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Abstract—Contact-free activity detection is being used in
several domains i.e., healthcare, cyber physical systems for its
non-intrusive and flexible characteristics for end users. Thermal
condition of residential homes are affected by both the outdoor
weather conditions and the inside human activities. The activity
of cooking affects the thermal comfort of residents inside the
home and incurs a significant amount of electricity consumption
in commercial kitchens. Though camera and body sensor based
frameworks are proposed in the existing literature to detect
cooking activities, contact free activity inference is necessary
to non-intrusively assess the daily thermal comfort, monitor
building envelope, electricity usage. In this work, we collected
thermal condition of an apartment from surface temperature
sensors and cooking activity of residents were recorded by visual
observations. We avoided other activities i.e., opening doors or
windows which can affect the thermal condition of residential
home during cooking. We proposed a framework for cooking
activity detection using recurrent neural network from surface
temperature and humidity signals of residential homes. Our
proposed algorithm achieves approximately 93% accuracy in
cooking event detection from ambient building thermal condition.

Index Terms—Contact-free activity, event, cooking, building
data, thermal condition

I. INTRODUCTION

With the emergence of lot of IoT devices, smart environ-
ments focus on detecting, monitoring and identifying human
activities to improve their living condition. Different sensors,
actuators, and analytic techniques of smart environments pro-
cess available surrounding data to infer contextual informa-
tion. Along with the development of IoT devices with smart
services, we have been able to infer different information of
inhabitants in building i.e., occupancy [1]–[3], thermal comfort
preference [4], energy consumption [5] etc. In this work, we
introduced cooking activity inference from ambient building
envelope monitoring factors i.e., temperature, humidity.

Analyzing the characteristics of cooking activity inside
residential homes can benefit us in several ways. Cooking area
is one of the major sources of moisture in buildings and it is
recommended to provide adequate mechanical ventilation in
this area tightly built envelopes. This activity affects the indoor
air quality by burning gas or discharging ultrafine particles
in the air. It impacts indoor thermal condition by changing
temperature of the entire home which requires more energy
for cooling purpose to control the temperature within thermal
comfort. Beside of thermal condition, cooking also accelerates
the decay in indoor surfaces of building envelope over time. It

causes temperature fluctuation on the building surface which
gradually generates concrete deformation due to expansion
or contraction of surface material. Moreover, the amount of
energy consumption surpluses in commercial kitchens along
with more frequent occurrence of temperature fluctuation on
the building surfaces [6]. However, quantitative analysis of
the impact of cooking on energy consumption and building
envelope are scarce in existing literature. In this work, we
attempted to monitor how much temperature fluctuation occurs
due to cooking which can help us in energy saving plan and
durability study of building envelope.

A 2016 survey conducted with 502 online respondents in
USA reported 50% of them cook between three and six days a
week [7]. The report mentions retirees and stay-home people
are more likely to cook each day than full-time employees. In
residential apartment homes people usually cook for 20− 30
minutes which is on average 1% for each day. Therefore,
we considered cooking activity as rare events for residential
homes in this work. We used temperature and humidity of
different surfaces in the apartment home to detect cooking ac-
tivity. Usually, a rare-event problem deals with an unbalanced
dataset which contains fewer positively labeled samples than
negative. We collected cooking activity information for around
60-days in two working people home.

Detecting cooking events at apartment homes is challenging.
Simple threshold based algorithms cannot differentiate the
temperature rise due to outside weather. Indoor thermal condi-
tion changes due to cooking activity should be separated from
weather and other human activities i.e., opening windows,
doors. Besides, temperature change at residential homes due
to cooking are almost negligible for short cooking duration.
Our cooking dataset contains only 3% data with positive or
’cooking’ labels. We avoided other shallow learning algorithm
(i.e., one-class SVM, decision tree) as they were not able
to capture the temporal features for cooking inference from
building thermal condition data. However, the small number of
positively labeled samples prohibits deep learning application
as well. Therefore, we approached to calculate reconstruction
error of temporal sequences with recurrent neural network
based long short term memory (LSTM) autoencoder. We used
reconstruction error to set adjustable threshold for cooking
data points.

In this paper, we proposed supervised cooking event detec-
tion method from multi-variate temporal thermal condition of
residential homes. We demonstrated temperature changes in



examined places for cooking activity. We determined the ef-
fective thermal variable combination to infer cooking event at
residential homes and also observed the temperature variation
during cooking with varying number of stoves and oven.

The rest of the paper is organized as follows: section II
presents some previous studies on cooking activity recognition
and event detection, section III presents the idea of overall
framework, section IV describes our framework in detail,
section V shows the results for cooking event detection, section
VI concludes the paper.

II. RELATED WORKS

In most of the previous literature for cooking activity anal-
ysis, used temperature data from stove use monitors (SUMs)
[8], [9]. Ruiz-Mercado et al. [8] deployed SUMs on chimney
cookstove and traditional open-cookfire for counting the meals
and daily use of the stoves using a peak selection algorithm
based on instantaneous derivatives and statistical behavior of
ambient temperature. Another study on the number of meals
and duration of cooking was reported in [9] by comparing the
survey data from cell phone and sensor data from cookstoves.
They reported the average cooking duration is 1.2 hour approx-
imately twice a day in Sudan. Beside of these studies, cooking
activity has been recognized from video data using deep
learning [10], [11]. Rohrbach, Marcus et al. [10] presented
a dataset with 65 cooking activities which are recognized by
distinguishing movements of human body from high resolution
videos. The other study used 2D, 3D convolutional neural
network to recognize eight cooking activities from egocentric
video data [11]. A distributed framework based on state space
model for detecting changes in indoor air quality, such as
accidental or malicious airborne contaminant release in the
building interior was proposed in [12]. They considered these
incidents as events and modeled event sources i.e., doors,
windows etc. as a fault in the process. This is an application of
advanced fault diagnosis tools to the problem of contaminant
event monitoring in intelligent buildings. Besides, in pulp and
paper manufacturing industry, LSTM autoencoder was used
to detect the rare event of paper breaking [13]. For anomaly
detection in multivariate time series LSTM encoder-decoder
model is also popular [14]. However, cooking event detection
from ambient thermal condition introduces new challenges
of detecting precisely distinguishable non-frequent events in
residential homes.

III. OVERALL FRAMEWORK

We design our framework for detecting cooking events
occurred at residential apartment home. Our cooking event de-
tecting framework consists of three modules, i) Data Process-
ing, ii) Reconstruction iii) Adaptive Threshold Detection. We
showed our overall process in figure 1. In data processing step,
we excluded all instances with any missing value of the sensor
data variables. Then we upsampled our data for 1-minute
granularity and applied a median filter to raw temperature, hu-
midity data from sensors which will eliminate extreme outlier
values from the data. From temperature series, we computed

Fig. 1: Overall process

temperature change between consecutive time stamps which
refers to the temperature increment or decrement rate. We
prepared different combinations of data variables such as by
separately considering temperature, humidity or temperature
change, or by considering all these variables from all places.
Then we divided our data with selected variables into three
sets i.e., training, validation and testing set. In reconstruction
step, we separated instances labeled with non-cooking from
training set. We train our lstm-autoencoder model with only
non-cooking labeled instances of the training set. Using this
trained lstm-autoencoder model, we reconstructed validation
set and computed reconstruction errors. In the adaptive thresh-
old detection step, we used reconstruction errors to compute
a deviation score for each of the instances in the validation
set. We calculated threshold value by maximizing the F1-
score with higher priority for recall. Finally, we reconstruct
our testing set and computed reconstruction errors. We assign
cooking labels to the instances which shows higher deviation
score than the threshold values. We evaluated our framework
with different combination of sensor data variables to detect
cooking events occurred at apartment home. It appears that
considering all data variables (i.e., temperature, humidity, tem-
perature change rate) from all places provides better detection
of cooking activities at the apartment home.

IV. EVENT DETECTION METHODOLOGY

In this section, we describe the detailed methodology to
infer cooking activity from ambient temperature, humidity
data. We use autoencoder based reconstruction technique to
select threshold which helps to infer cooking activity. We
consider cooking activities as events of various duration and
assume it can happen multiple times a day. This refers to
have a very little amount of positive labeled instances in
our cooking activity dataset. Besides, we are required to
differentiate temperature rise by cooking from the diurnal
midday temperature rise at home as well as to extract sub-
sequences of different lengths labeled with cooking activities.

In this work, we use ambient sensor data of temperature
and humidity which is noisy and need to be processed before
applying event detection algorithm. In data processing step, we
discarded instances with missing values of all variables pro-
vided by the sensors. Collected raw temperature and humidity
signals are upsampled with 1-minute granularity and filtered
using a low-pass median filter to exclude any extreme outliers.
The filtered data is then prepared in order to pass through lstm-



autoencoder. We transformed two-dimentional data array into
a 3D array of size: samples× lookback×features. Samples
are just the number of instances, features are the number
of data variables we want to consider and lookback is the
number of instances we want to look back. We construct these
frames with sliding window of having length of 90% overlap
with previous frame. We choose deep learning over existing
probabilistic and deterministic event detection algorithms for
automatic temporal feature extraction and threshold selection.
RNNs, in general, and LSTM (long short term memory),
specifically, can extract temporal information for sequential or
time series data. The effect of past events can automatically
be extracted by these models. It can capture both long and
short period effects of past events.

Mathematically we define our problem as follows. Let a
home H has N number of interior and exterior surfaces. We
select m surfaces to be examined where m ≤ N . Consider
CHt1 , CHt2 , . . . , CHtm and CHh1 , CHh2 , . . . , CHhm are
the temporal sequences of temperature and humidity respec-
tively, obtained from m surface locations of a home. Let each
of these temporal sequences CHti and CHhj

(i, j ≤ m) con-
tain n instances of temperature tempi1 , tempi2 , . . . , tempin
and humidity humidj1 , humidj2 , . . . , humidjn values. We
derived temperature change or heating-cooling rate be-
tween two consecutive timestamps by this formula: hcrj =
(tempj+1 − tempj)/(tj+1 − tj) Thus we obtained a tem-
perature change series for each of the areas which are de-
noted by CHhcr1 , CHhcr2 , . . . , CHhcrm . We prepared differ-
ent multivariate time series using combinations of temperature,
humidity and heating-cooling rate from the examined areas.
However, the goal is to perform supervised event detection
from these n labeled data sequences. Event detection extracts
temporal subsequences of various lengths and assigns positive
labels to all instances between starting and ending timestamps.
In our case, we considered cooking activities from single
length timestamps to higher length. From event detection
algorithm we can mark starting and ending timestamps (sc, ec)
for each of the cooking events c and assigns positive labels to
all instances between sc and ec.

Consider our prepared temporal sequences from the selected
sensor variables are X = x1, x2, ..., xL of length L, where
each sequence xi ∈ Rm is an d-dimensional vector of readings
for d variables starting at timestamp ti. We train an LSTM
autoencoder to reconstruct instances of normal time-series.
The LSTM encoder learns a fixed length vector representation
of the input time-series and the LSTM decoder uses this
representation to reconstruct the time-series using the current
hidden state and the value predicted at the previous time-
step. The reconstruction errors are then used to obtain the
likelihood of a point in a test time-series being anomalous.
For each point xi, a deviation score Devi of the point being
anomalous is obtained. A higher deviation score indicates a
higher likelihood of the point being positive labeled.

Given X,hiE is the hidden state of encoder at time ti for
each i ∈ 1, 2, . . . , L, where hiE ∈ Rk, k is the number of
LSTM units in the hidden layer of the encoder. The final state

hLE of the encoder is used as the initial state for the decoder.
During training, the decoder uses xi as input to obtain the state
hi−1D , then predict x̂i−1 corresponding to target xi−1. During
inference, the predicted value x̂i is input to the decoder to
obtain hi−1D and predict x̂i−1. The model is trained to minimize
the objective

∑
X∈sN

∑L
i=1(||xi − x̂i||)2 ,where sN is set of

normal training sequences.
We divided X into three sets of time-series: Xtrain , Xvalid,

and Xtest. Then we separated Xtrainc
(the instances with

”cooking” labels) and Xtrainn
(the instances with ”normal”

labeled) from Xtrain. The set of sequences Xtrainn is used
to learn the LSTM autoencoder reconstruction model. The set
Xvalid is used as validation set while training the encoder-
decoder model. The reconstruction error vector for xi is given
by ei = |xi−x̂i|. The error vectors for the points in set Xvalid

are used to estimate the mean (µ) and standard deviation (σ)
of a Normal distribution N (µ, σ2) using Maximum Likeli-
hood Estimation. Then, for any point xi, the deviation score
devi = (ei−µ)/σ2. In a supervised setting, if devi > τ
, a point in a sequence can be predicted to be ”cooking”,
otherwise “normal”. The threshold τ over the likelihood values
is learnt to maximize Fβ = (1 + β2) × P × R/(β2P + R),
where P is precision, R is recall, “cooking” is the positive
class and “normal” is the negative class. If a window contains
an cooking pattern, the entire window is labeled as “cooking”.
We assume β > 1 for higher recall since we are interested
to find out all the data points of cooking. The parameters τ
and k are chosen with maximum Fβ score on the validation
sequences in Xvalid. Complete flow of the process is presented
as algorithm in algorithm 1.

Algorithm 1 Cooking Event Detection

1: procedure COOKINGEVENTDETECTION (Input: tempo-
ral instances X , true labels y, testsize Output: Predicted
cooking Labels Ŷ )

2: Initialize all model parameters θ for LSTM AutoEn-
coder

3: Xtrain, ytrain, Xvalid, yvalid, Xtest, ytest ← Train-
TestSplit (X, y, testsize)

4: Xtrainn
← Xtraini

if ytraini
== 0

5: Train Autoencoder with Xtrainn

6: X̂valid ← Autoencoder (Xvalid)

7: X̂test ← Autoencoder (Xtest)

8: ReconstructionError, E ← |Xvalid - X̂valid|
9: Calculate: N (µ, σ2)

10: DeviationScore ← (Ei − µ)/ σ2

11: Threshold ← Max((1 + β2)× P ×R/(β2P +R))
12: Ŷ ← 0 if Score ≤ Threshold ; 1 if Score ≥

Threshold
13: return Ŷ
14: end procedure

V. EXPERIMENTAL RESULTS

The framework is evaluated on a cooking dataset collected
from an apartment unit over 48 days. We deployed Ambi-



Fig. 2: Sensor placements in the apartment unit

ent weather Thermo-Hygrometer with WS-3000-X5 monitor
and five wireless remote sensors to different places of the
apartment. The sensors can report temperature in range from
−40◦F to 140◦F and humidity in range from 10% and 99%.
Weather sensors were placed on the surface of different walls
in the apartment. We examined five places of the home in this
work. The frequency of the temperature and humidity data
is 915MHz. Temperature and humidity get updated in every
60 seconds. We saved starting and ending time of cooking
events by visual observations for 60 days between October
and December. We tried to avoid other thermal condition
changing human activities i.e., opening windows or doors,
during cooking in order to focus only on the thermal condition
changing for cooking activities inside the apartment unit. Due
to some skipped records of cooking and overlapping of other
thermal condition changing activities, we discarded 12 days
temperature and humidity data and worked with the remaining
48 days data. Figure 2 shows the orientation of the apartment
unit and placement of sensors in the apartment unit.
CH1, CH2, CH3, CH4, CH5 represents the sensors which

provides temperature, humidity, dew point and heat index of
the place according to it’s placement. We took temperature
and humidity from each of the sensors and calculated heating
and cooling rate for each of the places we monitored. In
this study thermal and moisture condition of each place CHi

is presented by temperature Tempi, humidity Humidi and
heating-cooling rate HCRi.

The collected temperature and humidity data from weather
sensors are noisy and have missing values. For any missing
values of temperature, humidity, dew point and heat index, we
discarded the entire instance. Figure 3 shows the temperature
and humidity data for a day obtained from the apartment
unit. The figure shows the outside surface CH2 has the
lowest temperature and the highest humidity for the day.
However, temperature series from all other indoor surfaces
show two peaks throughout the day and CH3 has slightly
higher temperature than the other channels during this peak.
Humidity for indoor surfaces are slightly higher for CH3

and CH4. As the apartment unit is centrally air-conditioned,
temperature stays almost same all the time except extreme
weather or any other human activity which affects the indoor
temperature.

We showed temperature and heating-cooling rate for each

Fig. 3: Temperature and humidity data from sensors

of the places inside the apartment unit during cooking in
figure 4. Each subplot in the image shows temperature or
heating cooling rate for consecutive five time stamps. Each
column represents temperature or heating cooling rate for each
of the channels over consecutive time stamps and each row
represents temperature or heating cooling rate in all channels
for a specific timestamp. Figure 4(a) shows channel CH3

has always higher temperature (greater than 75◦F ) than other
channels. Corresponding heating and cooling rate for each
channel at the same timestamps is showed in figure 4(b). In
all cases, during five timestamps at least one of the channel
shows increment of heating-cooling rate (i.e., highlighted with
red) during cooking.

We labeled all temperature sensor instances within cooking
duration with 1 and other instances with 0 to refer normal
condition. We had around 13300 instances which was ran-
domly divided into training and testing set (25%). We used
20% instances as validation set from training set. According
to manually labeled dataset, the total number of cooking
event in temperature time series is 32 within 48 days. We
applied our cooking event detection algorithm on different
variable sets with various combination of temperature, humid-
ity and heating-cooling rate from one individual channel or
all channels. However, we presented evaluation results from
the combinations e.g. temperature series from all channels,
humidity series from all channels, temperature and humidity
from channel CH3 and temperature, humidity, heating-cooling
rate from all channels.

Our lstm-autoencoder consists of two layers for encoding
and two layers for decoding. We trained our autoencoder
model for 1000 epochs with batch size 64. We used different
number of variables (i.e., 2, 5, 10, 15 etc.) based on the



(a) Temperature

(b) Heating-Cooling rate

Fig. 4: Visualization of temperature, heating and cooling rate from Sensors

combinations selected. In this study, we also explored different
number of timesteps to lookback for cooking event detection.
Empirically we found that 5 timesteps provides the best eval-
uation metrics. We evaluated our framework in two ways, i.e.,
one way counts the total number of temperature time series
instances are correctly detected as cooking and the another
way counts the total number of correctly detected cooking
events. We considered true positive (TP) instances or events,
false positive (FP) instances or events and false negative (FN)
instances or events for calculating different evaluation metrics
i.e., accuracy, precision, recall.

Table I shows the evaluation metrics of detecting ”cooking”
labeled instances. There were 2668 instances in test set where
103 instances were labeled as ’cooking’. The table shows

TABLE I: Evaluation of detecting ’cooking’ labeled instance

Dataset Detected Accuracy Precision Recall
Temp1, T emp2,
T emp3, T emp4,

T emp5
63 0.82 0.12 0.66

Humid1, Humid2,
Humid3, Humid4,

Humid5
51 0.81 0.11 0.50

Temp3, Humid3 70 0.80 0.12 0.81
All 93 0.95 0.44 0.90

different combination of sensor variables causes difference in
the evaluation metric for cooking event detection. The com-
bination with temperature, humidity and heating-cooling rate
from all channels work best for accurately detecting cooking
events. As we upsampled the temperature and humidity data
with 1-minute granularity, we have been able to detect whether
any cooking activity is occurred or not for every 1 minute.
Table II shows the evaluation metrics of detecting cooking
events. This table shows the results for how many events were
correctly detected with all timestamps including starting and

(a) Temperature (b) Humidity

(c) CH3 temperature and humdity (d) All

Fig. 5: Confusion matrices

ending timestamps. We considered one instance tolerance for
detecting starting and ending instance for each of the cooking
events. Here we counted false positive if any consecutive
timestamps are falsely detected as ’cooking’ and false negative
if any cooking timestamps are falsely detected as ’normal’.

TABLE II: Evaluation of cooking event detection

Dataset Detected Accuracy Precision Recall
Temp1, T emp2,
T emp3, T emp4,

T emp5
26 0.81 0.24 0.75

Humid1, Humid2,
Humid3, Humid4,

Humid5
20 0.63 0.20 0.60

Temp3, Humid3 26 0.68 0.22 0.79
All 30 0.93 0.66 0.85

Figure 5 shows TP, FP, FN, TN for each combination of
data variables for detecting cooking instances. It is obvious
from the tables and confusion matrices that, only temperature
or humidity cannot improve the cooking event detection in
our experiments. Temperature and humidity from only CH3

does not improve the result as it increases the false positive in-
stances significantly. It indicates only kitchen area temperature
and humidity data is not sufficient to detect cooking activity
in a 726 sq2 feet apartment. For cooking activity detection,
we need to consider thermal condition of the whole apartment
unit. Considering all temperature, humidity as well as heating
and cooling rate from all channels reduce the false negative
and false positive instances.

We showed cooking event prediction compared with original



(a) All variables

(b) Temperature

Fig. 6: Prediction of cooking event

event label in figure 6 for three days. Figure 6(a) shows
cooking event detection using all variables while figure 6
(b) shows cooking event detection using only temperature
series from all channels. The first image shows all variables
combination can find all short or long duration cooking events
accurately in the timeline. The second image shows temper-
ature combination detects some instances as cooking falsely
for the same timeline. Falsely detected events are showed with
dotted red colored starting and ending boundaries and correctly
detected events are showed with dotted black color.

With all sensor variables from all channels, we detected
starting and ending instances of cooking events correctly up
to 80% without ±1 instance tolerance. For 95% of the total
cooking events, instances were correctly detected as ’cooking’
at least after 2-minute of actual starting timestamps. We
noticed cooking duration and number of stoves or cooking unit
has significant impact on the amount of temperature change.
Combination of one stove and oven increases temperature
up to 5◦F in 1 hr cooking duration while only one stove
achieves the same amount of temperature increment in 1.5 hr.
Temperature increment is significant for using two or more
than two stoves. In one hour two stoves increases up to 8◦F .
Temperature doesn’t start to decrease just after stop cooking,
rather it starts to decrease after quite some time. Therefore,
we obtained higher number of false positive instances which
leads to low precision, using only temperature or humidity
from all channels while it raised significantly up to 44% using
all temperature and humidity variables from all channels.

VI. CONCLUSION

In this paper, we presented cooking events as rare events in
the thermal data of a residential home. We inferred the isolated
cooking events using lstm autoencoder from ambient weather
variables (i.e., temperature, humidity, heating-cooling rate).
We evaluated and demonstrated our cooking event detection
algorithm with different combination of weather variables. We
suggested to use temperature and humidity along with the tem-
perature change rate of whole apartment area to infer cooking
activity. In future work, we plan to recognize other human
activities i.e., door, window interaction which changes thermal
condition of residential homes from contextual weather data.
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