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Abstract—A still unsolved issue in human activity recognition,
as it is being used in many smart systems, is the availability
of labeled training data or, in other words, information about
what sensors actually are recording. A possible solution to this
problem is to build detailed semantic domain models specifying,
in different detail, complex compound activities. Such models
would allow retrieving the required information without the
necessity of time-consuming labeling. On our way to develop a
method to leverage text-based domain descriptions automatically
to build such domain models, we previously introduced a method
to extract domain-relevant information from texts. However,
this method still included the requirement to hand-craft so-
called “regular expressions,” which have to be adjusted or re-
built for different languages and different styles. Even though
only done once for a language or style, the necessity of hand-
crafting regular expressions (and their fine-tuning by experts)
still requires extensive work. In this paper, we present the next
step to automatize information extraction by substituting the
regular expressions with an automated neural network. All steps
in this method are now fully automatic and do not require any
hand-crafting. The performance of this new method is equal to
the performance of the regular expressions method before (70%
precision and recall).

Index Terms—automatic information extraction; complex ac-
tivity recognition; domain models

I. INTRODUCTION

Recognition of human activities from wearable and ubiq-
uitous sensor data is an active research field (e.g. Wang et
al. [1]). Simple recognition tasks such as step recognition or
modes of locomotion (e.g. driving, walking, etc.) are already
well integrated in commercial platforms (e.g. fitness trackers
and smart phones [2]).

More complex recognition tasks, however, still present
challenges. One of the major problems in this context is the
acquisition of the necessary label data for supervised training
schemes. In cases of only a couple of people doing only
a limited set of activities, gathering label-data from video
footage by hand is a possibility.

Nevertheless, even in that case, the amount of manual labor
is intensive. As soon as the data-set should include a large
amount of persons, more complex activities, or several subjects
at once, the effort to acquire ground-truth becomes extensive
or even prohibitive. Another option, i.e. asking test subjects to

document all of their activities themselves, is not ideal either.
Subjects would need to interrupt their activities very frequently
to provide timely labels, or, when done after the sequence of
activities was finished, rely on their memory, which may be
prone to inaccuracies and errors.

Thus, in an ideal world, it would help a lot if labels could
be retrieved automatically. As a precondition, the fact that the
workflow of certain tasks is often known and only allows a
certain variance can be leveraged. As an example, when baking
a cake, a batter has to be prepared before the cake could go into
the oven; for the batter, liquid ingredients have to be mixed
before dry ingredients can go in; the order of the liquid and
dry ingredients within their respective step, however, can be
freely chosen.

Out of this knowledge of what can or cannot happen,
recognition schemes to determine complex activities can be
designed that do not operate in a classical supervised way.
Essentially, this happens by decomposing complex activities
into basic actions for which reliable recognition systems are
either available or can be trained easily, then building com-
pound complex activities out of them using logical and other
constraints (e.g. order of execution, required items, location,
etc.). This approach has been suggested [3].

A precondition for such an approach are (semantic) models
that describe (to some detail) how the complex activities are
composed. Such models would then provide the required
information about what was supposed to happen at which step
of a task. Clearly for some dedicated or small applications
such models can be hand-crafted (e.g. [4]). However, for
the approach to scale to a broader range of activities and
applications, ways of automatic generation of such domain
models are needed.

In this paper we built on previous work [5] where we
introduced a method to extract semantic information from
online domain descriptions about the way complex activities
(for a specific domain) are composed of simple ones that have
to be performed (e.g. a manual for assembling a furniture
piece). This extracted relevant information was then used to
automatically compose parts of tree-based semantic models of
different domains.

However, even though the extraction of domain-relevant



information provided decent results (precision of 88% and
recall of 77%), the major drawback of this method was
the requirement to build so called (partially quite complex)
“regular expressions” per hand for different languages and
also for different complexities within a language. Despite
the necessity of composing these regular expressions per
hand however, our previous work has the advantage that we
are able to extract full sentences and not only information
excerpts, as done in other work! This is important since, as
outlined in our previous work, the composition of a sentence
often carries information about the structure of a task. For
example: First the liquid ingredients have to be mixed, then
the dry ingredients can be added to the batter. If we would
only extract to “ add the liquid ingredients” and to “add
the dry ingredients” the batter would not have the required
consistency. Therefore, we wanted to be able to extract not
only information but also those sentences containing the
required information with their structure.

Here, in this paper we now present a method, based on
neural networks, that keeps the positive aspects of our previous
work, but takes over the work of the “regular expressions”,
which allows to automatize all steps in the process of extract-
ing all relevant information about a domain within a written
text. This provides another step towards fully automatically
composition of domain models out of text-descriptions. Them
main contribution and novelty of this paper is the automation
of a step that previously had to be done manually, which makes
the proposed approach more useful and also independent of
complexity-levels in the language. In the previous method
the regular expressions had to be adjusted according to the
complexity-level of the used language, which is not necessary
when using neural networks. Furthermore, we doubled the
data-set used to evaluate the methodology; it now includes
21 (previous work included 11) domain descriptions with an
average of about 41 sentences, resulting in a data-set of 872
sentences (of which 464 actually contain relevant information
about their respective domain) to be tested.

II. RELATED WORK

For extracting information (IE) a variety of methods exist.
On the one hand, there is domain specific machine-learning
to extract the necessary rules from annotated data, as in [6]
and [7] for example. This method allows for high adaptability
to domains, but requires the availability of enough annotated
data to extract adequate rules. This condition makes these
algorithms not usable for our needs. The rule-based approach
on the other hand, as in [8] for example, requires an expert
to manually constructs specific rules. This, furthermore, is a
complex process that requires an adequate knowledge base
regarding the domain in which the IE-system is supposed to
work.

Another approach for information extraction is open IE,
like [9], which uses self-supervised learning. This approach
provides automatic labeling of data using a parser, which leads

to domain independence, but requires a language-specific clas-
sifier. Despite its positive aspects (e.g. domain independence),
open IE [10] performs worse than domain dependent IE (e.g.
[6]), particularly in the recall. Therefore, open IE methods do
not suffice for our purpose.

Many of these methods make use of word embeddings [11]
which are normally used to quantify the semantic similarity
between two words within a certain vocabulary. However using
word embeddings for part-of-speech (POS) tag classification
seems to be something that is normally not done since POS
tags and their respective words are viewed as two different
things.

The attempt to extract relevant information from text in
practice is not new. Already 20 years ago [12] and [13]
introduced a method to extract relevant keywords of biological
information directly from scientific literature. These were
selected by their relative accumulation in comparison to a
domain-specific background distribution. However, this work
is very specific and very domain dependent. Furthermore,
in contrast to our requirements, this method only looks for
specific keywords and not entire sentences.

Work by Patwardhan et al. [14] described an information
extraction system based on a relevant sentence classifier to
identify relevant regions and extract domain specific patterns.
More recent work by Salloum et al. [15] present a clause-based
framework for information extraction in textual documents,
specifically focusing on relation extraction. In another domain
Vivani et al. [16] propose an ontology-driven approach to
identify events and their attributes from episodes of care
included in medical reports written in Italy.

All work above only extracts specific parts of information
and not information of an entire domain, as required for our
goals, thus none of these methods were suitable for our needs.

III. METHODOLOGY

In our initial attempts to provide automatic extraction of
relevant information from text [5] we used a part-of-speech
tagger on a pre-processed document (see previous paper for
details about the pre-processing steps) to enable the use of
chunking (using regular expressions in the POS labeled part
of the tuples to determine whether the sequence of tuples
is relevant). For this process, the regular expressions had
to be hand-crafted for each language and also for different
complexities within a language. These expressions were de-
signed to extract those sentences whose syntax indicated that
it includes an action (e.g. “Verb Object”, i.e. “do something”).
The requirement to hand-craft these regular expression, even
though only once for a desired language standard, was a major
drawback. In the following, we describe how we managed to
exchange these hand-crafted regular expressions with a fully
automatic Artificial Neural Network (ANN).

Instead of using hand-crafted regular expressions of the
syntax of sentences, for this work we trained an Artificial
Neural Network (ANN) to recognize, based on the syntax of a
sentence, if it does or does not contains an action. If an action
was found, the sentence was deemed relevant for the purpose



of building a semantic model of compound activities, since
these consist of hierarchically connected basic actions.

This was done by first transforming labelled and indexed
sentences into their syntactical equivalent, as seen in 1,
using the part-of-speech tagger provided by the NLTK
[17]. This mechanism of pre-possessing has already been
employed in the previous work referenced in [5], so details
can be found there. Breaking down a sentence into syntactic
specifiers for each word allows us to construct a complete
vocabulary that is independent of the content of the text, while
retaining the internal structure of the sentences to be classified.

Attaining such a vocabulary is not achievable when consid-
ering the entirety of the English language in respect to every
domain imaginable. This is one of the reasons why domain-
independent information extraction methods normally perform
worse in comparison to domain-dependent methods. As previ-
ously shown, it is possible to predict, with a reasonably high
success rate, if a sentence includes an action or not, solely by
inspecting the part-of-speech tags of the sentences in question
[5]. However, in contrast to the complete English dictionary,
including all technical terms and domain specific words and
contexts, the number of different part-of-speech tags is finite.

On the basis of the “Penn Treebank tag set” (see [17]) our
vocabulary was created by adding symbols to it which are
relevant for the meaning of a sentence. For example the comma
and the closed bracket are considered to be possible words.
There is also one word reserved for unexpected symbols,
which is necessary to guarantee that the network can compute
any kind of text, even if it includes non-ASCII symbols.

733 0 Have you
always wanted to
impress people
with your art?

733 0 VBP PRP
RB VBD TO

VB NNS
IN PRP$ NN .

Fig. 1. The right part shows how all words in a sentence (left) are broken
down into semantic specifier tags. For example ”wanted” is assigned the tag
”VBD” which means verb, past tense.

With this method we were able to reduce the vocabulary
to less then 50 different “words”. This drastically reduces
computation time and allows for the resulting network to be
domain-independent. There is also a smaller data set required
to adequately train the network since the possible number
of “word” combinations is smaller. This, in a way, can be
seen as a feature reduction used to reduce the “curse of
dimensionality” [18].

To train the ANN a new data set with 872 labeled sentences
was used. Punctuation marks counted as words, as they are
able to alter the meaning of a sentence a great deal. The
number of words in a sentence ranged from 2 to 134 (average
number of words in sentence is 68, including punctuation).

The data set is comprised of 21 “how to” domain descrip-
tions. Please note that “how tos” were taken from various and

Fig. 2. Neural Network Structure: Shows the structure of the network and
how the sentences are transformed from a matrix to one vector.

quite differing practical domains, since our proposed method
should be domain independent, i.e. work an any kind of
different activities:

• changing a tires
• writing a summary
• building a lamp
• carving a pumpkin
• lighting a fire
• traveling to Europe
• planting a tree
• starting a business
• building a table
• identifying spiders
• growing bonsai trees
• improving writing speed
• finding a hobby
• building a power supply
• setting up a commercial kitchen
• training a pig
• caring for triops
• improving reaction speed
• jumping from high places
• going trekking in the Himalayas
• what to do in an emergency (A2E Method)

As evident, this data set contains a multitude of different
domains and since it is written by a plethora of different people
with different consumers in mind, it also includes multiple
different writing styles. It is an expansion of the data set that
was constructed for the training of the regular expressions
before in [5].

All of those sentences were compiled into a single document
such that each sentence occupied exactly one line in it. Every
sentence was then indexed and labeled, either as 1 for relevant
or as 0 for irrelevant sentences. Before training, the sentences
were shuffled. This randomized the input document before
each cross validation iteration, meaning sentences did not
come in order of their domain, but random.

After this, a part-of-speech tagger was used to tag the data
set. From this a new data set was created that consists of



index, label and a sentence of POS-tags and symbols. Note,
the automatic pre-processing steps were basically the same
as in our previous method, but while our previous evaluation
treated each domain individually, this time all sentences of
all domains were put into “one pot” - as one data-set with
many sentences. This combined set of sentences was then fed
to the ANN in order to train it.

The implementation for this particular fully connected neu-
ral network was done using Keras [19]. As a first step, each
of the sentences described above was padded such that all
sentences would contain the same number of words. Then all
words were one-hot encoded. The one-hot encoded sentence
matrices resulting from this were then used as input for the
word embedding layer.

The output, a non-sparse matrix representing the word-
embeddings of a sentence, was then flattened and used by
the artificial neural network to train. This was done until
the network could decide if a sentence contains relevant
information, or not. Relevant, in our case, as mentioned
above, are sentences that describe an action. Afterwards for
all inputs that were deemed relevant, the initial sentence is
looked up and added to a list.
The results are a list of relevant sentences that were extracted
from the initial text. Figure 3 shows the entire process.

The Artificial Neural Network(ANN) structure itself is fully
connected network consisting of a word embedding layer
which is also its input layer followed by two dense hidden
layers and an output layer as seen in Figure 2.

In stark contrast to the previous method using hand-
crafted regular expressions, this method works completely
autonomous once the structure of the neural network is created.
No extensive optimization by an expert is necessary.

To give a practical example, we use a sentence out of
the sub-chapter “disabilities” from the ABCDE-method [20].
This example sentence is: “Limb movements should be
inspected to evaluate potential signs of lateralization.” In the
pre-prosessing step it is automatically transformed into single
words and signs, according their types. Please refer to [5] for
details about this step. Now it looks like this:

(’Limb’, ’NN’), (’movements’, ’NNS’), (’should’,
’MD’), (’be’, ’VB’), (’inspected’, ’VBN’), (’to’,
’TO’), (’evaluate’, ’VB’), (’potential’, ’JJ’), (’signs’,
’NNS’), (’of’, ’IN’), (’lateralization’, ’NN’), (’.’, ’.’)

Now the POS-tags are taken and transformed into integers
by the vocabulary, which in our example would be:

12, 13, 11, 30, 33, 28, 30, 7, 13, 6, 12, 40

Then the sentence is padded with zeros until it has the right
length to be put into the ANN. Here it is evaluated and a label
is returned, which is either 1 or 0 depending on the relevance
of the sentence. Now, if the sentence was deemed relevant, its

Fig. 3. All steps in the work-flow of our method are fully automated.
In comparison, our initial work required the construction of a number of
regular expression and their adaptation (mostly for every domain, since they
were written by different persons and in different styles) instead of the fully
automatic Neural Network. The automatic pre-prosessing part is the same for
both methods.

index is used to obtain the original human-readable sentence.
This is then added to the output list.

IV. EVALUATION

To evaluate the neural network we used a 10 times 10 fold
cross-validation with different numbers of training iterations
(these are also called “epochs” in the following sections). We
also looked both at the data set as a whole and at subsets
containing only sentences of different word lengths. For each
of these cases, we calculated average precision and recall as
evaluation metrics.

Since the data set has been doubled compared to our
previous work using regular expressions, we also applied the
old technique using regular expressions to the new data set.

This yielded a recall of 76% and a precision of 60%.
In essence, this implies that while the regular expressions
technique is capable of retrieving 3 out of 4 of all relevant
sentences, the correctness of the retrieved samples is only 10%
above random chance. Please note that compared to earlier
work, this deterioration is due to trying to impose the regular
expressions on a significantly more diverse data set than in
the previous iteration. In other words, the regular expression
approach does not scale well without adding more expert
knowledge and would need significantly higher tuning to cope.

The results of the ANN show equal recall and precision of
about 70%. While recall is slightly lower (by 5%) than the
regular expressions approach, precision is noticeably higher
(by 10%). Additionally, the new approach eliminates the major



drawback of our previous iteration, namely the requirement to
hand-craft the regular expressions. Here, all relevant steps can
be performed automatically.

A. Training Time

The amount of training iterations used for neural networks
is often an important characteristic determining both the com-
putational effort necessary for setting up a trained model as
well as the quality of the results they achieve at their tasks. To
understand the behaviour for different numbers of iterations,
we have tested our data set for 50, 100, 150 and 250 epochs.
Table I lists the results. Unsurprisingly, training time increases
with training iterations, though in a sub-linear way. However,
since recall and precision remain the same for all epoch values,
there does not seem a point to go higher than 50.

Epochs Train. Time in Sec Precision Recall
50 827.7 70.3 % 70.1 %
100 1335.5 70.2 % 69.9 %
150 1930.1 69.9 % 69.9 %
250 2879.9 69.7 % 69.4 %

reg. expressions 59.5 % 75.8 %

TABLE I
INCREASING TRAINING TIME DOES NOT CHANGE THE OUTCOME.

THEREFORE, ONLY A SMALL NUMBER OF TRAINING ITERATIONS IS
REQUIRED FOR OUR PROPOSED METHOD.

B. Sentence Length

Another aspect that might have an influence on the per-
formance of the ANN is the length, i.e. the word count,
of sentences. There were both very short and very long
sentences in addition to a majority of medium length ones.
In order to evaluate the effect of different sentence lengths’,
we extracted all short sentences (5-10 words) from the data-
set and evaluated the ANN with only short sentences, and the
same with average length sentences (11-24 words) and longer
sentences (25-50 words). Beyond 50 Words there were only
3 sentences with an extreme of up to 134 words, which were
included in the over all data set, but not specifically tested in
terms of sentence length.

Table II shows that the performance of the ANN for short
sentences is noticeably better than the overall performance
(10% better). Recall for medium and long sentences is about
equal to the complete data-set (loosing about 2.5%). Precision
for medium length sentences shows similar behaviour to
the complete data-set (also loosing about 2.5%), but drops
noticeably for longer sentences (by 10%).

Overall, sentence length seems to negatively impact ANN
performance, though recall seems quite stable, while precision
decreases with increasing word count.

V. DISCUSSION AND CONCLUSION

We have presented a way to extract meaningful sentences
from textual representations of a variety of task descriptions in

# of words # sentences Precision Recall
short 5 – 10 153 79.4 % 81.2 %

medium 11 - 24 576 67.6 % 67.6 %
long 25 – 50 141 59.3 % 67.1 %

TABLE II
COMPARISON OF PERFORMANCE WITH DIFFERENT SENTENCE LENGTH.

AVERAGE OF 500 TIMES 10-FOLD CROSS-VALIDATION

a fully automatic way using an ANN. These sentences can then
be used to construct tree based hierarchical representations
of semantic activities, alleviating the problem of ground truth
scarcity in complex activity recognition. Compared to previous
work in this domain, we achieve comparable results with
significantly less expert input required.

While 70% recall and precision seem a solid foundation,
we believe further work can tune the neural network to
achieve even better performance. For example, adding more
layers with different functions or structure can be explored.
Furthermore, adding different functions (e.g. for the distance
calculations used in the flattening phase) may also improve
results.

A. Outlook

An approach to leverage domain models and how they
might look like - in this particular case hierarchical semantic
tree models - has been introduces by [4]. As has been pointed
out though, these kind of models had to be hand crafted,
since mechanisms to turn text based descriptions of domains
into adequate models have been missing.

Automatically extracting relevant information from text, as
provided in this paper, obviously is the first step towards
automatically generating such domain models. The next step
is to turn the extracted information into the required model-
shape. An approach to do so, has been introduced in our
previous work Krupp et al. [5]:

After extracting relevant sentences it is possible to construct
semantic trees as proposed by [4]. Such a tree one has to
consider different possible logic operators like ”and” or
”if” and their relative position within a sentence. Since the
English language is written and read from left to right this
is in most cases the order in which the operators are dealt
with. Furthermore the sentence is divided into multiple parts
dictated by said operators. An ”and” for example would
divide the sentence in at least two parts, the part before and
the part after this operator. However the first part may be
further divided in the case of an enumeration being detected.
After this the operator acts as a parent node with the divided
sentence parts as his children. These children are then
checked for operators continuing the cycle until no operators
are found. Applying this method results in a semantic tree
which represents the meaning of the sentence.



Essentially, according to this method by Krupp et al., rele-
vant sentences can be turned into single sub-trees providing the
required action information in tree-branches. These sentence-
sub-trees of a domain can then be arranged in a complete
domain tree, as required in [4] for example. Once, such
logically structured tree-based models are composed, they can
assist activity recognition, because for each recognized action,
the tree-model can provide information about the next most
likely action or about the probabilities of different possible
next actions. This information in turn should help any kind of
activity recognition classifier to improve.
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