluster) to be 60 minutes.

The value of the weighing term, C for the network penalty
was varied between 0 and 1 and best results for average false
negative minutes were obtained for C = 0.1.

Table I compares the performances of the alignment so-
lutions. There is a 76% reduction in run time between the
Exhaustive (19.18 seconds) and Graph Flow (4.6 seconds)
and 52% reduction between the Exhaustive Bounded (9.5
seconds) and Graph Flow solutions. The Graph Flow solution
outperforms the Exhaustive solution as it allows for partial
assignment of self-reports to sensor events. This contributes
towards the reduction of false negative minutes by 3.5% (57.54
mins for Exhaustive, 55.51 mins for Graph Flow), and increase
in Jaccard by 7.4% (0.27 for Exhaustive, 0.29 for Graph Flow).

TABLE I
COMPARISON OF THE THREE ALIGNMENT SOLUTIONS

Alignment Run time Runtime Avg. False Avg.
Solutions (in secs) complexity negative Jaccard

minutes
Exhaustive 19.18 O(m! + mn) 57.54 0.27
Bounded 9.5 O(m! + mn) 58.53 0.25
Exhaustive
Graph Flow 4.6 O(VE2) 55.59 0.29

TABLE II
AVERAGE EVALUATION METRICS OBSERVED FOR PARTICIPANTS (N=40)

PRIOR TO AND POST SSRA FRAMEWORK

Metrics No Alignment Post SSRA
Framework

Sun
Exposure

Jaccard 0.18 ± 0.18 ∗ 0.29 ± 0.22 ∗

False negative 83.65 ± 32.19 ∗ 55.51 ± 28.31 ∗

minutes
False positive 33.88 ± 31.05 27.92 ± 32.67
minutes

Physical
Activity

Sedentary 38.21 ± 40.64 ∗ 25.19 ±17.83 ∗

minutes
Light 30.56 ± 31.77 ∗ 22.97 ± 27.48 ∗

minutes
Moderate 9.86 ± 9.77 8.91 ± 8.88
minutes
Vigorous 0.16 ± 0.49 0.14 ± 0.39
minutes

∗ p < 0.01

B. Significant Changes to Sun Exposure and Physical Activity
A statistically significant improvement can be observed in

the average Jaccard (61% increase) and false negative minutes
(33% decrease) prior to and post alignment. There is a 17.3%
decrease in false positive minutes, however the difference is
not significant (Table II). We also notice a significant decrease
in sedentary, and increases in both light and moderate physical
activity minutes outdoors.

V. DISCUSSION AND CONCLUSION

Analyses revealed significant changes in sun exposure dura-
tion and physical activity estimates after applying the SSRA.



Using this framework enables alignment of more sensor events
and self-reports. With minor modifications, the SSRA frame-
work may be extrapolated to other problem domains such as
aligning eating self-reports [23] with sensor measures, physical
activity self-reports [24] with sensor measures, along with
stress sensor and self-report alignment [11].

Understanding accurate personal UV sensor exposure has
significant impact in clinical and population settings. These
studies ultimately effect treatment as well as urban and envi-
ronmental policy. Accurate understanding of sun exposure and
physical activity is needed in order to provide effective solu-
tions that encourage sun-protected physical activity. Wearable
sensors are being increasingly used over approaches that rely
predominantly on self-report; however, temporally aligning the
two modalities has proven to be a challenge. We provide
an efficient SSRA framework that runs in real-time using
optimization theory and bounded search from two sensing
modalities, a UV chest-worn sensor and a hip-worn physical
activity tracker. Our results support the value of SSRA, show-
ing how sun exposure times and physical activity estimates
without alignment may misguide treatment recommendations.
We show significant reduction in false negative sensor minutes
and significant improvement in agreement between sensor and
self-reports (Jaccard). We also show significant reduction in
sedentary, and increase in light and moderate intensity physical
activity levels. Future work will look into testing the SSRA
framework on a larger sample size and identifying differences
between melanoma survivors and young adults, deploying the
SSRA framework across clinical and population-based studies,
designing timely interventions to reduce UV exposure and
increase awareness of sun protection habits, and testing the
SSRA framework in several other health-based applications
that combine sensor and self-report measures.
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