
Personalized Fall Detection System
Anne H. Ngu

Department of Computer Science
Texas State University
San Marcos, TX, USA

angu@txstate.edu

Vangelis Metsis
Department of Computer Science

Texas State University
San Marcos, TX, USA

vmetsis@txstate.edu

Shaun Coyne
Department of Computer Science

Texas State University
San Marcos, TX, USA

spc51@txstate.edu

Brian Chung
Department of Computer Science

The Cooper Union
New York, NY, USA

bchung2017@gmail.com

Rachel Pai
Department of Computer Science

California State University
Long Beach, CA, USA
racheljpai@gmail.com

Joshua Chang
Dell Medical School
University of Texas
Austin, TX, USA

joshua.chang@austin.utexas.edu

Abstract—This paper explores the personalization of
smartwatch-based fall detection models trained using a
combination of deep neural networks with ensemble techniques.
Deep neural networks face practical challenges when used for fall
detection, which in general tend to have limited training samples
and imbalanced datasets. Moreover, many motions generated
by a wrist-worn watch can be mistaken for a fall. Obtaining a
large amount of real-world labeled fall data is impossible as fall
is a rare event. However, it is easy to collect a large number
of non-fall data samples from users. In this paper, we aim to
mitigate the scarcity of training data in fall detection by first
training a generic deep learning ensemble model, optimized for
high recall, and then enhancing the precision of the model, by
collecting personalized false positive samples from individual
users, via feedback from the SmartFall App. We performed
real-world experiments with five volunteers and concluded that
a personalized fall detection model significantly outperforms
generic fall detection models, especially in terms of precision.
We further validated the performance of personalization by
using a new metric for evaluating the accuracy of the model via
normalizing false positive rates with regard to the number of
spikes of acceleration over time.

I. INTRODUCTION

Wearable devices, especially smartwatches that pair with
smartphones are increasingly a platform of choice for de-
ploying digital health applications. This is due to the fact
that a smartwatch has the benefit of being unobtrusive and
comfortable to wear, as it can be seen as wearing a piece of
accessory. The popularity of using a smartwatch paired with
a smartphone as a viable platform for deploying digital health
applications is further supported by the recent release of Apple
Series 4 smartwatch which has a built-in “hard fall” detection
application as well as an ECG monitoring App. Recently,
an Android Wear-based commercial fall detection application
called RightMinder was released on Google Play. The number
of digital health applications using wearable devices is going
to continue to increase in the next few years.

However, falls continue to be one of the leading cause of
death and injury among the elderly [1]. According to the
U.S. Center of Disease Control and Prevention, one in four

Americans aged 65 and older falls each year. A recent CDC
report [2] also stated that around 28% of people aged over 65
lived alone.

The prevalent fall detection monitoring application is the
life alert system which is expensive (more than $1000 per
year) and often not effective as it requires manual input by
the users, who do not wear consistently due to inconvenience.
Installing camera technology and using advanced computer
vision to detect if a person has fallen is intrusive and is limited
to certain areas in a facility. Contrary smartwatch technology
is non-intrusive, ergonomic, and easily accessible to those who
wear it. Moreover, smartwatch technology enables monitoring
of falls anytime and in any place.

Deep Learning (DL) has demonstrated outstanding perfor-
mance in computer vision, speech recognition and natural
language processing applications. The work in [3] compared
traditional machine learning (SVM, Naive Bayes) techniques
with the Recurrent Neural Network (RNN), for fall detection
using only acceleration data captured through a wrist-worn
watch, and concluded that, even in the absence of large training
datasets, DL shows superior fall detection performance com-
pared to traditional statistical learning methods. Furthermore,
neural network-based models, once trained offline, require
fewer computational resources during real-time classification
tasks compared to traditional machine learning methods which
rely on feature extraction and processing. That makes DL
models more suitable for low-power devices.

Nevertheless, DL networks generally require large training
datasets to achieve optimal performance. In the real-time,
smartwatch-based fall detection application domain, there are
no publicly available, large, annotated datasets that can be
used for training, due to the nature of the problem (i.e., a fall
is not a common event). Training a deep neural network with
a small dataset tends to produce overfit models. Our recent
work in [4], demonstrated that the scarcity of data for training
a fall detection model can be mitigated to a certain extend
by combining DL with ensemble techniques such as stacking.
The best performing ensemble DL model (4 stacked LSTM

Fig. 1: Visualization of a front fall from two different subjects. The
three lines in each graph are the measured acceleration values in three
axes (x, y, z) over time (sec).

models) produced almost 100% recall, but exhibited 60%
precision with the test data due to high false positive rates.
When tested in the real-world by three subjects of different
heights and weights, the model showed varying accuracy of
fall detection from 95% to 70%.

Manual examination of the same type of simulated falls in
Figure 1 from two different individuals with different physical,
shows that one person’s fall is unique from others. The high
and low peaks from the two falls are considerably different.
There is variation in the time dynamic within high and low
peaks. The orientation of acceleration axes is different as well.
This suggests that each person will have their unique fall
patterns and wrist movements. We thus hypothesized that the
low precision of our DL ensemble model can be mitigated via
personalization.

Moreover, fall detection models which can only be trained
on simulated falls and activities of daily living (ADLs) per-
formed by healthy and young test subjects might not reflect
the activity levels of elderly population. This further confirmed
the need for personalization when the system is deployed.

In this paper, we aim to build a personalized fall detection
method and demonstrate that it is possible to train an accurate
personalized fall detection model via the collection of per-
sonal false positive samples feedback by end-users. The main
contributions of the paper are:

• A methodology for personalizing fall detection model
training.

• An experimental analysis on the performance of person-
alized model versus a generic model.

• A demonstration that a generic model trained using
simulated fall data can be tailored to each person unique

falling patterns via personalization.
The remainder of this paper is organized as follows. In

section II, we review the existing work on fall detection and
emphasize on research that specifically addresses fall detection
using deep learning on smartwatches and existing personaliza-
tion efforts. In section III, we introduce the SmartFall system
architecture and UI that facilitates the collection of various
feedbacks for personalization. In section IV, we provide a
detailed description of our approach to personalization. In
section V, we present various metrics including the spike of
accelerometer for the evaluation of the personalized fall detec-
tion model. Then in section VI, we present our experimental
results and discuss them. Finally, In section VII we present
our conclusion and future work.

II. BACKGROUND AND RELATED WORK

The early works in fall detection were concentrated on spe-
cially built hardware that a person could wear. Fall detection
devices, in general, try to detect a change in body orientation
from upright to lying that occurs immediately after a large
negative acceleration to signal a fall. Those early wearable
devices are not well accepted by elderly people because of
their intrusiveness and limited mobility. However, modern
smartphones and related devices now contain more sensors
than ever before. Thus there is a dramatic increase in the
research on smartphone-based fall detection and prevention
in the last few years. This is highlighted in the survey
paper [5]. The smartphone-based fall detection solutions, in
general, collect accelerometer, gyroscope and magnetometer
data for fall detection. Among the collected sensor data, the
accelerometer is the most widely used. The collected sensor
data were analyzed using two broad types of algorithms. The
first are threshold-based algorithms which are less complex
and require less computational power. The second are machine
learning-based fall detection solutions. We will review both
types of work below.

A threshold-based algorithm using a trunk mounted bi-
axial gyroscope sensor is described in [6]. The paper showed
that by setting three thresholds that relate to the resultant
angular velocity, angular acceleration, and change in trunk
angle signals, a 100% specificity was obtained. However,
there was no discussion on the practicality of attaching a
trunk mounted sensor on a person for a prolonged period
of time. There is also research work utilizing a personalized
thresholding technique for fall detection on a waist-mounted
device [7]. However, threshold-based methods do not fair well
for wrist-worn devices due to the much higher variability of
movements and ranges of acceleration.

Application of deep learning to fall detection, in particular
the use of Recurrent Neural Networks (RNN’s), to detect
falls has been attempted by researchers; however, to our
knowledge, no existing work uses solely accelerometer data
collected by a smartwatch to detect falls. In [8], the authors
describe an RNN-based architecture trained and evaluated on
the URFD dataset [9], which contains accelerometer data
taken from a sensor placed on the pelvis, and produces a

95.71% accuracy. The authors also describe a method to obtain
additional training data by performing random rotations on the
acceleration signal; training a model with this data gives an
accuracy of 98.57%.

Another system based on RNN for fall detection using
accelerometer data is proposed in [10]. The authors train and
test their model with the SisFall dataset [11], which contains
accelerometer data sampled at 200 Hz collected from a sensor
attached to the belt buckle. In order to deal with a large
imbalance in training data, of which ADL’s form the vast
majority, the authors define a weighted-cross entropy loss
function, based on the frequency of each class in the dataset,
that they use to train their model. In the end, their model
attains a 97.16% accuracy on falls and a 94.14% accuracy on
ADL’s.

Detecting falls with accelerometer data from a smart watch
was reported recently in [12]. The authors used a combination
of Ensemble Stacked Auto-Encoders (ESAE) and unsuper-
vised feature extraction, OCCCH (One-Class Classification
based on the Convex Hull) for pattern recognition. They
achieved an accuracy of 95.25% in sensitivity and 96.25%
in specificity. Their approach of reducing the fall detection
problem to a one-class classification problem since it is easy
to collect lots of training data for ADLs is unique. However,
there is no real-world validation of the experimental result.
Testing the fall detection model on a specified set of falls and
ADLs data is not a good indicator of how the model will
perform in the real-world, as we show in the experimental
section of this work.

Deep Learning for Human Activity Recognition (HAR) has
demonstrated superior classification results on raw data, and
eliminates the need for human crafted features [13]. However,
DL networks face practical performance limitations when
employed in fall detection: imbalanced dataset, small samples
and data quality can significantly degrade the performance of
the classifier. One way to overcome this real life limitations
is to combine sets of diverse LSTM learners into an ensemble
of classifiers as shown in [14]. In our earlier work [4],
we drew our inspiration from them and experimented with
Bagging, AdaBoosting, and Stacking ensemble DL models for
fall detection. We demonstrated that Stacking-based ensemble
DL model has the best recall and precision. However the
model still suffered from false positives (FP) in controlled
experiments. Our subsequent real-world experiments on the
stacking ensemble DL model concluded that the variation of
ADLs across different subjects cannot be exhaustively enumer-
ated during simulated ADL data collection experiments, thus
resulting in high false positive rates during real world testing.
A personalized fall detection model that can adapt to each
person’s daily routines and activity levels is a better approach
to resolve the high false positives problem.

In summary, our work is similar to many of the existing
works in the sense that we utilized machine a learning model
for finding fall patterns in time series data. We differ from
them in the sense that our fall detection model obtains
accelerometer data from an off-the-shelf smartwatch rather

Sensors can be
any sensor from
smart watch Receives data

Provides model
parameter updates
for fall prediction

<<Public Server>>
Geographic

Visualization Web
Service

<<Private Database>>
Sensor Database

<<Protected
Server>> REST
Web Service

<<Private Server>>
Data Analysis and
Model Training

Updates
database

Pushes
model
parameter
updates

Retrieves
data

Retrieves
data

Phones run
general sensor
collection service

Fig. 2: Architecture of SmartFall system.

than specialized equipment placed on different parts of the
body, or a smartphone. This presents several challenges not
addressed in previous work. Because of its placement on the
wrist, a smartwatch will naturally show more fluctuation in its
measurements than a sensor placed on the pelvis or belt buckle.
Moreover, the accelerometer data obtained by a specialized
equipment is sampled at a much higher (approx. 200 Hz)
frequency; this is a significantly higher than the frequency
used by commodity off-the-shelf smartwatch, which samples
at 30-50 Hz.

In the realm of personalization of fall detection using
machine learning, the study by Tsinganos and Skodras [15],
is closest to our work. Their acceleration data was sampled at
50 Hz compared to our at 31.2 Hz. Their data was collected
using a smartphone while ours is via a smartwatch. They used
a traditional K-Nearest Neighbor (KNN) machine learning
algorithm while we used deep learning. To incorporate per-
sonalization, the authors added the misclassified ADLs (i.e.
false positives) back into the training dataset one sample at
a time and concluded that seven samples could reduce false
positives by 10%. Similarly, we also collected the false posi-
tives and added them back to each training dataset. However,
we collected and added the false positives data in batches. The
size of the batch is dependent on how long the watch is being
worn continuously and how many false positives are generated
during that period of time.

Finally, existing commercial products, such as Apple Watch
Series 4, have not published any information on the method
or performance of their fall detection application. Apple’s
product description states that the smartwatch can detect “hard
falls”, however, they do not specify what constitutes a hard
fall. If fact, during our simulated fall experiments, where
healthy subjects fell on an air mat placed on the floor, Apple
Smartwatch never any detected falls.

III. SMARTFALL ARCHITECTURE AND APP

Figure 2 shows an overview of the software architecture of
our SmartFall application that we deployed for our personal-
ization experimentation. It is a three-layered architecture with
the smartwatch on the edge and the smartphone in the middle
layer which runs the application. Our system is structured
such that the sensed data from the smartwatch can be stored

Fig. 3: SmartFall App User Interface.

locally on the smartphone to preserve privacy, and is in close
proximity to the program that processes and analyzes the data
in real-time. However, due to the limited storage capacity of
the smartphone, we also provide the option of periodically
removing the sensed data or transferring the sensor data
(with consent from user) to a server securely for continuous
refinement of the fall detection model and for the long term
archival. The server, which is situated in the inner most
layer also serves as the heavy-duty computational platform
which consists of multiple services including a web server
to host applications that can visualize aggregated sensor data
for public health education, a sensor database for archiving
and visualizing sensed data from the smartwatch of the user
who has given the consent and machine learning services for
analysis of the archived data for continuous refinement of the
fall detection model.

Initially, the Microsoft Band 2 was chosen as the wrist worn
device over other options in this prototyping phase due to the
variety of sensors it supports and the low cost of acquiring the
watch. Unfortunately, at the time of this writing, Microsoft
has discontinued the support for Microsoft Band II in May
2019. Therefore, we had to port the system to run on a
Huawei watch which is Android Wear compatible and will
make our application available on more types of smartwatches
in the future. Huawei watch has similar sampling rate of 32
ms as Microsoft Band II. But, the orientation of X, Y, Z
accelerometer data sensed is different from Microsoft Band
II. However, this can be easily fixed in the data collection
codes. The Android-based Nexus 5X smartphone was chosen
to run our SmartFall application and receive sensor data from
the smartwatch via a low-power bluetooth communication
protocol. This Nexus smartphone has a 1.8GHz hexa-core
processor and 2 gigabytes of RAM memory. This proved
sufficient for real time computation of the features, and for
making the predictions, using models which were pre-trained
offline.

A. Archiving Service and UI Design

We have implemented an archiving service which can be
configured with a protocol where a participating user (with
consent) can transmit sensed data in three-minute chunks to a
designated server via a WiFi connection periodically. The UI
design for SmartFall App also includes buttons specifically for
labelling false positive, true positive and false negative data
samples in real time from users. Those labelled archived data

samples serve as additional data for re-training our Ensemble
RNN model.

Figure 3 shows four views of the user interface (UI) of the
SmartFall application. The screen on the left shows the home
screen UI for the application and the second screen shows the
UI when a fall is detected. We followed the best practices
advocated in [16] for the design of the UI for the elderly. The
three main principles we adopted were strict color scheme with
high contrasts, legible and big fonts, simple description of the
system to engage them to use it.

We will briefly highlight some of the key features of
SmartFall app. The home screen (leftmost screen in Figure 3)
launches the SmartFall App when the user presses the “AC-
TIVATE” button. The user must set up a profile and load the
profile before the App can be activated. The “I JUST FELL”
button on this screen is designed to collect and label false
negative data samples, i.e. falls that were not detected by the
App.

When a fall is detected, the second screen of Figure 3 pops
up on the smartphone, an audible sound is generated, and
a timer of 30 seconds is initiated. The user is shown three
buttons for interaction. The “NEED HELP” button will send
a text message to the caregiver and also save and label the
sensed data samples as true positives. The “FELL BUT OK”
button will save the sensed data during that prediction interval
as true positives without notifying the caregiver. The “I’M
OKAY” button will save these data as false positives. If a fall
is detected and the user does not interact with any of these
three buttons, after the timer expires, the system assumes that
the user might be hurt or unconscious and an alert message is
generated. The system can be configured to send the message
to the caregiver automatically. The third UI screen is for the
one time initialization of the user profile before the application
can be launched. This UI includes setting up the contact
details of the caregiver. Note that minimal personal data is
collected and all those data are stored locally in the phone.
The automatically generated user-id is used by the system to
differentiate different user’s data on the server. During data
archiving, only this user-id and the selected sensed data such
as the accelerometer data are sent to the server.

When saving the data samples as false positives (pressing
the “I’M OKAY” button), the user also has an option to label
the activity they were doing at the time the prompt appeared.
This allows us to keep track of what activities are difficult for
the model to recognize as ADLs. The rightmost UI screen is
being launched to enable the user to tag that activity. If the
activity is not already in the tagged list, user can select the
“Custom input” menu item and enter a new activity which will
be added to the list.

IV. METHODOLOGY

A. Experimental setup and design
The smartwatch dataset1 used to create our generic model

was collected using a Microsoft Band II smartwatch from 14

1This dataset is available from http://www.cs.txstate.edu/∼hn12/data/
SmartFallDataSet under the SmartFall folder.

volunteers of good health aged 21-60, height of 5ft to 6.5ft
and weight from 100 lbs to 230 lbs. This dataset has a total
of 528 falls and 6573 ADLs. A detailed description on how
the data was collected is available in our earlier publication
[3]. During the personalization experiments, we used Huawei
watch running Android WearOS version 2.0. Note that Huawei
watch has similar sampling rate of 32 ms as Microsoft Band
II.

Our previous research on smartwatch-based fall detection
system [4], showed that a stacked ensemble of deep LSTM
models can perform better than a single LSTM model. This
model has almost perfect recall, but has only around 60%
precision. A 60% precision means that for every fall that was
correctly detected in the test set, about 0.66 false positives
were generated. Our SmartFall data contained a total of 528
falls, which means about 348 false positives were generated
overall in our cross validation experiments. This number is
not very meaningful as an evaluation criterion of how many
false positives someone would get in real world use. That is
because the ratio of falls that exist in dataset compared to the
total size of the dataset, including the ADLs, is much higher
than what one would get in real-world use.

The goal of the personalization experiments is to validate
whether we can mitigate the false positive problem via user’s
feedbacks. The experiments were designed to minimize incon-
venience to the user who participated in the experiments while
still capturing as much information as possible about the user’s
activities that can be used to improve the model. We recruited
five users for these experiments. Each user was told to pair
the Huawei watch with the smartphone running our SmartFall
application, wear the watch on their left wrist and perform two
sessions of prescribed activities as well as wearing the watch
for a few hours, while following their usual daily routines.

The prescribed activities matched those existing in the
general training dataset and were used as a performance
control baseline. The first set of the prescribed activities is
a true positive data sample collection session. The user is to
preform at least 20 falls on a mattress (five of each: back, front,
left and right). This allows us to track the recall of the model
as it becomes personalized. The second session is the false
positive collection. The user is asked to perform a number of
prescribed ADLs (e.g. sitting down, walking, brushing teeth,
and hand waving). Table I shows the list of prescribed ADLs.
These are common activities that an individual might perform
in a day. A spreadsheet was given to each user to record
the correctly detected (true positives) and missed falls (false
negatives), as well as possible false alerts (false positives).

B. Personalization Strategy

The personalization strategy we adopted was a Training
from Scratch (TFS) strategy. TFS aims to improve the model
by re-training from scratch with additional false positive data
samples collected from a specific user. We retrain a new model
using the new dataset (feedbacks from the user) in addition
to all of the original generic dataset. The decision to adopt
the TFS approach versus a Transfer Learning (TL) approach,

TABLE I: SIMULATED ACTIVITIES OF DAILY LIVING (ADLS).

Activities Preformed
Walking for at least 60 seconds Sit down on a couch 3 times
Drink water Change the channel on a TV
Eat food Put on a jacket
Pick up 3 unique items from floor
(wallet, backpack, piece of paper) Brush Teeth

Walk down 5 flights of stairs Get out of bed
Walk up 1 flight of stairs Open many doors (usually 7)
Walk up hill Tie shoes
Touch face Put down a phone

Fig. 4: Training from Scratch Strategy.

which utilizes an existing trained model and continues training
with new data, was made because it exhibited higher accuracy
in our experiments. Figure 4 is an illustration on TFS training
strategy.

We achieve the personalization via two re-training sessions.
In our first iteration, we used the data collected from the false
positive collection session and all the data from the generic
model and re-trained the model. We named this TFS round I
model. We then deploy the personalized model (TFS round I)
on the SmartFall App and asked the user to repeat the false
positive session. During this second iteration, we also asked
the user to perform frequently flagged false positive activities
10 more times. Using all the data used to train the TFS round
I model, plus the data collected on frequently flagged false
positives, we created a final personalized model using TFS.
We named this TFS round II model.

Finally, to check that personalization is effective, we swap
personalized models among the users and ask them to com-
plete the false positive and true positive collection sessions
a final time. In Section VI, we discuss and explain the
experimental results from personalization.

V. EVALUATION METRICS

We aim to train a personalized fall detection model with
a high recall or sensitivity. A missed fall is represented in
our evaluation experiments as a False Negative (FN). We also
do not want to have too many “false alarms”, which in our
evaluation is represented as False Positives (FP), and thus, we
want to achieve a high precision and specificity. Table II shows
the various metrics we used for evaluation and how they are
computed.

These traditional evaluation metrics are used in the initial
evaluation of our personalization model. However, the tra-
ditional method of cross validation by reserving a portion
of training data for testing is not feasible when creating

TABLE II: EVALUATION METRICS. T=TRUE, F=FALSE,
P=POSITIVE, N=NEGATIVE.

Measure Calculation formula
Recall/Sensitivity TP/(TP + FN)
Precision TP/(TP + FP)
Specificity TN/(TN + FP)
Accuracy (TP + TN)/(TP + TN + FP + FN)

personalized models. One would either have to use a very
small personalized testing set, or one would need to test
using part of the generic set of data which will not be
representative of improvements made due to personalization.
Thus, it is necessary to use real world experiments to evaluate
our models. We do this in two ways.

The first is the most obvious, we want to maintain a high
recall while reducing false positives. For each model we ask
the users to complete a set of prescribed activities. We then
can measure recall by the number of falls detected as well as
observe a change in the number of false positives generated.
Furthermore, we also include a weighted F1-score (Fβ), using
the equation below, in order to combine precision and recall
performance into one number.

Fβ = (1 + β2) ∗ recall ∗ precision
(recall + β2 ∗ precision)

(1)

We set β to 3 for our calculations as this accurately reflects
the higher emphasis we put on recall.

However, it is expected that activities that produce high
acceleration values with the arm will generate more false
positives than sedentary activities. To evaluate the number
of false positives that occur for each user while controlling
for different activity levels and life styles (e.g. younger, more
active subjects vs. less active elderly), we used a new custom
metric for measuring false positives. The new metric takes
into consideration the number of acceleration “spikes” that
occurred during a time period and uses those as normalization
factor for the false positive rate. We consider a “spike” to occur
when the magnitude of acceleration for a user exceeds the
double of their average acceleration. The average acceleration
is computed by processing all the acceleration data archived
during the testing period. The total number of fall False
Positives (FP) a particular model generates will be compared
against the total number of spikes a user emitted to give our
Normalized Precision (NP) value:

NP = (#spikes− FP)/#spikes (2)

Spikes are a good normalization criterion to use in our case
because there is a direct correlation between the user’s activity
level and the number of false positives.

VI. EXPERIMENTAL RESULTS

We now present our experimental results of personalization.
We asked five users (all young and healthy adults) to test
the TFS method of personalization. We asked the users to
participate in the various types of false positive and true
positive collection sessions described in Section IV. The

TABLE III: FALSE POSITIVES PER MODEL ON EACH USER.

Model name False Positives per User
U1 U2 U3 U4 U5 Avg.

Generic 12 10 5 10 11 9.6
TFS round I 4 4 6 2 2 3.6
TFS round II 2 2 1 1 0 1.2

“Generic” model uses the original model (stacked ensemble
of four LSTMs). “TFS round I” is a re-trained model with
specific user feedbacks from the false positive session using
a prescribed set of ADLs as specified in Table I. “TFS round
II” is a second iteration of re-training with additional false
positive feedback on those activities (ADLs) that the model
has difficulty in identifying. The “Swapped” is a model that
was originally a “TFS round II” model meant for someone
else. The “Personal” is a model that is targeted for a particular
user.

Table III shows the number of false positives generated
during the false positive session using a prescribed set of
ADLs (Table I). Each user preforms the same activities the
same number of times. This controlled data collection session
takes 20 minutes to complete and provides some insight into
the improvements made. The less false positives generated,
the more precise is the model. TFS round I and II both see
significant reductions in false positives generated. In addition
to these scores, users were also asked to repeat the true positive
session at various points to ensure recall was maintained.
Table IV shows recall, precision and F1 scores of the various
models. Note that users 4 and 5 were recruited at a later stage
of the experimental evaluation, and thus we did not collect data
for the for “Generic” and “TFS round I” models for users 4
and 5. We use “n/a” to indicate that in the table.

Overall, these results show that recall is being maintained
while precision has significantly increased in TFS round II
model. In Table V, we swapped the models for users, i.e.
a model that was trained on the personalized data of one
user, was evaluated on another user. The results show that
“Swapped” model has lower precision of 0.71 as compared
with the 0.87 for the “Personal” model .

To further validate the practically of personalized models
for real world performance, we asked the users to wear the
watch for several hours while they go about their daily lives.
We asked that they remained moderately active during this
time (e.g. not sleeping or sitting down the whole time). This
allows us to get a spike score or normalized precision across
users of different activity levels. On average, we collected
around 8 hours of data from each user. We compared the spike-
normalized result of each user using Generic with additional
ADLs data from all users versus TFS round II model. Table VI
shows the Normalized Precision of 0.98 with our TFS round
II model versus the generic model with all users feedback of
0.94.

TABLE IV: RECALL AND PRECISION FOR EACH USER. MISSING
DATA FOR USERS 4 AND 5 ARE MARKED AS “n/a”.

Model Scores per User
U1 U2 U3 U4 U5 Avg.

Generic

Recall .85 .95 .90 n/a n/a .90
Precision .53 .63 .72 n/a n/a .63

F1 .65 .76 .80 n/a n/a .74

TFS
round I

Recall .95 .95 .85 n/a n/a .92
Precision .79 .79 .65 n/a n/a .75

F1 .86 .86 .74 n/a n/a .82

TFS
round II

Recall .90 .90 .95 .90 .95 .92
Precision .82 .82 .90 .86 .95 .87

F1 .86 .86 0.93 .88 .95 .89

TABLE V: COMPARISON WITH SWAPPED MODELS.

TFS
round II

Scores per User

U1 U2 U3 U4 U5 Avg.
Swapped Recall .80 .65 .85 .90 .95 .83

Precision .62 .52 .71 .82 .86 .71
F1 .70 .58 .77 .86 .90 .76

Personal Recall .90 .90 .95 .90 .95 .92
Precision .82 .82 .90 .86 .95 .87

F1 .86 .86 .93 .88 .95 .89

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated that personalization can
reduce the negative effects of small dataset size in fall detec-
tion applications. In particular, personalized feedback helps
reduce false positives while maintaining recall in Recurrent
Neural Network (RNN) models. A personalized fall detection
model can be achieved by asking the user to wear the watch
for a few hours and provide feedbacks when prompted. Most
importantly, our personalization strategy does not require the
users to perform any falls themselves. Users can carry on with
their normal daily activities with minimal inconvenience while
the fall detection model is personalized within a day.

The most significant drawback of the personalization strat-
egy, when scaling up for multiple users, is the long training
time involved in creating a new model, although such training
can take place offline, on a server.

There are other methods of personalization yet to be ex-
plored, such as creating a group model that targets users with
specific height, weight, gender, and associated physical or
cognitive impairments. For example, for an elderly person who
has Parkinson disease with postural instability symptoms is
more likely to fall backward, while those with freezing gait

TABLE VI: AVERAGE NORMALIZED PRECISION (NP) RESULTS,
CALCULATED USING THE FORMULA PRESENTED IN EQUATION 2.

Generic Generic with
additional ADLs

TFS
round II

Hours worn 33.07 14.89 41.68
Number of F.P.’s 560 36 36
Number of spikes 1067 599 1677

Normalized Precision .48 .94 0.98

symptoms may be more likely to fall forward. We expect
that group-based personalization would require collecting a
significantly larger dataset, and our current SmartFall App is
a tool that can be utilized for crowd sourcing of such data
with the right incentive.

ACKNOWLEDGEMENT

We thank the National Science Foundation for funding the
research under the Research Experiences for Undergraduates
site programs (CCF-1659807 and CNS-1757893) at Texas
State University to perform this piece of work and the
infrastructure provided by a NSF-CRI 1305302 award. We
also thank various undergraduate students who volunteered to
perform simulated falls and ADLs.

REFERENCES

[1] “Falls are the leading cause of death in older americans,”
https://www.cdc.gov/media/releases/2016/p0922-older-adult-falls.html,
accessed: 2019-6-17.

[2] “2017 profile of older americans,” https://acl.gov/sites/default/
files/AgingandDisabilityinAmerica/2017OlderAmericansProfile.pdf,
accessed: 2019-9-7.

[3] T. R. Mauldin, M. E. Canby, V. Metsis, A. H. H. Ngu, and C. C.
Rivera, “Smartfall: A smartwatch-based fall detection system using deep
learning,” Sensors, vol. 18, no. 10, 2018.

[4] T. Mauldin, A. H. Ngu, V. Metsis, M. E. Canby, and J. Tesic, “Exper-
imentation and analysis of ensemble deep learning in iot applications,”
Open Journal of Internet Of Things (OJIOT), vol. 5, no. 1, pp. 133–149,
2019.

[5] M. A. Habib, M. S. Mohktar, S. B. Kamaruzzaman, K. S. Lim, T. M.
Pin, and F. Ibrahim, “Smartphone-based solutions for fall detection and
prevention: challenges and open issues,” Sensors, vol. 14, no. 4, pp.
7181–7208, 2014.

[6] A. K. Bourke and G. M. Lyons, “A threshold-based fall-detection
algorithm using a bi-axial gyroscope sensor,” Medical Engineering and
Physics, vol. 30, no. 1, pp. 84–90, 2008.

[7] L. Ren, W. Shi, Zhifeng Yu, and Jie Cao, “Alarm: A novel fall detection
algorithm based on personalized threshold,” in 2015 17th International
Conference on E-health Networking, Application Services (HealthCom),
Oct 2015, pp. 410–415.

[8] T. Theodoridis, V. Solachidis, N. Vretos, and P. Daras, “Human fall
detection from acceleration measurements using a recurrent neural
network,” in Precision Medicine Powered by pHealth and Connected
Health. Springer, 2018, pp. 145–149.

[9] B. Kwolek and M. Kepski, “Human fall detection on embedded platform
using depth maps and wireless accelerometer,” Computer methods and
programs in biomedicine, vol. 117, no. 3, pp. 489–501, 2014.

[10] M. Musci, D. De Martini, N. Blago, T. Facchinetti, and M. Piastra,
“Online fall detection using recurrent neural networks,” arXiv preprint
arXiv:1804.04976, 2018.

[11] A. Sucerquia, J. D. López, and J. F. Vargas-Bonilla, “Sisfall: A fall and
movement dataset,” Sensors, vol. 17, no. 1, p. 198, 2017.

[12] L. Chen, R. Li, H. Zhang, L. Tian, and N. Chen, “Intelligent fall
detection method based on accelerometer data from a wrist-worn smart
watch,” Measurement, vol. 140, pp. 215 – 226, 2019.

[13] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-
based activity recognition: A survey,” Pattern Recognition Letters, vol.
119, pp. 3 – 11, 2019, deep Learning for Pattern Recognition.

[14] Y. Guan and T. Plötz, “Ensembles of deep lstm learners for activity
recognition using wearables,” Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., vol. 1, no. 2, pp. 11:1–11:28, Jun. 2017.

[15] P. Tsinganos and A. Skodras, “A smartphone-based fall detection system
for the elderly,” in Proceedings of the 10th International Symposium on
Image and Signal Processing and Analysis, Sep. 2017, pp. 53–58.

[16] H. M. Salman, W. F. W. Ahmad, and S. Sulaiman, “Usability evaluation
of the smartphone user interface in supporting elderly users from
experts’ perspective,” IEEE Access, vol. 6, pp. 22 578–22 591, 2018.

