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Abstract—Automatic localization and classification of environ-
mental sound events can provide great aid to many human-
centric applications. However as many papers have mentioned,
environmental sound events in daily life are complicated and
hard to classify especially when multiple sounds happen simul-
taneously. Being different from many other works, we use an
acoustic-sensor-network to solve this problem and decompose
overlapping sound events using a sound localization model. The
core of our contribution is to first find and locate the keypoints
from each microphone’s spectrogram and then aggregate them.
With these aggregated keypoints as input, we then use 2 different
classification models to further classify the type of sound sources.
Compared with other classification models that only use single
microphone, our experiments show that our solution is both
accurate and low-cost in terms of calculation effort.

Index Terms—Environmental sound localization, TDOA,
acoustic sensors, superimposed sound, Keypoints localization,
Deep Neural Network, Convolutional Neural Networks

I. INTRODUCTION

Human presence and activity recognition has become a
popular research topic and refers to identifying the location,
movement and action of a person based on information from
the surrounding sensors. Indoor human activity information
is important because it can be applied to many real-life
human-centric problems from health-care of the inhabitants to
energy saving in smart buildings [1], [2]. Numerous sensors
can be used for human activity recognition. One of the
commonly used is the audio sensors mostly because human
activities are always accompanied by some sort of sounds.
Even though both audio localization and classification are
well investigated, most of the existing works treat them as
isolated problems. Additionally, because of the difficulties in
classifying overlapping sound, the solutions are either focused
on single events or overlapping events in very limited sce-
narios and assumptions. State-of-the-art acoustic localization
requires specifically designed hardware, special emitters on the
moving targets generate distinctive signals, and microphone
arrays capture these sound signals by using the direction-
of-sound to calculate the location. These methods achieve
a high localization accuracy and are often used in robotic
applications [3], [4]. Being obtrusive and expensive, these
methods are ill-suited for human-centric applications. Instead
acoustic sensor networks are used to discreetly track human
activities by leveraging the time-of-arrival (ToA) of the sound
from the source. The implementation of these networks vary

from simple localization using energy-based threshold [5] to
estimate the ToA and applying an audio event classification
algorithm [6] for sound classification. Some times the quality
of the network does not provide a reliable ToA estimation [7]
thus, new algorithms are required to compensate for these
uncertainties. Various systems are developed to classify non-
speech sound events, some of which are both robust and
efficient for single events [8]. Sound event classification is
implemented by first extracting feature from the sound signal
then performing a feature-based classification with supervised
learning algorithms. Because the audio stream is by nature
stochastic and large in size, the features are extracted on
overlapped frame-basis to compress the data and to preserve
the dynamic character of the sound.

Support Vector Machine (SVM) learning algorithms are
used to classify non-overlapping sound events [8] where mel
frequency cepstral coefficients (MFCC), subband power and
several other frequency features are extracted on frame-basis.

When the sound is more complex with overlapping events,
three different methods can be used to deal with:
I. The first method decomposes the signal based on matrix
factorization by reducing a matrix into its constituent parts.
Non-negative matrix factorization (NMF) [9] is used to trans-
form the input audio into four components, where sound
events are separated into different components for recognition.
Applying additional constraints, such as sparsity on the NMF
improves the decomposition [10]. By treating the components
as a coupled matrix factorization problem [11], the problem
is transformed into a supervised learning that maps the audio
class label to each component. NMF based methods have some
drawbacks such as the complexity is hard to control when large
number of samples also the method predicts the class label for
short frames, losing the global characters of the event.
II. The second method extends the frame-based models to
overlapping events through hierarchical models. The SVM
algorithm [12] is used to classify the extracted speech sound
from overlapping events with improved accuracy [13] by
transforming the frequency subbands to a new domain making
the features easier to be classified. However, the scalability of
these methods, for more than two overlapping events, showed
to be limited due to the underperformace of the SVM. When
SVM is replaced with deep recurrent neural network (RNN)
architecture [14] RNN was able to reach a better performances.
III. The third category is based on image-like features ex-
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Fig. 2. Spectrograms of the sound received by different sensors

tracted from the sound STFT spectrogram, given the spectro-
gram can be interpreted as an image [15], [16]. This allows us
to classify overlapping events with local spectrogram features
where features are extracted from so called ’keypoints’ in the
spectrogram and Hough transform voting is used to detect all
possible sound combinations. Adding subband power distribu-
tion (SPD) as an image feature [15] in a KNN algorithm, yields
better results for larger number of sound classes. Comparative
empirical studies [16] show that spectrogram features and deep
learning algorithms, outperform SVM in noisy environments.

In this paper we describe, k-SpecNET, a light-weight and
scalable system for localization and classification of over-
lapping indoor sound events. The major contribution of this
system is the use of spectrogram keypoints [17]. Keypoint is a
concept used in image processing to detect objects. While it is
difficult to split an overlapping sound into its sub-components,
we only split and locate the small keypoints which have
sufficient information to represent an event when aggregated.

The results show that k-SpecNET works well with randomly
mixed 2-events and is scalable for more overlapping events.

The remainder of the paper is organized as follows: Section
II explains the Time Difference Of Arrival (TDOA) based
sound localization algorithms. Section III-IV describe the
methodology used for event localization and classification.
Section V describes the performance evaluation and compar-
ison with baseline models. We conclude this paper with our
open discussions in Section VI.

II. A BASIC TDOA ALGORITHM

Our sound event localization method is based on TDOA,
able to locate the acoustic source through the time differences
among all acoustic sensors using trilateration [18].

In a 2D space topology, the TDOA algorithm is defined as:
Let (x, y) be the unknown coordinate of a sound source and let
[(xm, ym)]Mm=1 be the known coordinates of acoustic sensors,
where M is the number of acoustic sensors. Let τm be the
relative time of arrival to different sensors and let τ1 equals to
0 for simplicity. Let rm be the distance of the sound source to
sensor m, and v be a constant speed of sound, we can write the
distance as a function of speed and time for m = 2, 3...M .:

rm − r1 = vτm − vτ1 = vτm (1)

The above Equation 1 can be transformed into:

vτm − vτ2 +
r21 − r2m
vτm

− r22 − r2m
vτm

= 0 (2)

Replacing r with x, y coordinates, for any m = 3, 4...,M .:A3 B3
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Based on Equation 3, the sound source coordinates (x, y)
are obtained by calculating the A,B,C vectors and then
solving the equation (only yields an answer when M >= 4,
i.e. requires four sensors at least). The unknown variable in
Equation 3 is τm, thus the localization problem boils down to
resolve τm. Figure 1 shows the sound wave of a door slam
event received by 4 sparsely spaced acoustic sensors, the red
dashed lines show the calculated τ for each sensor. Notice
how time of arrival is shifted in ms for each sensor making
the synchronization a crucial task. One method to synchronize
these signals is by using time-smoothing together with cross-
correlation [6]. Each two signals are synchronized when their
cross-correlation value reaches the maximum.

However cross-correlation only gives the similarity between
signals and not hints of signal sub-components, this method
does not work when there are overlapping sound events, e.g.
someone happens to be talking while the door slams.

III. OVERLAPPING SOUND SOURCE LOCALIZATION

As discussed in Section II, TDOA algorithm locates a sound
event well but struggles when estimating mixed sound signals.
However, mixed sound signals can be distinguishable when
applying a Short Time Fourier Transformation (STFT) as
illustrated in Figure 2 where the spectrogram shows two over-
lapped events received by 4 microphones. One can easily find
the start of door event in each graph, a tall (wide frequency)
yet narrow (short time) column. The other signal concentrated
in lower frequencies corresponding to voice bands is people
talking. We aim to look into every small yet significant regions
in the spectrogram, from which the time-of-arrival difference



(i.e. τ ) is easier to be synchronized. Following are the three
steps of our sound source localization algorithm:
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Fig. 3. Keypoints synchronization (left) and localization (right)

A. Keypoint detection

The idea of keypoints is to find important transients in both
spectral and temporal domain, and use them together to locate
the sound events. There are two reasons behind our approach:
I. Because of noise, sound attenuation and multi-path effect,
the same event captured by different sensors differ both in
time of arrival and frequency bands. Therefore, it is easier to
synchronize τ of small keypoints than the whole spectrogram.
Since keypoints are power peaks, they are better noise resistant
and more likely to be present in all nearby sensors. After
successfully synchronizing the keypoints, we can estimate the
number and location of sound sources through aggregation.
II. Keypoints contain the most important information of the
signals, thus can be used in sound classification. The keypoints
distribution indicates the major frequency bands of an event
and their variation over time. The geometric shape surrounding
a keypoint describes the Q-factor information around the
major frequency bands. By clustering the keypoints, we extract
important features to classify the sound sources.
Mathematically, a keypoint is expressed as: Ki = [si, fi, ti]
where s = 1, 2, ..M and M is the sensors number, f and t
are the frequency and time. This three-element tuple means
one keypoint is detected at sensor s, time t and frequency f .
We define G as the spectrograms of all sensors and Ki is a
coordinate of G, so that G(Ki) is the amplitude of a keypoint.

Keypoints are detected at locations that are local maximum
across both frequency and time, subject to a constant threshold,
this can be expressed as:

G(Ki) = G(si, fi, ti) = max(G(s, f, t), thr),

∀s, fi − h < f < fi + h, ti − w < t < ti + w
(7)

thrthrthr is a constant filter for background and microphone noise so
that no keypoints would be detected when no events happen. hhh
and www attributes define the local area, height and the width, in
a spectrogram. To clarify, in a STFT spectrogram of a 20 kbps
sound with window size 1024 and 3/4 overlap, h = 10 and
w = 6 represents a region of 400 HZ and 15 ms. This region
must be large enough to capture important shape information
and small enough to have sufficient elected keypoints.

Figure 3 left shows keypoint detection results for sound
events illustrated in Figure 2. All the keypoints are detected

in sensors 1 and 4 while few were detected in sensors 2 and
3. Because the nearest sensor captures the event first with the
highest amplitude and the talking occurs near sensor 1 while
the door is close to sensor 4.

B. Keypoint localization

Sound localization concerns finding the relative time-of-
arrival for each sensor. Taking any keypoint as the start, we
find when it arrives at the other sensors. Since sound frequency
does not change through propagation, this keypoint shows up
at the same frequency on all sensors with a short time delay T .
We define the square-shaped region centered at keypoint Ki

as Region(Ki), from the same region the keypoint is elected:

Region(Ki) = {[si, f, t]},
fi − h < f < fi + h, ti − w < t < ti + w

(8)

and we define its spectrogram as:

GReg(Ki) = {G(p)},∀p ∈ Region(Ki) (9)

Our synchronization algorithm is to search the τ in each
sensor that makes GReg([s, fi, ti + τ ]) ’matches’ GReg(Ki)
the best, ∀s 6= si. A typical similarity function of 2 vectors is
cross-correlation, with which we can find τ by:

τs,i =t (ρ(GReg(Ki), GReg([s, fi, ti + t]]))),

∀s 6= si, t ∈ {0, 1, ...Tmax}
(10)

τs,i =t (ρ(GRegpr(Ki, t), GReg([s, fi, ti + t]))),

∀s 6= si, t ∈ {0, 1, ...Tmax}
(11)

where τs,i is the sound arrival time at sensor s for keypoint
Ki, Tmax is the maximum of possible time arrival difference,
ρ is the Pearson correlation function [19]. Tmax is estimated
through speed of sound and the distance between sensors.

Cross-correlation method works well with array sensors
close to each other, but fall short when sensors are sparsely
distributed and factors such as reflection and attenuation
can highly influence the signal received by each sensor. By
’matching’ the signals at different sensors, we should consider
these factors where sound attenuation is the most important.
The sound amplitude attenuation in air due to atmospheric ab-
sorption can be expressed as: Aa = ar db, where r is sound
travelling distance in meter, and a is the attenuation coefficient
in dB per meter [20]. The coefficient a is dependant on
relative humidity, temperature and sound frequency. According
to [20] for an optimal indoor environment, the humidity and
temperature are fixed at 40% and 20°C, respectively. Therefore
sound attenuation in the simplified model has 2 parameters:
distance and frequency. Higher the frequency, further the
signal propagation, and faster the amplitude decay.

The sound magnitude attenuation in the same frequency
band is in proportion to the distance. A keypoint Ki detected
by sensor si with amplitude G(Ki), would have the amplitude
Gpr(Ki, ti, sj) when it is detected by sj after time T :

Gpr(Ki, T, sj) = G(Ki)× 10log10a(ti − T ) + e (12)
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where e stands for the unpredictable residuals such noise and
reflection. Because the prediction depends on the amplitude
and time delay, Gpr(Ki, T, sj) can be written as Gpr(Ki, T ).

According to Equation (12), we can predict the attenuated
spectrogram at the keypoint region GReg(Ki) after time delay
t by point-wise operation, denoted as GRegpr:

GRegpr(Ki, t) = {Gpr(p, t)}, ∀p ∈ Region(Ki) (13)

Replacing the attenuated spectrogram GRegpr(Ki, t) of
GReg(Ki) in (10), we obtain the attenuation-adjusted model
as: An example of the keypoint localization result is shown in
Figure 3, where the left chart shows keypoints synchronization
result, i.e. finding τ , and the right chart shows the keypoint
locations calculated with τ . A blue ’x’ denotes a detected
keypoint. For each blue ’x’ of any sensor, we put one green
’x’ at the same coordinate of the other 3 sensors as a mark.
The green dash line after the green ’x’ represents the time
arrival delay τ . In the right chart of keypoints localization,
the two blue stars indicate the sound events locations, the
yellow dots are the predicted locations of all keypoints. In this
chart, most of the predicted keypoints are closely distributed
around the real locations, only a few are far away. The
large distance between locations indicates an error in keypoint
synchronization, due to some spectrograms regions where
multiple events are heavily overlapped.
C. Keypoints aggregation

Following keypoint identification, we aggregate the key-
points according to their locations to make up the original
events, assuming that each event happens at a different lo-
cation. K-means clustering algorithm partitions the samples
into k clusters, with each sample belonging to the cluster with
the nearest distance from center. [21]. In our case, the event
number is the cluster number k with center the event location.

Our keypoints aggregation algorithm consists of 3 steps:
I. Find the best k with silhouette analysis from the k-means.
II. Filter out outlying keypoints and small clusters.
III. Re-calculating the cluster-centers as the final locations of
events with the filtered k and keypoints.
Silhouette analysis in step 1 is a method of interpretation and
validation of consistency within clusters of data based on a
so called silhouette value [22]. Silhouette value measures how
similar an object is to its own cluster (cohesion) compared to
other clusters (separation), similarity is based on the distances
to cluster centers. The k with the highest silhouette is chosen
as the optimal cluster number, meaning the samples are closer
to their own center while far away from other cluster centers.
However, this is a general method for stochastic samples and

has some deficiencies, for example it only works with cluster
numbers greater than one, which is not true in our case.

Step 2 improves further keypoint location accuracy because
unlike normally distributed random samples, keypoints seem
as bi-polar. Most of them are correct and close to the event
location. Some keypoints that cannot be equally synchronized,
we call them wrong, are sparsely distributed elsewhere making
them harder to synchronize where multiple events overlap in
the same major frequency bands and time. In the location
graph we use the ’distance-to-center’ criteria to filter them out.
Let dci be the distance of point i to its corresponding cluster
center c, we use a threshold Dthr to prune the outliers:

Discard Ki, if : dci < Dthr,∀i (14)

The threshold Dthr is a constant that denotes the maximum
localization error to tolerate. This error can be resulted from
noise, background sound or even the movement of sound
source. Another approach to improve the result is to remove
the clusters which contain very few members, as they are
likely to be made up from falsely synchronized keypoints.
The cluster centers are re-calculated based on the remaining
keypoints indicating the final locations of the sound events.

IV. SOUND EVENT CLASSIFICATION

After the event localization, we aggregate the keypoints at
each event location and classify them into pre-defined activity
classes. We decided to adapt 2 models that performed good in
a single audio events classification [23], [24], Statistics-SVM
and Spectrogram-CNN. To apply these two models for this
scenario, adjustments need to be made since our inputs are
the keypoints that are different from the regular audio inputs.

1) Statistics-SVM [23]: Uses the statistics (mean and vari-
ance) of short-frames as the input features and SVM as the
classifier. Feature arrays are generated by extracting features
for each short audio stream frames. The statistics i.e. mean
and variance are calculated from this feature array as the final
features. Statistics features are mainly used in audio processing
due to the audio signals time-varying characteristic, where the
short frames represent the details better while the statistics
aggregate the details and stands for a global representation
[23], this feature extraction is shown in Figure 4.

Similarly we extract features by replacing the short duration
frames with keypoints. A featureset, denoted as Fi, portraying
the characteristics of the event both in time and frequency
domain, is extracted from each keypoint:

Fi = {fi, Rolloff i, STEi} (15)

i. fi is the center frequency of the keypoint.
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ii. Rolloff i have two values from time and frequency do-
main respectively. Spectral-rolloff, used in music information
retrieval [25], represents the point where N% power are
concentrated below that frequency (normally N equals 90%).
We define time-rolloff as the time duration where N% power
are concentrated at the center.
iii. STEi (Short-time energy) is a feature used in audio
analysis that describes the energy of signal [25].

After Fi of each keypoint is extracted, the mean and
variance of all Fi is calculated as the event feature. This event
feature is then feed to SVM classifier to predict the event type.

2) Spectrogram-CNN: Convolutional Neural Network
(CNN) is a class of deep neural networks [26], commonly used
in computer vision domain. It requires minimal preprocessing
compared to other image classification algorithms. Converting
one-dimensional sound stream to a spectrogram allows the
use of CNN for sound processing applications such as
speech recognition [27] and environmental sound recognition
[24]. Figure 5 shows the achitecture of uur CNN-based
classification model, where the input is the incomplete
spectrogram aggregated from the keypoints, while non-
keypoints part are padded with zeros and the silent frames
are removed from the incomplete spectrogram.

V. EXPERIMENTAL RESULTS

This section, presents the experimental results for both
localization and classification. The dataset is split 70% training
and 30% test with five folds cross-validation for training set.
A. Dataset

Four classes are chosen as common office sound events:
speech, footsteps, door slam, bell. 100 unique samples per
each class are recorded with a mono-microphone 2m away
from the sound source. Furthermore, an indoor sound simu-
lation [28] is used to create synthetic complex sound events
from the recordings. Three synthetic levels are created with
level number meaning the number of overlapped sounds
(leveln = synthetic(n)). For each level, we randomly pick
single events to create 1000 overlapping events, resulting in
different complexity levels in a noisy environment. During the
shuffling, each overlapping event is labelled with its class and
location.
B. Sound event decomposition and localization

Two metrics are used to evaluate our method: all-correct
and partially-correct. Partially-correct means at least one of

the events is located correctly. Using partial correctness as
a metric gives a better performance overview. An error of
0.5m is tolerated because the application scenario is not too
strict, since the major objective is to split overlapping events
into their sub-components through the localization algorithm.
Moreover the baseline is only provided for signal decomposi-
tion (presented in the next subsection V-C together with event
classification) while not for localization as it is hard to find one
for our scenario. Table I shows the results for three different

TABLE I
LOCALIZATION AND CLASSIFICATION RESULTS FOR AGG. KEYPOINTS

Results of sound localization using aggregated keypoints
1-event 2-events 3-events

cro-corre att-corre cro-corre att-corre cro-corre att-corre
All correct 97.10% 98.80% 87.10% 90.30% 61.70% 66.90%
Partly correct - - 93.50% 95.80% 74.10% 85.70%
cro-corre = cross-correlation model, att-corre = attenuation-correlation model

Results of sound classification using aggregated keypoints
1-event 2-events 3-events

SVM CNN Baseline SVM CNN Baseline SVM CNN Baseline
Accuracy 92.60% 94.50% 97.80% 74.30% 86.10% 68.60% 45.90% 60.70% -
F1 score 92.20% 93.90% 97.60% 72.70% 82.50% 65.30% 43.20% 52.50% -
Complexity 0.41 7.3 1.6 0.57 8.1 2.2 0.62 8.5 -
SVM = statistic-SVM model, CNN = spectrogram-CNN model, Baseline = baseline model Overlap-SVM

complexity level. Results show that when only two events
are overlapped, the accuracy jumps above 90% and drops
significantly in all experiments when three events are over-
lapped. Worth mentioning is that the attenuation-correlation
model works better than the cross-correlation model. We also
looked into the differences of performance between each
sound class, as shown in Figure 6. These results are all from
the attenuation-correlation model with the bell sound as the
best located while human voice is the worst, this difference
becomes especially obvious in 3-events experiments.

C. Sound event classification

We choose the coupled-NMF algorithm in [11] and joint-
keypoint in [29] as the baselines, given that both work in
similar scenarios as ours while rely on one signal microphone
input. The coupled-NMF turns the traditional unsupervised
NMF model into a supervised learning problem which can
automatically label the class of each sub-component. The joint-
keypoint model detects events based on the joint probability
of spectrogram-keypoints and event-class. While both the two
baseline models decompose and classify the overlapping sound
in one complex model, our model is lighter since we only
classify the already decomposed signals.



Table I shows the results of SVM, CNN and the baseline
models. The metrics consist of Accuracy, F1 score and Com-
plexity. All experiments run on the RaspberryPi-3 on a single
core in order to compare the complexity through running time.
The complexity is calculated as the running time of classifying
an audio sample divided by the audio length, meaning that a
realtime model should have the complexity less than 1.0.

Of all models, statistic-SVM runs faster while coupled-NMF
is the slowest, both outperform the baselines in classifying
overlapped sound events, Spectrogram-CNN is the best per-
former. The major advantage for our models comes from the
previous localization step which splits overlapped signals into
single events, thus, simplifying the problem, with classification
accuracy is quite close to the localization accuracy. Coupled-
NMF was not used for 3-events because this model is designed
for 2-events and the complexity increases exponentially with
more events overlapping. In terms of complexity, our model
is largely simplified as it only considers a single event and
the synchronization algorithm contains straight forward calcu-
lations at large and does not bring too much overhead.

Confusion matrix in Figure 7 shows that the performance of
each class is equally good for single event classification and
significantly different for overlapping events. The bell event
is the mos accurate, as its major frequency bands are much
higher than the rest and can be easily identified. The good
performance of classifying human voice mainly comes from
the long duration of speech sound, so that many keypoints
are able to be correctly located. Footsteps and door sound are
most likely to be misclassified, because they have very similar
frequency characteristics. However, considering the location
information we can differentiate door and footsteps based on
the sound location and room topology, since doors are static
objects. To better classify the footstep sound we need to add
harmonic features of a long duration into the model input.

VI. OPEN DISCUSSION AND CONCLUSION

Automatic audio signal processing is still a hot research
topic in artificial intelligence. However, compared to speech
recognition, the pervasive environmental sound was over-
looked by researchers. To reuse speech recognition techniques
in environmental sound recognition, one of the major barriers
is the impact of high overlapping sound occurrence rate.

To tackle the sound overlapping issue, we deployed micro-
phones in room corners and use a novel sound localization
technique to decompose the overlapping sound events into
their sub-components. Apart from the good performance and
low complexity, this method is easily scaleable since it is based
on the sound propagation model, while single sensor models
are based on learning events from vast data of specific classes.

In our experiments, 90% of events are correctly located
within a 50 cm error. Needless to say, this localization preci-
sion cannot be compared with microphone-arrays techniques
that can reach millimeter level precision. However we chose
not to further improve the precision since our major concern
is the classification of overlapped sound events. In most cases,
different sound events usually happen meters away apart.

The located keypoints are fed to a CNN network, making
the algorithm more efficient. In the future, we aim to simplify
the CNN classifier with less weights to balance the complexity
and performance. We also intend to explore k-SpecNET in
more complicated scenarios such the continuous monitor of
crowd flow.
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