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Abstract—Recently, device-free indoor positioning and track-
ing of persons is attracting attention. Some approaches use
vibration sensors installed on the floor to identify the position
of the vibration source by measuring and analyzing vibration
strength and vibration fingerprints. However, vibration sensors
can give the output information only on the strength of the
vibration which shows that the vibration source is near or far
from the sensor. Since the moving direction cannot be measured,
it is difficult to apply the vibration sensor to track persons
walking around in indoor space. In this paper, we propose a
method for estimating the walking direction of a person using
two vibration sensors. In the proposed method, we capture floor
vibration using a pair of piezoelectric vibration sensors installed
at a certain distance, calculate frequency domain features and
estimate walking direction by machine learning. We conducted
an experiment in a smart home where we installed our vibration
sensors on the floor, asked four participants to pass near the
sensors 20 times in two directions and estimated the walking
direction by the proposed method. As a result, the walking
direction was estimated with a maximum accuracy of 90%.

Index Terms—Estimation of walking direction, Vibration sen-
sor, LDA (Linear Discriminant Analysis), Machine learning

I. INTRODUCTION

In recent years, a lot of studies have been conducted in
various ways to identify people and their activities in homes
and stores, so on for application to monitoring services and
anomaly detection for crime prevention. For example, there
are methods using camera [1]–[3], microphone [4], wearable
accelerometer [5], [6], sensor detecting electrical potential
of human body [7], radio [8] and pressure sensor installed
under the floor [9]. However, the method using a camera
or microphone can get more information than necessary, so
there are concerns about privacy violations. The method using
wearable accelerometers needs the devices attached to the
target, thus it is difficult to sense unspecified persons. The
method using electrical potential of a person, radio or pressure
sensor requires a considerable number of sensors, and there is
a difficulty in installation.

A method using a vibration sensor does not require wearable
sensors and can reduce the number of required sensors (thus
does not violate privacy). Kashimoto et al. [10] proposed a
method to locate the position of the user with a vibration sen-
sor. This method uses a piezoelectric vibration sensor installed
on the floor, and estimates user’s position based on changes in
vibration intensity and a vibration fingerprint unique for each
location and activity. In this approach, the information output

from the piezoelectric vibration sensor is only the magnitude
of the vibration, and it is possible to detect the movement of
the person approaching or moving away from the sensor. Since
walking behavior is frequent and accompanied by movement
among human behaviors, it is an important behavior to be
identified among human behaviors in a room. In particular, the
information on the walking direction is useful for detecting a
flow line in the room. The advantage of this method is the ease
of installation of the sensor. The piezoelectric vibration sensor
can be installed simply by placing it on the floor, and does
not require any large-scale construction, so the piezoelectric
vibration sensor is very easy to install even in an existing
house. As a use case, we can install a vibration sensor in a
house of senior citizens and use it for monitoring them.

In this paper, we propose a new method using two piezo-
electric vibration sensors installed on the floor to detect the
walking direction of a person only with piezoelectric vibration
sensors. Moreover, taking into account real-world usage, we
estimate the walking direction of a target person using a
machine learning model trained with other parsons data.

The organization of the paper is as follows: We briefly
survey related studies using vibration sensors in Section II,
and describe the detail of the proposed vibration sensor system
and the walking direction estimation method in Section III.
We provide experimental results showing effectiveness of the
proposed method in Section IV and discussion in Section V.
Finally we conclude the paper in Section VI.

The methods proposed in this paper and the evaluation
experiments are targeting Japanese-style houses where people
rarely wear shoes inside their homes, so the effects of shoes
are not considered.

II. PRIOR STUDY OF VIBRATION SENSORS

A. Related research on vibration sensors

Human footsteps have been studied for a long time, and
analysis of vibrations caused by footsteps in buildings has been
actively conducted [11]–[13]. Also, in recent years, detection
of human falls using vibration sensors [14], [15], measurement
of health by footsteps [16], [17], person identification by
walking speed [18], and person identification using vibra-
tion sensors attached to the object (e.g., door) and sensing
waveform pattern of the vibration of the action which has
different characteristics by person (e.g., knocking) [19] have
been studied. Among them, in human behavior tracking, Pan et



Fig. 1. Waveform when walking from a position near sensor 1 to sensor
2 (unexpected result at point (a): the peak of sensor 2’s wave form is 16
samples earlier than sensor 1; expected result at point (b), the peak of sensor
2’s waveform is 127 samples earlier than sensor 1)

al. [20], [21] proposed a vibration sensor system called BOES.
That system can track human behavior by counting the area
occupancy which changes dynamically.

B. Estimation of walking direction

In general, the moving direction of an object can be
estimated by the temporal change of the object’s position
estimated based on TDoA (Time Difference of Arrival) or
AoA (Angle of Arrival) with multiple sensors. However, these
methods do not always work for vibration sensors. As a pilot
study, we installed two piezoelectric vibration sensors on the
floor at very close distances (referred to as Sensor 1 and Sensor
2) and tried to estimate the position of persons by TDoA.
Then, as shown in Figs. 1 and 2, the result was contrary
to the expectation. That means the vibration generated by
walking reached the far sensor earlier than the near sensor.
This is because the floor which the vibration sensor is attached
is comprised of various materials, so the density and elastic
modulus of the vibration medium are not uniform, resulting
in non uniform propagation speed of vibration [22]. Based on
these physical phenomena, Shi et al. [23] collected data using
four sensing systems based on Geophone, detected footstep
events by continuous wavelet transform and estimated the
walking direction of people using TDoA.

In this paper, we propose a method to estimate waking
direction using a lower cost sensing system consisting of two
vibration sensors placed at a short distance and using machine
learning.

III. VIBRATION SENSOR SYSTEM AND WALKING
DIRECTION ESTIMATION METHOD

A. Configuration of vibration sensor system

Fig. 3 shows the configuration of our vibration sensor
system that captures floor vibrations. The system has two
piezo vibration sensors (Lch and Rch) arranged at a distance
of 15cm between the centers, and they are used as sensor
pairs. The voltage signal output from each sensor is amplified

Fig. 2. Waveform when walking from a position near sensor 2 to sensor 1
(expected result at point (a): the peak of sensor 2’s wave form is 67 samples
earlier than sensor 1; unexpected result at point (b), the peak of sensor 2’s
waveform is 14 samples earlier than sensor 1)

Fig. 3. Configuration of vibration sensor system

with an amplifier and sampled as an audio signal with a USB
interface. At this time, in order to reduce the crosstalk between
the two sensor signals, a bi-amplifier configuration is adopted
where an amplifier is provided to each vibration sensor and
the power source is also provided separately for each of the
two sensors. In order to reduce the noise of the amplifier, Field
Effect Transistors (FETs) are connected in parallel to increase
the current amplification factor, and metal film resistors are
used. We tested the various distance between two sensors in
preliminary experiments and concluded that 15cm is optimal
to make the sensor system itself as compact as possible while
maintaining the high accuracy of our proposed method.

B. Walking direction estimation method

1) Pre-processing by Digital Signal Processing: Fig. 4
shows the overall flow of pre-processing by Digital Signal
Processing (DSP). As shown in Fig. 4 (a), first the waveform



Fig. 4. Preprocessing for feature extraction using sensor signals

Fig. 5. Image of LDA

Fig. 6. Image of walking direction

of 5 seconds is measured with the sensor pair during a walking
activity. Then the spectrogram is obtained by transforming
the waveform data using Short-Time Fourier Transform(STFT)
with the division number n = 8192 as shown in Fig. 4 (b).
Next, as shown in Fig. 4 (c), the power spectrum of all
frequencies on the same time axis is summed to create trend
data, which is the temporal change in signal energy. Finally, as
shown in Fig. 4 (d), the difference of the signals is calculated
by (Sensor Lch Trend Data)-(Sensor Rch Trend Data).

2) Linear Discriminant Analysis: In the proposed method,
we apply Linear Discriminant Analysis(LDA) to the difference
data to extract and classify features used for machine learning.
LDA is a linear transformation to search for feature subspaces
that maximize class separation as shown in Fig. 5. This is a
supervised algorithm, so each dataset must be tagged. In the
proposed method, we reduce the number of dimensions to two
by LDA.

3) Machine learning: After dimensionality reduction by
LDA, we classify the features using machine learning. We use
the following six machine learning algorithms and compare
classification performance: k-NN, Logistic regression, SVM
(Liner), SVM (RBF), Decision Tree, and Random Forest.

IV. EVALUATION EXPERIMENTS AND RESULTS

A. Overview of experiments

The vibration sensor system was installed on the flooring
made by woods, and we asked each of the four participants (3
males: A, B, C and 1 female: D) to walk in parallel to the line
connecting two vibration sensors as shown in Fig. 6. Data was
collected 20 times each for the walk from the sensor Lch side
to the sensor Rch side, and the walk from sensor Rch side to
the sensor Lch side, respectively. Each data is labeled “Start:
L” or “Start: R.” The number of data collected was 40 with
20 for Start: L and 20 for Start: R, respectively. In addition,



TABLE I
ESTIMATION ACCURACY OF WALKING DIRECTION BY RANDOM DATA

Algorithm k-NN Logistic regression SVM(Linear) SVM(RBF) Decision tree Random Forest
Accuracy 84.4% 84.4% 88.9% 75.6% 84.4% 80.0%

TABLE II
EVALUATION OF SIX ALGORITHM BY 10-FOLD CROSS VALIDATION

Algorithm k-NN Logistic regression SVM(Linear) SVM(RBF) Decision tree Random Forest
Accuracy 75.6% 71.7% 73.3% 74.4% 70.0% 70.0%

20 data when no person walked in front of the sensor was
collected and labeled “Silent.” Therefore, the total number of
data is 180 (data of 4 participants × two directions × 20 walks
+ 20 no walk data).

In order to evaluate the basic estimation accuracy of the
proposed method, we validated the data in two ways: (Data
1) 75% of the data is used as training data and the remaining
25 % as the test data and (Data 2) 10-fold cross validation
where the data is divided to 10 subsets, then 9 are used as
traing data and the remaining 1 is used as test data, and the
result is averaged over 10 combinations of selecting a test
data. Here, we assume that four residents are living together
in a house, and we evaluate accuracy of estimating walking
direction when one of the four residents passes in front of this
system that has already learnt the data for all of them.

In addition, assuming the real world usage (e.g., tracking
unspecified person in store), we applied leave-one-person-out
cross validation (Data 3) where the data of one participant
(say A) is used as the test data and the data of remaining
participants (say B, C, and D) are used as training data,
and the results of four combinations are averaged. This is an
evaluation of whether this system, for example, can detect the
walking direction of an unknown person who enters a house
where three residents live, with the model learnt from the three
residents.

B. Evaluation results of the basic estimation accuracy

Fig. 7 shows the result by applying LDA to Data 1.
Although the samples are scattered over a wide range, we can
confirm that “Start: L” and “Start: R” are clearly separated.
Then we applied six machine learning algorithms to this result
to estimate the walking direction.

Table I shows the results of walking direction estimation
accuracy obtained by applying machine learning algorithms
to Data 1 (75% for training and 25% for test). As a result, the
SVM (Liner) achieved the highest accuracy of 88.9% for es-
timating the walking direction. The k-NN, logistic regression,
and decision tree achieved the second best accuracy of 84.4%
to estimate the walking direction.

Table II shows the results of walking direction estimation
accuracy for each machine learning algorithm applied to Data
2 (10 fold cross validation dataset). As a result, the k-NN
showed the highest accuracy of 75.6% for estimating the
walking direction. On the other hand, SVM (Liner) which

Fig. 7. Result of LDA (Data 1)

achieved the highest accuracy for Data 1 resulted in accuracy
of 73.3%. This result suggests that the effective algorithm
differs depending on the dataset and the validation method.

C. Estimation accuracy by leave-person-out cross validation

Fig. 8-Fig. 11 show the results obtained by applying LDA
to Data 3 (leave-one-person-out cross validation; four combi-
nations of test data and training data). In these figures except
for Fig. 10, we can clearly see that “Start: L” and “Start: R”
are separated by two dimensional features.

Table III shows the results of walking direction estimation
accuracy for each participant using six machine learning
algorithms for Data 3. As a result, it was confirmed that the
walking direction could be estimated with high accuracy of
about 80% or more except when the data of participant C
was used as test data. It was also confirmed that the two
algorithms the k-NN and logistic regression are suitable for
estimating walking direction of unspecified person assuming
the real world.

V. DISCUSSION

The results of walking direction estimation experiments in
the previous section showed the effectiveness of the proposed
approach using two vibration sensors and machine learning
algorithm in walking direction estimation. Additionally, the



TABLE III
ESTIMATION ACCURACY OF WALKING DIRECTION ASSUMING THE REAL WORLD

c k-NN Logistic regression SVM(Linear) SVM(RBF) Decision tree Random Forest
TestData:A 90.0% 87.5% 90.0% 87.5% 85.0% 87.5%
TestData:B 87.5% 87.5% 82.5% 75.0% 80.0% 85.0%
TestData:C 52.5% 52.5% 52.5% 50.0% 55.0% 55.0%
TestData:D 77.5% 82.5% 82.5% 77.5% 82.5% 77.5%

Fig. 8. Result of LDA (TestData:A)

Fig. 9. Result of LDA (TestData:B)

result of leave-person-out cross validation showed the effec-
tiveness of the proposed for real-world usage (except for
participant C).

The estimation accuracy drastically decreased when data
of participant C used as test data. To clarify the reason, we
interviewed all participants. As a result, participant C answered
that “I changed a walking way between each trial deliberately.”
This suggests that our proposed method can estimate the
walking direction with an accuracy of about 80% or more as

Fig. 10. Result of LDA (TestData:C)

Fig. 11. Result of LDA (TestData:D)

long as walking is normally performed like other participants
A, B, and D.

VI. CONCLUSION

In this paper, we examined the vibration sensor device
and the method of estimating the walking direction in a
home. Specifically, we showed that the proposed method can
estimate walking direction with high accuracy in a practical
environment, utilizing an idea that information other than the
magnitude of the amplitude is given in addition to the sensor



signal by arranging two sensors as a pair at a certain distance.
As a result, we can expect merits such as improvement of
indoor walking direction estimation accuracy and reduction of
sensor installation locations.

In the proposed method, the walking direction is estimated
by LDA and machine learning model that learn vibration trans-
mission information based on the floor material. Therefore, if
the installation position of the vibration sensor and/or the floor
material is changed, re-training of the model is needed. This
is part of our future work.

In the experiment, the walking direction was parallel to the
line connecting the two sensors, but we need to investigate the
possibility of detecting the walking direction in the vertical,
diagonal and other arbitrary directions by arranging another
pair of sensors. For further generalization performance eval-
uation, we would like to conduct evaluation experiments in
the real environment (normal life) instead of scenario-based.
We also plan to develop an algorithm that can identify person
from vibration data.
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