
Federated Network Utility Maximization
Nurullah Karakoç, Anna Scaglione

School of Electrical, Computer and Energy Engineering
Arizona State University, Tempe, AZ

nkarakoc, ascaglio@asu.edu

Abstract—We consider a large-scale optimization problem with
private utilities over a network where servers are connected
through a graph and each server has their own edge devices
connected to it. This setup finds applications in many network
architectures from wireless communications to power networks
and to supply chain management. Over this architecture, we pro-
vide a decentralized federated optimization algorithm that uses
decomposition methods along with a single round of consensus
exchange on the global dual variables. The convergence perfor-
mance of the method is illustrated with numerical examples.

I. INTRODUCTION

With the proliferation of devices connected to the networks,
data processing requires more and more distributed computing
in the networks that are growing constantly and rapidly in
terms of scale. Considering the fact that data is produced in
edge devices, shifting computation closer to the edge side in-
creases efficiency while bypassing big data transmissions [1].
Using the cloud for computing has obvious advantages such as
much powerful hardware, sharing of resources etc. compared
to the edge devices which are powered by batteries mostly. On
the other hand, edge computing has significant benefits mostly
due to reduced delay and offloading of the communication
burden of the cloud network. In addition, it keeps the data
in the edge devices which reduces privacy concerns of users
significantly. To this end, for example, big companies like
Apple and Google who produce consumer electronics try to
bring dedicated processing hardware (named Neural Engine
and Neural Core) to their products for on-device machine
learning applications which is critical for real-time processing.
We expect to see the continuation of this trend in the near
future in order to support many delay-critical and privacy-
sensitive tasks and applications.

The algorithms harnessing the end devices’ capabilities
require a divide and conquer approach due to the scale. Nowa-
days, the decomposable problems are quickly mapped into
the distributed optimization algorithms [2], where the problem
is generally divided into smaller parts assigned to different
entities and the coordination is executed through message
passing schemes. These problems are generally expressed with
sum-utility objectives along with local and global constraints.
Many problems from the areas of machine learning/data fitting
to the resource allocation and coordination fit well into these
formulations where the decomposition of the overall problem
into sub-problems is possible.

This work is supported by NSF NeTS: 1716121.

Multi-Agent Optimization

Mesh Network Star Network

First-order optimization for large-scale problems Projection-free algorithms 7 / 7

Fig. 1: Mesh vs Star Networks.

In general, there are two different flavors of the considered
architectures which we name them as star networks and mesh
networks as illustrated in Fig. 1. Communication schemes are
generally implemented as master-slave (also called master-
worker) in the star and peer-to-peer in the mesh networks.
In the master-slave scheme, the slave nodes are responsible
for the parallel updates and the master node combines these
updates and broadcast it back to the other nodes. On the other
hand, in the peer-to-peer, nodes aggregate their info with the
other nodes directly through a message exchange scheme (i.e.,
an aggregation rule) after their parallel computations.

The optimization over the star networks is typically studied
under the network utility maximization (NUM) framework,
where fair resource allocation to heterogeneous users is for-
mulated as a convex problem [3], [4] under link capacity
constraints in communication networks. The solutions under
this framework mostly use primal/dual decomposition (see
[5], [6] for various decomposition techniques) where in the
distributed solution, the slave nodes compute the primal up-
dates whereas the master node is responsible from the dual
updates that use aggregated values of the primal variables. In
prior work [7]–[9], we have proposed a layered architecture
and a multi-layer hierarchical NUM algorithm for resource
allocation and coordination of radio access networks using a
Software Defined Network (SDN) orchestrator in the backhaul,
where the convergence of the algorithm is discussed in [10].
One main consideration in these works is that we assume the
changes in the system occur at the same time-scale with the
algorithm, where there are fixed number of iterations allowed
for different updates as opposed to the commonly used time-
scale separation assumption in which the algorithms converge
asymptotically before any change and each update is assumed
have enough iterations (or time) to converge. Using fixed

Fig. 2: Considered setup is a mesh network of star networks.

number of iterations brings an important limitation to the
algorithm design, where the effects of these iteration counts to
the convergence and to the possible errors caused by inexact
(incomplete) computations should be evaluated. Another well-
studied algorithm over star networks is Alternating Direc-
tion Method of Multipliers [11] (ADMM) which provides
improved convergence properties with the use of Augmented
Lagrangians over dual methods used by NUM.

Distributed optimization methods [12]–[14] over the mesh
networks typically use consensus (i.e., distributed averaging)
algorithms [15], [16] as message exchange schemes where the
aim is mostly to find a global optimizer of a common problem.
These algorithms converge asymptotically, and they can be
called approximate distributed averaging schemes in finite time
implementations. On the other hand, exact averaging (e.g., via
AllReduce) approaches are sensitive to stragglers and delays
in the communication links [17]. In addition, consensus algo-
rithms are not fully sequential (like AllReduce) which allows
parallelization of the computations and relaxes synchronization
requirements. Therefore, there are certain advantages in using
approximate methods, however, they create additional noise.

In this work, we consider an architecture where servers are
connected over a graph, and each server has its own edge
devices connected to it. One can think of it as the juxtaposition
of a mesh network and star networks as illustrated in Fig. 2.
This architecture is a natural fit to many networks from broad
range of applications. A typical example is from the wireless
networks, where end devices are connected to the access points
(e.g., WiFI APs, eNBs etc.) that are connected to each other
through a mesh network. Another examples can be found from
power networks or market modelling from economics. Over
this architecture, we provide an optimization framework and
an algorithm to solve the problems with sum-utility objec-
tives along with decomposable local (in-server) and global
(network-wide) constraints. The utilities are assumed private
and unknown to any other entity than the particular edge
node. The developed method is based on the usage of primal-

dual methods combined with a single round of consensus
exchange on the global dual variables. We essentially bring
together the vertical multi-layer decomposition enabled by
NUM framework and the horizontal decomposition of consen-
sus algorithms. We see this work as just an introductory effort
towards this direction, where many open research directions
such as the theoretical analysis of convergence, the error
analysis in finite-time implementations, the performance under
different consensus schemes, the combination of the algorithm
with the ADMM for broader set of objective functions etc.
deserve further investigation. There is a vast literature both on
the decomposition theory and on the consensus algorithms,
and the consideration of them together in architectures can
lead to holistic practical designs.

II. PROBLEM FORMULATION

We consider a network of N servers (agents) connected
over an undirected graph G = (V, E) with set of vertices V
(|V| = N) and set of edges E ⊆ V × V . Each server
n = 1, 2, . . . , N in this network has a set of workers, (i.e.,
edge devices) denoted with Sn. We assume these edge devices
do not have connectivity among themselves and their only
connectivity to the network is through their unique servers,
i.e., if a worker i ∈ Sn then i /∈ Sn′ , ∀n′ 6= n. Over
this architecture, we consider a network-wide total utility
maximization (or cost/lost function minimization), where each
edge device has their own private utility function which is
assumed to be unknown by any other entity in the network.
In addition, we consider two sets of coupling constraints: the
local constraints that couple the variables of the edge devices
connected to the same server and the global constraints that
couple the servers’ variables network-wide. We assume the
local constraints and the global constraints are decomposable
over edge devices and servers, respectively. There may also
be specific and private constraints that affect the variables
exclusively associated with servers or edge devices (such as
upper/lower bounds on particular variables). Mathematically,
we can formulate the optimization problem as

max
∑
n∈V

∑
i∈Sn

fi(xi)

s.t.
∑
i∈Sn

hi(xi,yn) ≤ 0,∀n ∈ V (server constraints)∑
n∈V

gn(yn) ≤ 0, (global constraints)

yn ∈ Yn,xi ∈ Xi,∀i, n,

(1)

where xi denotes the optimization variable of worker i, and yn
denotes the optimization variable of server n. In addition, fi
denotes private utility (or cost for the minimization case) func-
tion of edge device i, hi and gn are local and global constraint
functions (possibly vector-valued mappings), respectively and
the convex sets Yn,Xi are private constraints1. The summation
and the inequality operations are understood coordinate-wise.

1We denote the vectors and matrices with lowercase bold and uppercase
bold letters (e.g., xi is a vector and W is a matrix), respectively, whereas
the entries are denoted by subscripts after brackets (e.g., [x]i and [W]ij).

The typical examples arise from resource allocation prob-
lems, where the local constraints are distribution of the server
resources, and the global constraints are the network-wide
allocation of resources (e.g., see Sec. IV). Nonetheless, our
formulation and the solution procedure apply to the problems
that can be formulated/re-formulated in similar form as (1).

We can write the Lagrangian as

L(x,y,λ,µ)=
∑
n∈V

∑
i∈Sn

fi(xi)−
∑
n∈V

µ>n
∑
i∈Sn

hi(xi,yn)

− λ>
∑
n∈V

gn(yn),
(2)

where µn is the multiplier associated with the local constraint
of node n, and λ is the multiplier associated with the global
constraint. Also, x,y and µ contains all edge devices’ xi’s,
all servers’ yn’s and µn’s, respectively. Therefore, the dual
objective becomes

D(λ,µ) = max
yn∈Yn,xi∈Xi,∀i,n

L(x,y,λ,µ), (3)

and the dual problem is

min
λ≥0,µn≥0,∀n

D(λ,µ). (4)

Assuming strong duality, a decentralized and distributed
solution of the problem should aim to find optimal values
of the primal variables x,y and the dual variables λ,µ
in a center-free and a rapid way. In the next section, we
propose a decentralized algorithm that reduces communication
and computation burden by shifting them to the edges while
responding quickly to changes.

III. DECENTRALIZED SOLUTION VIA DECOMPOSITION

As a first step, we rearrange the Lagrangian in (2) as

L(x,y,λ,µ)=
∑
n∈V

(∑
i∈Sn

fi(xi)−
∑
i∈Sn

µ>nhi(xi,yn)

)
− λ>

∑
n∈V

gn(yn),

(5)

where the part in the parenthesis does not depend on λ, and
therefore, for fixed yn, it can be treated as a sub-problem with
primal variable xi’s and a dual variable µn. It is in fact the
Lagrangian of the sub-problem in each server n:

max
xi∈Xi,i∈Sn

∑
i∈Sn

fi(xi)

s.t.
∑
i∈Sn

hi(xi,yn) ≤ 0.
(6)

For fixed yn, this sub-problem can be solved among each
server and its clients. Then the network-wide problem becomes

max
yn∈Yn,n∈V

∑
n∈V

Fn(yn)

s.t.
∑
n∈V

gn(yn) ≤ 0,
(7)

where Fn(yn) is the solution of the sub-problem in (6).

The sub-problem in (6) is a well-studied one which is
typically solved with a master-slave dual method [6]. The dual
problem for (6) can be written as

min
µn≥0

max
xi∈Xi,i∈Sn

∑
i∈Sn

(
fi(xi)− µ>nhi(xi,yn)

)
, (8)

where the inner maximization can be solved in edge devices
for fixed µn since it requires only fi and hi, and the outer
minimization can be handled in server n via gradient descent
after aggregation of the results passed by the edge devices,
where this step does not require the knowledge of private fi’s.
Specifically, the gradient descent iterations for the multiplier
can be written as

µn(t+ 1) =

[
µn(t) + γ

∑
i∈Sn

hi(x
∗
i (µn(t)),yn)

]+
, (9)

where γ denotes the step-size and [·]+ denotes the projection
onto nonnegative orthant. The new multiplier value is calcu-
lated at server node n and passed to the edge devices which
are responsible for calculation of x∗i (µn) for each µn as

x∗i (µn) = argmax
xi∈Xi

{
fi(xi)− µ>nhi(xi,yn)

}
. (10)

In a nutshell, the dual algorithm works as follows. Each
edge device updates their optimization variable according
to (10), and pass the result to the server which aggregates these
to update the multiplier via (9), where the result is passed
back to the edge devices.2 This message passing continues
iteratively until a convergence criterion is satisfied. The typical
analogy for this algorithm is with the law of supply and
demand from economics, where the multiplier denotes the
price. Edge devices calculate the optimal resource required
for them with their private utilities given a price, whereas the
price is updated in an aggregator based on the total demand
(i.e., asked resources) and the supply.

After solving the sub-problems among servers and their
corresponding edge devices, we can potentially apply the
same algorithm to the network-wide problem (7), however,
the aggregation entity does not exist in the architecture we
consider in this paper. This is why we propose a method based
on the consensus among server nodes.

The dual problem for (1) can be written as

min
λ

min
µ

max
y

max
x

L(θ) = min
λ

max
y

min
µ

max
x

L(θ),

where θ = {x,y,λ,µ}, and we exchange the order of the
middle two iterations using minimax theorem3 on the right
hand side. Therefore, we obtain an optimization order from
the local to the global variables. We write gradient steps for
the λ and y, where the sub-problem can be solved with (9)
and (10).

Since the outer optimizations use the results of the in-
ner ones, we highlight that multiple iterations of the inner

2If closed-form minimization is not possible in the edge devices, one can
use primal-dual updates, in which optimal xi’s are also found via projected
gradient descent iterations.

3We use compact convex sets as domains of the optimization variables.

optimization updates are needed before an iteration on the
outer optimizations. Let us assume there are k updates of
µn before an update of yn and yn is updated k′ times
between the updates of λ. We propose an algorithm which
we call Decentralized Federated Network Utility Maximization
(Decentralized Fed-NUM) in Algorithm 1.

Algorithm 1: Decentralized Fed-NUM
At edge device i ∈ Sn: To compute xi(t) each client
for every t = 1, 2, . . ., either solves

xi(t)=argmax
xi∈Xi

{
fi(xi)−µn(t)>hi

(
xi,yn

(
bt/kc

))}
in closed-form or uses a projected gradient step:

xi(t) = PXi

[
xi(t− 1) + η

(
∇xi

fi(xi(t− 1))

− µn(t)>∇xihi
(
xi(t− 1),yn

(
bt/kc

)))]
,

and sends xi(t) to server n.
At server n ∈ V: To update sub-problem dual variable
µn every time the edge devices send their solution:

µn(t+ 1) =

[
µn(t) + γ

∑
i∈Sn

hi(xi(t),yn
(
bt/kc

)
)

]+
.

To solve the network-wide problem, for every integer
τ when t = τk:

yn(τ+1)=PYn

[
yn(τ)−β

(
µn(τk)∇yn

hi(xi(τk),yn(τ))

+ λn(bτ/k′c)∇yn
gn(yn(τ))

)]
Let λn denote the local copy of server n of the
multiplier λ. For every integer j when t = jkk′:

λn(j + 1) =

[∑
n′∈Nn

[W]nn′λn′(j) + αNgn(yn(jk′))

]+
Here Nn is the neighborhood set of server n including
itself, and W is the doubly-stochastic mixing matrix.
α, β, γ, η > 0 are step sizes. In addition, PX denotes
projection onto set X , and ∇x denotes gradient on the
x direction.

In the algorithm, we solve the sub-problem (6) iteratively,
for both xi and µn. Note that yn

(
bt/kc

)
remains constant

for k such iterations. For the network-wide problem, we use
gradient updates where all the gradient values in this algorithm
are found by taking gradients of the Lagrangian in (2) with
respect to the corresponding variables. We then write gradient
descent for minimization and ascent for maximization. The
only non-traditional step taken here is for the updates of the
multiplier λ which is the global variable in the system. This
is because we do not have a central unit to gather all the
information, perform the gradient update and broadcast it back.
Instead, we have server nodes that are connected to each other

j j+1τ τ+1

t t+1 Time

Fig. 3: Time-scale of updates for different iterations. The increasingly
coarser time indices t, τ , and j index the updates of the local resource
prices µ, the server resources y, and the global price λ, respectively.

over a network. If there was a central node, the update would
be

λ(j + 1) =

[
λ(j) + α

∑
n∈V

gn(yn(jk′))

]+
, (11)

which requires all yn values in an update. Instead, in the
algorithm, we keep local copies of this dual variable in each
node where we perform local iterations using local yn, and we
use a consensus algorithm that provides inexact decentralized
averaging. In the consensus step, each server n exchanges
their local copies λn with the neighboring nodes n′ ∈ Nn.
Assume a mixing matrix W ∈ RN×N with [W]ij = 0 if
(i, j) /∈ E and i 6= j. Furthermore, W = W>, W1N = 1N
and ρ(W − 1N1>N/N) < 1, where ρ(·) is the spectral radius
and 1N ∈ RN is the column vector of ones. Then, for this
doubly-stochastic W, we have limφ→∞Wφ = 1

N J, where
J ∈ RN×N with [J]ij = 1, ∀i, j ∈ {1, . . . , N}. With this
relationship, we can state that multiplication of a vector with
the mixing matrix continuously (i.e., asymptotically) makes all
the elements of the vector equal to the average of this vector.
Therefore, we can argue that using the updates for the local
copies λn with continuous mixing is equivalent to the use of
the updates in (11). However, in order to gain time, we use
only one mixing (exchange) round after each k′ iterations of
yn, i.e., we use one multiplication with mixing matrix, which
makes the decentralized averaging inexact for the proposed
algorithm. The choice of using only one mixing round lets
other iterations use the updated value of λn earlier, however,
on the other hand, creates sub-optimality due to the use of the
inexact averaging.

In the proposed algorithm, we consider different time-scales
for different iterations, where the local updates occur more
frequently than the global ones. Fig. 3 shows the different
time indices of the different iterations in an example where
k = k′ = 3. Executing the global iterations more sporadically
gives chance to the local iterations to reach a point close to the
optimum for fixed global variables, which reduces the gradient
errors in iterations. This phenomenon is analyzed extensively
with theoretical results in [18] for the hierarchical multi-layer
NUM, where the effects of the choices of k and k′ on the
convergence are characterized.

The solution of the sub-problem uses a master-slave archi-
tecture, and therefore, it requires worker nodes to report their
results to the master node, where the master node broadcasts
updated dual variables. On the other hand, we use peer-to-peer
exchanges in the solution of network-wide problem in order to
provide a consensus for the global dual variable λ. Fig. 4 illus-
trates the required message exchange on the architecture. The

Fig. 4: The sub-problem requires vertical exchanges whereas the
network-wide problem requires exchanges among neighboring server
nodes.

proposed algorithm combines the hierarchical NUM approach
with a consensus algorithm for decentralization. We note that
the choice of the consensus scheme can be replaced with
many other methods with directed and undirected message
exchanges.

To measure the benefits in terms of response time roughly,
we compare a two-layer architecture where the end users
interact directly with a central controller, with the proposed
architecture where end users are equally split under the control
of N servers (i.e., each server has the same number of
users) connected through a graph. We assume there are two
types of control channels: a high latency channel c, where
all the communications occur in the two-layer architecture
and where the communications among servers occur in the
graph network, and a low latency channel c′, where the intra-
server communications occur among the edge devices and the
corresponding servers. To carry out the comparison without
entering into the specifics of how the control channel is
realized, we can reasonably assume that for a control channel
of fixed total capacity, the average delay grows at a linear
rate, υ for channel c and υ′ for channel c′, respectively,
with respect to the number of sources that access the control
channel; naturally, for the faster channel c′ the delay growth
rate υ′ < υ. Hence, in the two-layer systems, the latency for
each update of the central controller is υN |S|n. In the other
system the total latency, instead, is ∆(G)υ+kk′|Sn|υ′, where
the first term accounts for the total time it takes for servers
to communicate, and the second term is due to the fact that
there are kk′ iterations at the bottom end-user layer between
any two iterations on the top layer, each with average latency
|Sn|υ′. Here, ∆(G) is the maximum degree of graph G. Thus,
we gain in latency per iteration if the ratio δ of these two
numbers exceeds one, i.e.:

δ ,
|Sn|N

∆(G) + kk′|Sn|υ
′

υ

> 1. (12)

IV. NUMERICAL PERFORMANCE ANALYSIS

We consider a resource allocation problem with private util-
ities fi = wi log(1+aixi) of edge devices, where the weights
wi’s are drawn from a uniform distribution between [1, 2], and
ai’s follow Rayleigh distribution with parameter 1. We assume

Fig. 5: Benchmarks for numerical evaluation

we have a total resource constraint as
∑
n∈V

∑
i∈Sn xi ≤ Z,

where Z denotes the total resource. This constraint can equiva-
lently be rewritten as

∑
i∈Sn xi ≤ yn, ∀n ∈ V (as local/server

constraints in (1)) and
∑
n∈V yn ≤ Z (as a global constraint

in (1)) with the introduction of slack variables yn’s. Then,
based on Alg. 1, we can write the update rules as

xi(t) = PXi [ḟ
−1
i (µn(t))]

µn(t+1) =

[
µn(t) + γ(

∑
i∈Sn

xi(t)− yn
(
bt/kc

)
)

]+
yn(τ+1) = PYi

[yn(τ) + β(µn(τk)− λ
(
bτ/k′c

)
)]

λn(j+1) =

[∑
n′∈Nn

[W]nn′λn′(j) + α(Nyn(jk′)− Z)

]+
,

(13)

where ḟ−1i is the inverse function of the derivative ḟi.
We set |Sn| = 20,∀n ∈ V , N = 10 and Z = 100. The

connection graph among servers is based on the Erdős-Rényi
model, where the probability of being present is set 0.35 for all
possible edges4. The weights of the doubly-stochastic mixing
matrix are set via Metropolis weights:

[W]nn′ =


1/max{|Nn|, |Nn′ |} {n, n′} ∈ E
1−

∑
n′∈Nn\{n}[W]nn′ n = n′

0 otherwise.
(14)

These weights are symmetric and doubly-stochastic, i.e., the
entries in the columns and rows add up to 1. Furthermore,
they are easy to compute and suitable with the distributed
implementation, where each node requires the size of the
neighborhood set of its neighbors. This information can be
obtained in two rounds of peer-to-peer communications: in
the first round they can count their |Nn|, and then share it
with their neighbors in the second round. This simplicity is
especially useful for time-varying graphs [19].

We compare three algorithms implemented in corresponding
three architectures: 1) 2-Layer NUM, where all |S|n × N =
200 edge devices report to only one controller, without any
computation in between. The classical dual algorithm is
enough to solve the problem in this case with a single dual

4For simplicity, we consider each server has the same number of edge
devices and we assign simple parameter values in general. However, more
complex scenarios such as very unbalanced number of edge devices for servers
require further attention in future studies.

0 5 10 15
105

110

115

120

125

130

135

140

3-Layer Master-Slave

2-Layer Master-Slave

Fed-NUM Metropolis

Fig. 6: Convergence speed in terms of dual variable iteration count

0 5 10 15
105

110

115

120

125

130

135

140

3-Layer Master-Slave

2-Layer Master-Slave

Fed-NUM Metropolis

Fig. 7: Convergence speed including latency gains

variable that is updated in the controller. 2) 3-Layer NUM,
where we have servers with their edge devices similar to
the our consideration, however, there is also a central node
managing the servers. This case uses (11) rather than message
exchanges for consensus. 3) The proposed algorithm in Alg.1
with updates in (13). In Fig. 5, we illustrate the architectures
that are considered for comparison.

Fig. 6 and Fig. 7 illustrate our simulation results for different
architectures where k = k′ = 3, υ/υ′ = 5. In Fig. 6, we
present the convergence behaviors when the dual variable λ
iterations are aligned in the horizontal axis. As expected,
3-Layer Master-Slave and Fed-NUM iterations have similar
trajectory due to the fact that they conduct similar lower-layer
updates. However, there is a performance gap in terms of opti-
mal utility that is caused by the inexact averaging of the Fed-
NUM. In Fig. 7, the horizontal axis denotes time, and in this
case, for Fed-NUM, we observe significant increase of speed
compared to 2-Layer case, and a small increase compared to
the 3-Layer case which requires a central controller. This speed
can be increased further by decreasing ∆(G) as shown in (12),
however, reducing connectivity results worse approximations
for averaging in finite-time, and therefore, the optimality gap
increases and there is a trade-off between speed vs. accuracy.

V. CONCLUSIONS

We have introduced a decentralized large-scale optimization
algorithm for an architectural model defined as mesh network
of star networks. The algorithm combines multi-layer NUM
framework with a consensus step. We provide results stating
a decentralized, private, fast implementation is possible with
a small price from accuracy.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
2016.

[2] M. Chiang, S. H. Low, R. Calderbank, and J. C. Doyle, “Layering as
optimization decomposition,” Proc. IEEE, vol. 95, no. 1, pp. 255–312,
Jan. 2007.

[3] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for
communication networks: Shadow prices, proportional fairness and
stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, 1998.

[4] S. H. Low and D. E. Lapsley, “Optimization flow control. I. basic
algorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6, pp.
861–874, Dec. 1999.

[5] B. Johansson, P. Soldati, and M. Johansson, “Mathematical decom-
position techniques for distributed cross-layer optimization of data
networks,” IEEE J. Sel. Area. Commun., vol. 24, no. 8, pp. 1535–1547,
Aug. 2006.

[6] D. P. Palomar and M. Chiang, “Alternative distributed algorithms for
network utility maximization: Framework and applications,” IEEE Trans.
Autom. Control, vol. 52, no. 12, pp. 2254–2269, 2007.

[7] L. Ferrari, N. Karakoç, A. Scaglione, M. Reisslein, and A. Thyagaturu,
“Layered cooperative resource sharing at a wireless SDN backhaul,” in
Proc. IEEE Int. Conf. on Communications Workshops (ICC Workshops),
Kansas City, MO, May 2018, pp. 1–6.

[8] P. Shantharama, A. S. Thyagaturu, N. Karakoç, L. Ferrari, M. Reisslein,
and A. Scaglione, “LayBack: SDN management of multi-access edge
computing (MEC) for network access services and radio resource
sharing,” IEEE Access, vol. 6, pp. 57 545–57 561, 2018.

[9] M. Wang, N. Karakoc, L. Ferrari, P. Shantharama, A. S. Thyagaturu,
M. Reisslein, and A. Scaglione, “A multi-layer multi-timescale network
utility maximization framework for the SDN-based Layback architecture
enabling wireless backhaul resource sharing,” Electronics, vol. 8, no. 9,
pp. 937.1 – 937.28, 2019.

[10] N. Karakoç, A. Scaglione, and A. Nedić, “Multi-layer decomposition of
optimal resource sharing problems,” in Proc. IEEE Conf. on Decision
and Control (CDC), Miami Beach, FL, 2018, pp. 1–6.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[12] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, p. 48,
2009.

[13] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson,
“Subgradient methods and consensus algorithms for solving convex
optimization problems,” in Proc. IEEE Conf. on Decision and Control
(CDC), Cancún, Mexico, 2008, pp. 4185–4190.

[14] T.-H. Chang, A. Nedić, and A. Scaglione, “Distributed constrained op-
timization by consensus-based primal-dual perturbation method,” IEEE
Trans. Autom. Contr., vol. 59, no. 6, pp. 1524–1538, 2014.

[15] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coopera-
tion in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp.
215–233, 2007.

[16] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[17] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient
push for distributed deep learning,” arXiv preprint arXiv:1811.10792,
2018.

[18] N. Karakoc, A. Scaglione, A. Nedic, and M. Reisslein, “Multi-layer
decomposition of network utility maximization problems,” IEEE/ACM
Transactions on Networking, submitted.

[19] L. Xiao, S. Boyd, and S. Lall, “Distributed average consensus with time-
varying metropolis weights,” Automatica, 2006.

