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Abstract—In disaster situation, collecting information about
victims and disaster area quickly is required. However, it
is expected that the communication environment is not fully
prepared because communication facilities may be damaged.
Mobile Edge Computing (MEC) is attracting attention, in which
servers are distributed to the vicinity of end users. Thus, dynamic
task offloading adapting to changes of network resources is useful
in unstable network. This paper proposes a dynamic task offload
system based on the state of network. The proposed offload
system consists of two mechanisms. First mechanism is Software
Defined Mobile Edge Computing (SDMEC) architecture. Second
mechanism is dynamic task placement based on the state of
network resources. We formulated an optimization problem to
minimize the total response time while application execution. In
the proposed offload system, multiple tasks are placed dynam-
ically depending on the load of servers and network resources
to minimize response time of application. We implemented the
prototype of the proposed offload system and evaluated its
performance.

Index Terms—Mobile Edge Computing, SDN, OpenFlow, Of-
floading;

I. INTRODUCTION

In disaster situation, collecting information about victims
and disaster area quickly is required. Analyzing these in-
formation leads to efficient allocation of necessary resources
such as rescue teams. It is expected that the communication
environment is not fully prepared because communication
facilities may be damaged. Furthermore, analyzing images
and videos on battery-powered mobile devices increase power
consumption. Therefore, mobile devices are not suitable for
executing a high-load application independently. Cloud com-
puting enables to reduce the load of mobile devices by
aggregating and processing tasks from end users. However,
cloud computing intensively processes high-load applications
on the cloud server, so that the load of network and delay of
application processing can increase.

Hence, Mobile Edge Computing (MEC) attracts attention
for solving the problems of cloud computing. In MEC, servers
are distributed to the vicinity of end users. Therefore, delay
while processing applications may be reduced by shortening
the distance between servers and users. In MEC, dividing
application into tasks enables application processing to utilize
multiple edge servers and cloud servers. Management of edge
networks is difficult because servers are widely distributed.

Therefore, SDN (Software Defined Networking) that realizes
centralized network control is introduced to MEC. Control
plane and data plane are separated, and centralized network
control is performed by SDN controller. As a result, flexible
network control is possible. OpenFlow is one of techniques
which provides SDN. OpenFlow is a standard communica-
tion interface that enables programmable network control by
separating control plane and forwarding plane.

This paper proposes a dynamic task offload system based
on the state of network and the load of servers. The proposed
offload system consists of two mechanisms. First mechanism
is implementation of Software Defined Mobile Edge Comput-
ing (SDMEC). Second mechanism is dynamic task placement
considering network resources. We formulate an optimization
problem to minimize the total response time while application
execution. We implement a prototype of the proposed offload
system and evaluate its performance. In experiment, we use
face recognition application and confirm that routing and
task execution are performed on the network and server for
minimizing response time.

The rest of this paper is organized as follows. In Section
2, related work is presented. In Section 3, the proposed
dynamic task offload system is described. In Section 4, the
implementation of the prototype system of the proposed
offload system is explained. Experimental evaluations are
also discussed in Section 4. Finally, concluding remarks are
mentioned in Section 5.

II. RELATED WORK

In this section, we explain Mobile Edge Computing (MEC)
and Software Defined Mobile Edge Computing (SDMEC),
and mention its challenges as related work.

A. Overview of Mobile Edge Computing (MEC)

Nowadays, mobile devices such as smartphones and laptops
are widespread. Executing application on mobile devices is
limited due to their poor battery resources. Cloud comput-
ing can be a solution for this problem [1], which offloads
application on mobile devices to cloud servers and reduces
the load of mobile devices. However, with the widespread
use of mobile devices, the cloud server processes all data
from mobile devices intensively, a large amount of data from



end users squeezes network resources between mobile devices
and cloud servers. As a result, delay while executing applica-
tions increases which requires real-time performance. Hence,
Mobile Edge Computing (MEC) [2] attracts attention for the
purpose of improving delay problem of cloud computing [3].
The feature of MEC is that servers which have the same
role as the cloud server are distributed to the vicinity of end
users. Therefore, it is possible to reduce delay by shortening
the distance between end users and edge servers. In addition,
offloading part of the applications to edge servers enables to
reduce the load of network resources between mobile devices
and cloud servers.

B. Software Defined Mobile Edge Computing (SDMEC)

MEC enables to reduce the load of mobile devices, in
addition to solving the delay problems of cloud computing. A
challenge of MEC is that edge servers are placed distributedly,
thus managing such complicated network [4] [5]. To overcome
this challenge, Software Defined Mobile Edge Computing
(SDMEC) is proposed to manage distributed networks by
introducing SDN which enables flexible network control [6].
Monetary cost increases due to managing an enormous num-
ber of mobile devices. Therefore, SDN is software based man-
agement, it is possible to reduce the monetary cost compared
with hardware based management [7]. Considering mobility
of users, handover of heterogeneous networks is possible by
network monitoring by SDN [8]. By monitoring the load of
link among servers in edge network, SDN controller enables
routing based on the latency. In addition, by monitoring the
resources of each server, allocating resources to each edge
server [9] is possible.

C. Offloading of image processing in MEC

In disaster situation, collecting information about victims
and disaster area quickly is required. Analyzing these infor-
mation leads to efficient allocation of necessary resources such
as rescue teams. Especially, analyzing images of victims and
disaster area is effective way in disaster situation. Ashish et al.
[10] propose a fog computing-based data offload mechanism
for real-time analysis of disaster information. Although cloud
based data analysis related to disaster situation involves a
significant delay, offloading to fog nodes makes the process
more effective. Trinh et al. [11] propose offloading image
processing mechanism in mobile edge computing assuming
disaster situation. This mechanism offloads face recognition
application focusing on calculation of the load of edge servers
and cloud servers, and power consumption of mobile devices.
Meanwhile, Minh et al. [12] propose an architecture of
mobile edge computing considering fault tolerance in unstable
network such as disaster situation. When the network links
among edge servers and client are disconnected, application
processing is offloaded to nearby mobile devices. In disaster
situation, it is necessary to analyze visual data gathered from
disaster area quickly and in real time. However, efficient
application execution is required because usable resources are
limited.

In related work, offload mechanisms consider the power
consumption of the mobile devices and computational load of
edge servers and cloud servers. However, considering unstable
network situation such as disaster situation, task offload
considering network resources in addition to computational
resources is more beneficial. Therefore, our proposed offload
system dynamically performs task placement while executing
application considering the state of network, in addition to
computation resources of each server.

III. PROPOSED DYNAMIC TASK OFFLOAD SYSTEM

This section proposes dynamic task offload system adapting
to the state of network resources in MEC environment. The
purpose of the proposed offload system is to realize dy-
namic offloading of image processing applications in unstable
network situation such as disaster situation. To achieve this
purpose, the proposed offload system places multiple tasks
dynamically and executes route selection considering network
resource and the load of servers.

A. Overview of the Proposed Task Offload System

Figure 1 shows an overview of proposed offload system.
The proposed offload system has following two features
to enable dynamic task offloading considering the state of
network resources.

First mechanism is implementing framework of Software
Defined Mobile Edge Computing (SDMEC). For edge-cloud
network management, the proposed offload system introduces
OpenFlow to MEC environment. By introducing OpenFlow
to MEC, the data plane of edge-cloud network converts to
OpenFlow switch and the OpenFlow controller manages data
plane of edge-cloud network. The proposed offload system
consists of edge servers, a cloud server and OpenFlow net-
work. A mobile device (we call it Client) sends requests to
the controller node of MEC. We introduce MEC controller as
controller node which includes OpenFlow controller and the
role of Offloading management.

Second mechanism is dynamic task offloading considering
the state of network resources. MEC controller solves an
optimization problem based on the processing at each edge
server and a cloud server, and determines the task allocation
and the route of application processing. In the proposed
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Fig. 1. Overview of the Proposed Offload System.



offload system, MEC controller places tasks dynamically and
controls routing considering the state of network resources and
task execution time so as to minimize total response time.

After execution of each task of face recognition at each
edge server or a cloud server, the result is returned to
the client. Each task of face recognition is pre-processing,
feature extraction and counting of the number of people in
given images. In the proposed offload system, these tasks are
allocated to each server based on the state of network and the
load of servers, and total response time will be reduced.

B. Framework of Software Defined Mobile Edge Computing
(SDMEC)

In MEC environment, edge servers are distributed to the
vicinity of end users. Thus, managing such complicated
distributed edge network, while maintaining connectivity and
providing services are difficult. However, OpenFlow enables
flexible management of such complicated network. Figure 2
shows a framework of introducing OpenFlow to edge-cloud
network.

OpenFlow enables flexible routing control by separating
the control plane and the data plane of the network. In the
proposed offload system, data plane of edge-cloud network
converts to OpenFlow switch and the OpenFlow controller
manages data plane of edge-cloud network. We introduce
MEC controller as controller node which includes OpenFlow
controller and the role of Offloading management. MEC
controller collects the state of network and information of
each server and updates these parameters at regular intervals.
Information of each server assumes the CPU usage and mem-
ory usage of servers and MEC controller monitors the load of
servers by monitoring these information. The state of network
is estimated from the amount of traffic per unit time which is
measured by OpenFlow switch. Specifically, OpenFlow switch
measures traffic flow to each port. By transmitting the Stats-
Request message at regular intervals from MEC controller
to OpenFlow switch, it is possible to collect the statistical
information stored in the flow table on the OpenFlow switch.
MEC controller calculates residual bandwidth by obtaining
the difference between the set value of links and the traffic
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Fig. 2. Framework of Software Defined Mobile Edge Computing (SDMEC).

flow to each port. Thus, MEC controller monitors the state of
edge-cloud network via OpenFlow switch. As a result, MEC
controller can monitor the state of edge-cloud network in real
time. The proposed offload system enables routing control
related to task processing of applications.

C. Dynamic Task Offloading

In the proposed offload system, MEC controller places
multiple tasks considering the load of servers and network
resources. In the proposed offload system, application is
divided to multiple tasks. In order to place these multiple
tasks, we formulate an optimization problem to minimize
the total response time while application execution. MEC
controller solves optimization problem and determines task
placement, and routing of allocating tasks. We introduce MIP
(Mixed Integer Programming) problem with parameters such
as bandwidth and task execution time. The objective function
and constraint conditions used in the optimization problem
are as shown in the following equations, and Table I shows
the parameters.

Minimize ∑
i∈N

(T i
Mi − ti0) (1)

Subject to

T i
Mi =

Mi∑
j=0

T i
j , j ∈ N i, i ∈ N (2)

T i
j =

∑
i∈Ni

(tij + xi
j ∗ eij), j ∈ N i, i ∈ N (3)

xi
j = {xi

0, x
i
1, · · ·, xi

Mi} (4)

W i
j,j+1 = ωi

j,j+1 +
yij,j+1 ∗ dij,j+1

b
(5)

ωi
j,j+1 ≥ T i

j , j ∈ N i, i ∈ N (6)

tij+1 ≥ W i
j,j+1, j ∈ N i, i ∈ N (7)

yij,j+1 ≥ xi
j − xi

j+1, j ∈ N i, i ∈ N (8)

yij,j+1 ≥ xi
j+1 − xi

j , j ∈ N i, i ∈ N (9)

yij,j+1 ≤ xi
j+1 + xi

j , j ∈ N i, i ∈ N (10)

Function (1) is an objective function which minimizes total
response time of application i. Equation (2) to (10) represent
constraint conditions. Equation (2) shows end time of taski

M

which is sum of taskj of application i. Equations (3) and (4)
show execution time of taskj of application i. Execution time
of taskj is calculated by the sum of start time of taskj and
execution time of taskj . xi

j takes a value of 0 or 1 to decide
whether to process the task on the same server or offload task



TABLE I
PARAMETER OF OPTIMIZATION PROBLEM.

parameter content
N set of application i

N i set of task, N i = {0,1,・・・,M i }
eij execution time of taski

dij,j+1 size of data transferring from taskj to taskj+1

ωi
j,j+1 start time of data transmission from taskj to taskj+1 of application i

W i
j,j+1 end time of data transmission from taskj to taskj + 1

xi
j decision variables for taskj of application i, xi

j = {0, 1}
yij,j+1 binary integer for taskj and taskj+1 of application i are executed on the same server

b bandwidth of links
tij start time of taskj of application i

T i
j end time of taskj of application i

to other server. If xi
j is 1, task is offloaded to other server,

and 0 otherwise. Equation (5) shows data transferring time
from taskj to taskj+1. End time of data transmission from
taskj to taskj+1 is the sum of start time of data transmission
and value which is obtained by dividing the amount of data
by bandwidth of links. yij is binary integer determined by
the value of xi

j , and it takes 1, if task is offloaded to
other computational resource, 0 otherwise. Equation (6) shows
start time of data transmission from taskj to taskj+1 after
execution of taskj is completed. Equation (7) shows start
time of taskj+1 processing after the transfer from taskj to
taskj+1. Equations (8) to (10) indicate whether or not a
plurality of tasks are processed on the same server. By solving
the defined optimization problem at regular intervals, it is
possible to place multiple tasks. OpenFlow switch measures
the bandwidth of each link and it is substituted and updated
at regular intervals.

The procedure of executing application is described below,
and Figure 3 shows its flow.

Step1 Client sends request to MEC controller.
Step2 MEC controller transmits routing information to

each server based on the solution obtained by the op-
timization problem, and places tasks to each server.

Step3 Client sends an image to serveri.
Step4 After serveri receives the image, if serveri decides

to execute taskj based on information received in
Step2, then executes taskj and process moves to
Step5. Otherwise, severi sends image to serveri+k

and process moves to Step6.
Step5 If serveri continues executing taskj+1, executes

taskj+1 continuously, otherwise sends processed
data to serveri+k then process moves to Step6.

Step6 Based on information received in Step2, serveri+k

executes taskj , if j=j+1, and process moves to Step5.
Otherwise, the image or processing data is transmit-
ted to serveri+k, and process moves to Step4.

Step7 Step4 to Step6 are repeated, and when the number of
tasks to be processed reaches the maximum number
M, execution result is sent back to client.

In the proposed offload system, dynamic task placement
and route selection are enabled by solving the objective
function defined by Function (1) at regular intervals.
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Fig. 3. Flow of Multiple Task Processing.

IV. IMPLEMENTATION AND EVALUATION

This section describes a prototype implementation of the
proposed offload system and evaluation of experiment.

A. Implementation Environment

In order to confirm the operation of the proposed offload
system, we implemented a prototype system. Table II shows
specifications of a prototype system of the proposed offload
system. MEC controller and OpenFlow switch consist of
one machine. Application tested in experiment was face
recognition application. Face recognition application was im-
plemented by OpenCV [13]. There are multiple tasks for face
recognition, pre-processing, feature extraction and counting
the number of people. In addition, Haar-like feature [14] was
used for facial feature quantity extraction. Table III describes
detailed values of experiment.

TABLE II
SPECIFICATIONS OF PROTOTYPE SYSTEM.

Protocol

OpenFlow OpenFlow 1.3 [15]
Software

OpenFlow controller Ryu ver.4.29 [16]
OpenFlow switch Open vSwitch ver. 2.8.4 [17]
OpenCV OpenCV ver.3.3.0 [13]

Hardware

MEC controller Ubuntu16.04
Intel(R) Core(TM) i7-4790@3.60GHz, 16GB

Edge1 Ubuntu16.04
Intel(R) Core(TM) i7-3770@3.40GHz, 8GB

Edge2 Ubuntu16.04
Intel(R) Pentium (R) CPU G3420@3.20GHz, 8GB

Cloud Ubuntu16.04
Intel(R) Core(TM) i5-4590@3.30GHz, 8GB



TABLE III
DETAILED VALUES OF EXPERIMENT.

Parameter of Experiment

Image transmission interval 3 [s]
Bandwidth detection interval 20 [s]
Solving interval of optimization problem 20 [s]
Size of image 181 [Kbyte]

Delay of links

Edge1 - Cloud 50 [msec]
Edge2 - Cloud 50 [msec]
Client - Edge1 5 [msec]
Client - Edge2 5 [msec]
Edge1 - Edge2 10 [msec]

CPU usage

Edge1 80 [ %]
Edge2 60 [%]
Cloud 0 [%] 18/12Experimental Environment

Edge2

Client Emulator
OpenFlow switch

Packet Generator

Edge1

Cloud

MEC controller

Fig. 4. Experimental Environment.

In experiment, we evaluated response time. OpenFlow
switch detects the bandwidth of each link. MEC controller cal-
culates residual bandwidth from the bandwidth status obtained
from OpenFlow switch and solves optimization problem at
regular intervals based on task execution time of servers and
residual bandwidth of each link. After that, task placement
and route control are performed for each edge server and a
cloud server. Client sends image to edge server at regular
intervals. UDP is used for transmission of image, and the
image is transmitted dividedly. In order to make difference of
the bandwidth of each link, background traffic is transmitted
by iperf [18]. For background traffic, 70 Mbps traffic is
transmitted every 20 seconds between Edge 1 or Edge 2 and
client. Thus, bandwidth of links changes every 20 seconds.
For background traffic, the packet size was set to 1470 Bytes
and generated as CBR (Constant Bit Rate) traffic by UDP.
CPU usage was changed in the experiment to reproduce the
case that computational power of each server changes. Thus,
task execution time is variable depending on CPU usage. In
order to change CPU usage, we used CPUlimit command
[19]. In case that the load of each server is none, execution
time of each server is assumed to be almost same. Execution
time of each task is based on the average of preliminary 100
times execution. Response time is defined by time from client

TABLE IV
TASK PLACEMENT PATTERN INDEX.

Pattern Index Edge1 Edge2 Cloud
1 (offload) P FC
2 (offload) P FC
3 (offload) P FC
4 (no offload) P, FC
5 (no offload) P, FC
6 (no offload) P, FC

transmits the image to result returns to client. Figure 4 shows
experimental environment. Packet generator sends background
traffic between client and edge servers. Thus, bandwidth of
links is changed at regular intervals. The packet generator
changes the amount of traffic between Edge1 and Client,
between Edge2 and Client.

Table IV shows pattern index of task placement to classify
task placements of the results. Pattern index P shows the task
of pre-process, and pattern index FC shows the tasks of feature
extraction and counting the number of people in the image.

B. Evaluation : Response Time of Application

Figure 5 shows the transition of the response time within
the experimental time. In this experiment, the state of net-
work was varied at every 20 seconds, because of varying
background traffic between Edge1 to Client and Edge2 to
Client at every 20 seconds alternately. MEC controller solved
optimization problem at every 20 seconds during the ex-
periment and placed multiple tasks and changed routing of
task allocation. In the proposed offload system, pre-processing
and feature amount extraction were processed on Edge1 and
Cloud respectively until 20 seconds. In addition, up to 40
seconds afterwards, pre-processing was processed on Edge2
and feature extraction was processed on Cloud. After that, the
pattern index 3 and 2 were repeated. This transition means
that task placement was changed depending on the variation
of background traffic between Edge1 to Client and Edge2 to
Client. This results shows that the proposed offload system
enabled task placement depending on the state of network.
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We placed tasks to specific servers intentionally to compare
task placement of the proposed offload system with other task
placement patterns. Figure 6 shows the average response time
of the proposed offload system and other task placement pat-
terns. Response time consists of the sum of data transmission
time and application execution time. This result shows that
the proposed offload system enabled to place multiple tasks to
minimize response time compared with other task placement
patterns.

Fig. 6. Comparison of the Proposed Offload System and Other Task
Placement.

V. CONCLUSION

In this paper, we proposed dynamic task offload system.
The purpose of the proposed offload system was dynamic
task placement considering the state of network and the
load of servers. The proposed offload system consists of
following two mechanisms. First mechanism is introduction of
SDMEC. For edge-cloud network management, we introduced
OpenFlow to MEC environment. By introducing OpenFlow,
the data plane of edge-cloud network converts to OpenFlow
switch and the OpenFlow controller manages control plane
of edge-cloud network. Second mechanism was dynamic task
placement considering network resources. We formulated an
optimization problem to minimize the total response time
while application execution. MEC controller solves optimiza-
tion problem based on the load of each server and the state
of network, and updates it at regular intervals. Thus, MEC
controller enables dynamic task placement to each server.

We implemented a prototype of the proposed offload system
and evaluated its performance. In experiment, we tested face
recognition application and confirmed that tasks were exe-
cuted with the minimum response time while client transmits
image at regular intervals. In experiment, MEC controller
solved optimization problems at regular intervals based on
task execution time of each server and the state of network,
and confirmed that MEC controller placed multiple tasks dy-
namically. In addition, we confirmed that the proposed offload
system minimized response time. Therefore, evaluation results
showed that the proposed offload system placed multiple tasks
dynamically based on the load of servers and the state of
network. In addition, we confirmed that the proposed offload
system processed multiple tasks to minimize response time of
application execution.
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