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Abstract—Monitoring crowdedness in public spaces such as
shopping malls is useful for various services like marketing,
safety, evacuation planning. For infrastructure-based people
counting, Wi-Fi Channel State Information (CSI) has attracted
attention as it does not require any additional deployment.
However, the existing approaches assume multiple fixed infras-
tructures such as Wi-Fi access points (APs), which is different
from standard AP deployment since they are installed for wireless
network services. To solve this problem, our goal is to estimate the
number of people (i.e. people counting) by using mobile devices
such as smartphones and a small number of fixed APs. Since CSI
represents the difference between the amplitude and the phase
of the transmitted and received radio waves, we can estimate the
change of the propagation environment from CSI. However, CSI
is very noisy due to various factors that are not related to the
number of people. In this paper, we focus on Sampling Frequency
Offset (SFO), Carrier Frequency Offset (CFO), A/D Converter
(ADC) delay, and quantization error, and design methods to
mitigate their effects. Then, we propose people counting by
using CSI variance as a location-independent feature for machine
learning. From the evaluation results, we have confirmed that our
method achieves the Root-Mean-Squared-Error (RMSE) of 0.49,
which is much better than RMSE of 3.7 without denoising.

Index Terms—Channel State Information, CSI, Wi-Fi, People
Counting, Mobile Sensing

I. INTRODUCTION

In public spaces such as shopping malls, stations, airports,
information about crowdedness at each area is useful for
various purposes like marketing, safety, and evacuation plan-
ning. Various approaches have been investigated to estimate
the number of people (i.e. people counting). A camera-based
approach [1] is one of the emerging methods because of the
significant progress of deep learning. However, camera blind
spots are a major drawback which may require additional cam-
era installation. Privacy concern is another major drawback
of the camera-based approach. Another approach is Wi-Fi
probing which counts the number of Wi-Fi MAC addresses

[2]. Although Wi-Fi probing does not require additional de-
ployment, the estimation accuracy decreases depending on
environments because each person does not always have one
mobile device. Some people may have multiple mobile devices
while some others, such as children do not have any devices.

On the other hand, Wi-Fi Channel State Information (CSI)
has attracted attention as it can passively monitor crowdedness
by monitoring the change of radio propagation at Wi-Fi Access
Points (APs) [3]–[6]. CSI is information acquired between a
transmitter and a receiver to improve wireless communica-
tion performance using Multiple-Input and Multiple-Output
(MIMO) specified in 802.11n and later. For each subcarrier
of Orthogonal Frequency Division Multiplexing (OFDM), the
change in phase and amplitude between Tx and Rx anten-
nas is reported by complex numbers as CSI. Compared to
RSSI(Received Signal Strength Indicator)-based people count-
ing [7], CSI provides more abundant information (i.e. phase
and amplitude) on the radio propagation paths. Furthermore,
we obtained CSI for each subcarrier, which further increases
the amount of information.

The existing CSI-based people counting assumes multiple
transmitters and receivers (e.g. APs) deployed in the target
environment and builds a model to estimate crowdedness
(the number of people or the crowdedness level) by machine
learning. However, most of them require dense AP deployment
(e.g. four APs in one lecture room), which is not realistic since
APs are originally installed for wireless communication.

To solve the problem, our goal is to estimate the number
of people in the target area by using mobile devices such as
smartphones. We assume a small number of fixed APs are
deployed, and some cooperative users hold mobile devices.
We can capture Wi-Fi CSI between each pair of an AP and a
mobile device within the AP radio range. Then, we estimate
the number of people in the AP radio range based on the
reported CSI within the radio range (see Fig. 1).



Fig. 1. Target Environment

The first challenge in our approach is the mobility of the
devices because CSI is sensitive to changes in the radio propa-
gation environment. The other challenge is CSI distortion due
to CSI measurement noise. To tackle the first challenge, we
propose variances of the amplitude and the phase as location-
independent features. For the second challenge, we design a
denoising scheme by modelling the CSI noise. Specifically,
we focus on four types of noise: Sampling Frequency Offset
(SFO), Carrier Frequency Offset (CFO), conversion delay in
A/D converter, and quantization error. On the receiver side,
SFO and CFO are introduced due to the offset of the oscillators
between a transmitter and a receiver. To mitigate SFO and
CFO, we employ the CSI ratio [8]. In the CSI ratio, SFO and
CFO are removed by taking the ratio of CSI for each antenna
pair by using the fact that CSI is simultaneously acquired
for all antenna pairs, which means CSIs obtained by different
antennas share the same SFO and CFO. We also mitigate A/D
conversion delay by focusing on its linearity since it is due to
the processing delay of A/D converter on the reception of the
signal of each subcarrier. Moreover, the quantization error is
caused by the loss of information during conversion from an
analogue signal to CSI by the A/D converter. Since the quanti-
zation error becomes more significant as the signal weaker, we
selectively use the subcarriers with large amplitudes. Finally,
we build a model for people counting by using CSI variance
as a feature by machine learning. From the real experiment
up to 9 people, we have confirmed the RMSE is 0.49 while
it is 3.7 without our denoising scheme. The result also shows
that the performance of our variance-based people counting is
independent of device positions.

Our contributions are summarized as below.
• To the best of our knowledge, this is the first study to

explore the possibility of CSI-based people counting by
using mobile devices.

• We propose a denoising scheme to mitigate the CSI
measurement noise based on the CSI noise model.

• We show the effectiveness of our method through the
preliminary experiment in the real environment.

II. RELATED WORK

A. People Counting by CSI

Several methods for estimating the number of people using
CSI obtained between indoor transceivers have been proposed
[3]–[6]. In the document [3], Han Zou et al. estimate the

number of people in the room using Transfer Kernel Learning
(TKL), and they achieved the accuracy of 96% in the clas-
sification of 0 to 7 people. Wei Xi et al. defined a feature
called Percentage of nonzero Elements (PEM) [4], quantified
the fluctuation in the radio wave propagation, and estimated
the number of people based on the Gray Model. In these
existing studies, they fix both the transmitter and receiver to
obtain CSI and estimate the number of people with supervised
learning. For this reason, it is necessary to collect teacher data
anew if any position of the transceiver changes. In literature
[5], it reports that they use a learning model created by CSI
acquired in one room for estimating the number of people
in another room, and no significant performance degradation
is observed. However, it is not clear how the congestion
estimation performance changes according to the positional
relationship between the transceivers.

B. People Counting with Mobile Phone

Li et al. Are working on a congestion estimation method
using mobile terminals and fixed base stations [7]. Using
Received Signal Strength Indicator (RSSI) obtained between
the smartphone and the base station, they estimate the number
of people in the room in increments of ten people from zero
to fifty people. However, they installed as many as thirty-one
base stations in a room of 8m× 12m, and there is a concern
that the cost will be high. On the other hand, this research aims
to count people for a wide range, even with a small number
of base stations using CSI acquired between mobile terminals
and fixed base stations.

III. CHANNEL STATE INFORMATION

In wireless LAN standards IEEE 802.11n and later, MIMO
(Multiple-Input and Multiple-Output) is adopted to improve
the quality of communication. OFDM (Orthogonal Frequency-
Division Multiplexing) is used as a modulation scheme that
uses multiple orthogonal subcarriers. MIMO leverages CSI
(Channel State Information) for transmission signal control
to improve the quality of the signal at the receiver. In CSI,
the amplitude and phase difference for each subcarrier in this
OFDM modulation is obtained. Let X(f, t) and Y (f, t) be the
frequency domain representations of transmitted and received
signals, respectively, with carrier frequency f . The relationship
between X(f, t) and Y (f, t) are written as:

Y (f, t) = H(f, t) ∗X(f, t) + N(f, t), (1)

where H(f, t) is the CSI and N(f, t) is the noise. Therefore,
assuming that the number of subcarriers is S for NTx antennas
of the transmitter and NRx antennas of the receiver, we can
obtain NTx ∗ NRx ∗ S pairs of the amplitude and the phase.
Compared to RSSI, CSI contains more abundant information
on conditions of the radio propagation paths. Since the channel
states change due to dynamic components including human
movement, CSI has been used for not only the improvement
of communication quality but also applications such as activity
recognition.



CSI is estimated by sending pilot signals from a transmitter
to a receiver. In practice, the estimated CSI is distorted by
various noise factors due to hardware imperfection. According
to the existing work [8]–[11], we focus on the following four
factors.
• CFO and SFO: Carrier Frequency Offset (CFO) and

Sampling Frequency Offset (SFO) are introduced because
the oscillators of the transmitter and the receiver are not
exactly synchronized.

• ADC Delay: Since pilot signals are processed by the A/D
converter of the receiver one by one for each subcarrier,
ADC Delays are accumulated linearly with the processing
order of the subcarriers.

• Quantization Error: A/D conversion of the pilot signals
on the receiver introduces the quantization error, which
amplifies the noise originally included in the CSI. The
quantization error becomes larger as the signal amplitude
smaller.

In the following section IV, we describe data processing to
mitigate the above noise factors.

IV. DATA PROCESSING

A. CSI Ratio
Each element H of the CSI H is ideally represented as:

H(f, t) =

L∑
i=1

Aie
−2jπ di(t)λ , (2)

where L is the number of paths, Ai is the complex attenuation,
di(t) is the propagation length of the i-th path, and λ is the
wave length of the subcarrier. However, in a real environment,
a random offset θoffset due to SFO and CFO is added, which
is written as the following equation.

H ′(f, t) = e−jθoffset
L∑
i=1

Aie
−2jπ di(t)λ (3)

= e−jθoffsetH(f, t) (4)

To remove the random offset due to SFO and CFO, the ratio
of CSI between a pair of antennas on the transceiver is used,
which cancels out the phase offsets [8], [11]. This is because
all the antennas of a wireless device (i.e. the transmitter or the
receiver) are connected to the same oscillator, which results in
the same SFO and CFO. The CSI ratio Hn,m between anntenas
m,n is defined as below.

Hn,m(f, t) =
H ′n(f, t)

H ′m(f, t)
=
e−jθoffsetHn(f, t)

e−jθoffsetHm(f, t)
(5)

=
Hn(f, t)

Hm(f, t)
(6)

We note that the CSI ratio can be defined between the
antenna pairs of the receiver and the transmitter. Therefore, the
CSI ratio is (NTx∗NRxC2 ∗ S)-dimensional data with respect
to the number of transmitter’s antennas NTx , the number of
receiver’s antennas NRx , and the number of subcarriers S.
Note that NTx∗NRxC2 is a combination. The CSI ratio still
retains the other features, canceling out SFO and CFO.

(a) Large quantization error (b) Small quantization error

Fig. 2. Sanitized CSI phases of different subcarriers

B. Sanitization

As described in Sec.III, ADC delays are accumulated lin-
early with the processing order of the subcarriers. Therefore, a
phase change corresponding to the delay appears. If the phase
difference per subcarrier due to the conversion delay in the
A/D converter between subcarriers is δ, the CSI ratio of the
k-th subcarrier is represented as:

Hn,m,k(fk, t) =
An,k
Am,k

e−2jπfk(t+δ(k−1)), (7)

where An,k is the complex attenuation of the k-th subcarrier
and fk is the frequency of the k-th subcarrier. Since the ADC
delay linearly increases, we can remove it by subtracting the
phase difference due to δ(k − 1) for the k-th subcarrier. For
simplicity, we put θ = fk(t + δ(k − 1)). Then, we apply the
least square method to estimate the phase delay yk of k-th
subcarrier due to the ADC Delay as below.

a =

∑S
k=1(k − S

2 )(θk − θ̄)∑S
k=1(k − S

2 )2
, (8)

b = θ̄ − a ∗ S
2
, (9)

yk = a ∗ k + b, (10)

where θ̄ is the average of θ of the all subcarriers. Finally, we
subtract yk from θk to obtain the sanitized phase.

C. Quantization Error Mitigation

The quantization error becomes larger as the pilot signal
amplitude smaller. Figure 2 shows the sanitized phases of the
CSI ratio of different subcarriers recorded at the same time
by an antenna pair. The phase of the subcarrier shown in Fig.
2(a) largely fluctuates while the phase of the other subcarrier
shown in Fig. 2(b) is much more stable. Therefore, we select s
subcarriers with little quantization error to reduce the influence
of the quantization error. Although averaging subcarriers may
work to mitigate the quantization error, our method can obtain
more information by selecting relatively reliable subcarriers.

V. PEOPLE COUNTING BY REGRESSION

A. Overview

The whole process of the proposed method is shown in
Fig. 3. We first apply denoising processes presented in Sec.
IV, extract features, and input to an estimation model trained
by machine learning.



Fig. 3. Overview of system flow

B. Feature Extraction

Different from the existing people counting using Wi-Fi
CSI, our goal is to employ mobile devices for Wi-Fi people
counting. CSI itself changes depending on the position of the
mobile device due to the change of the propagation path. The
amplitude and the phase obtained by CSI include effects due
to dynamic path changes in the propagation environment and
static effects such as reflection from walls and interference
in the propagation environment. Since the amplitude and the
phase change when the propagation path changes, they are
almost constant as long as the propagation environment is
stable regardless of the positions of the transmitter and the
receiver. This means the variances of the amplitude and the
phase increase according to the change of the propagation
environment. Obviously, people movement affects the prop-
agation paths, leading to the CSI change. As the number
of people increases, the frequency of the path change also
increases. Therefore, the variances of the amplitude and the
phase become larger with the increase in the number of people.
From the above observation, we use the variances of the
amplitude and the phase as the location-independent feature.
For the calculation of the variances, we empirically set the
width of the time window as 10 seconds without any overlap.

C. Regression model

For people counting, we build a regression model. The input
to the model is the variances of the CSI phase and amplitude
denoised by the processes presented in Sec. IV. We employ
Gaussian Process Regression (GPR) after comparison among
linear, tree, Support Vector Regression, and GPR.

VI. EVALUATION

A. Experiment Settings

In the experiment, we use a Wi-Fi AP (ELECOM WRC-
1167GHBK-S) as a transmitter and seven laptops with Intel
5300 Wi-Fi interfaces as receivers. The AP has two antennas,
while each receiver has three antennas. We used 802.11n
CSI Tool1 [12] to obtain CSI. Since it provides CSI of 30
subcarriers, the obtained CSI has 180 elements in one packet.
CSI was recorded every 10 [ms] by using the ping command
from the laptops using 5 [GHz] band. To see the effect of
different positions, we collected CSI with multiple laptops

1https://dhalperi.github.io/linux-80211n-csitool/installation.html

Fig. 4. Experiment Environment

simultaneously, as shown in Fig. 4. We note that we could
not use the data of No.3 and No.4 due to hardware failure.
We obtained CSI with 0, 3, 6, and 9 people randomly walking
in the room. We also note that people followed the random
walking pattern where s/he chooses the random direction
and walks straight until s/he reaches the wall. When s/he
reaches the wall, s/he chooses the next direction randomly
and continues walking. To evaluate small changes in positions,
we obtained CSI when each laptop was shifted to 0.5 [m] to
the left. For each experiment setting, we recorded CSI for
200 [sec]. For building the regression model, we additionally
recorded CSI for 200 [sec] at No.1. Since we use the 10-second
time window for variances without overlap, as we mentioned
in Sec. V-C, we use 20 test cases for each receiver and each
scenario.

In the following evaluation, we use the Root Mean Squared
Error (RMSE) defined as:√√√√ 1

n

n∑
i=1

(ci − ĉi)2, (11)

where ci is the estimated number of people and ĉi is the ground



Fig. 5. # of subcarriers vs. RMSE

truth in the i-th test case.

B. Results

1) Effect of Subcarrier Selection: We change the parameter
s to see the effect of the subcarrier selection. We note that
the number of variances used as input greatly depends on s.
For example, 20 variances are available for s = 1 while 600
variances are used for s = 30. We build different regression
models for each s. Therefore, there is a trade-off between s
and the performance.

Figure 5 shows RMSE for different s. We see that RMSE
gradually increases with an increase of s. This result indicates
that the effect of the quantization error gradually increases for
s > 5 and s = 5 is the best trade-off between the quantization
error and the number of variances. RMSE for s = 1 is the
worst because the number of variances used as input to the
regression model is tiny. From the result, we use s = 5 in the
following evaluation.

2) Effect of Denoising: To see the effect of our denoising
scheme, we compared the results after applying each denois-
ing. First, we estimated the number of people using the CSI
phase and amplitude variances without any denoising. First,
we found the RMSE without denoising is 3.7. After taking
the CSI ratio to remove SFO and CFO, RMSE significantly
decreased to 0.99. Then, the sanitization slightly improved
RMSE to 0.72. Finally, we selected top-5 subcarriers with
small quantization errors, which results in RMSE of 0.49.

Figures 6 and 7 show examples of the estimation results
for 100 test cases without denoising and with denoising,
respectively. The result without denoising has a large error,
which seems overfitted to output the average number of people.
On the other hand, the estimation result is very close to the
ground truth by applying our denoising scheme. From the
result, we confirmed that our denoising scheme works well.

3) Effectiveness of CSI Variance: To see the effect of the
difference in positions of receivers, we changed the receiver
positions while using the same regression model. The bar
colors in Figs. 8 and 9 indicate the distance from the original
receiver positions. As shown in Fig. 8, even 0.5 [m] difference
degrades the performance if we use the CSI raw data as a
feature. We also see RMSE varies with the change of the
positions. This is because the regression model learns static
environment factors which are location dependent. On the

Fig. 6. Example of people counting without denoising

Fig. 7. Example of people counting with denoising

other hand, as shown in Fig. 9, RMSE of regression by the
CSI variance is much more stable against different positions
although we see small errors less than 2.0.

4) Combination of Amplitude and Phase: Finally, to see
the effect of the amplitude and the phase as features, we
compared the different combinations of them. RMSE is 0.91
for the phase variance, while RMSE is 0.59 for the amplitude
variance. These are worse than RMSE of 0.49 using both of the
variances. From the result, we have confirmed the effectiveness
of the combination of the phase and the amplitude obtained
by CSI.

VII. CONCLUSION

In this paper, we proposed a method of towards people
counting using mobile devices. We design a denoising scheme
based on the noise model for the phase offsets, ADC delay.

Fig. 8. Regression using CSI raw data



Fig. 9. Regression using CSI variance

Also, the quantization error is mitigated by the subcarrier
selection. To solve the challenge of device mobility, we
proposed the variance as a location-independent feature. The
experiment results showed the effectiveness of our method,
achieving RMSE of 0.49 for 0-9 people.

Our future work includes real experiments in public spaces,
such as shopping malls. Also, we are planning to clarify the
definition of the target area for open spaces by collecting data
with accurate tracking devices such as LiDAR. Furthermore,
we design a method to combine estimation results from
multiple mobile devices.
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