LiteDoc: Make Collaborative Editing
Fast, Scalable, and Robust

Saptaparni Kumar, Haochen Pan, Roger Wang, Lewis Tseng
Computer Science Department
Boston College
Chestnut Hill, MA, USA
{saptaparni.kumar, haochen.pan, wangbrh, lewis.tseng} @bc.edu

Abstract—Collaborative text editing applications like
Google docs, Etherpad and Overleaf allow users to con-
currently edit a “shared” document. Existing collaborative
text editors use either a centralized sever or some form
of Paxos-like consensus algorithm to achieve total order
on the updates. The editor then uses computationally
intensive methods like operational transformation (OT)
and differential synchronization (diff-sync) to apply the
ordered update events at each client. Unfortunately, these
methods often result in huge metadata overhead, are
difficult to implement and result in conflicts due to users
writing to the same location.

With LiteDoc, we propose a different approach to tackle
this problem: we make collaborative editing fast, scalable
and robust by providing simplified semantics. More im-
portantly, we can formally prove that LiteDoc achieves
deterministic guarantees of correctness. LiteDoc divides
the shared document into several sections and allow only
one user to write at a particular section at any given time.
This removes all conflicts that arise from having multiple
writers writing to the same location. This mechanism also
obviates the task of implementing cumbersome modules
for OT, diff-sync and rollbacks in case of conflicts. Note
that while LiteDoc supports less features than general
collaborative editors like Google docs, it is natural (and
courteous) to avoid concurrent writing to the same location
when multiple people collaborate.

Index Terms—Collaborative editor; System architec-
ture; Correctness; Register; Atomicity; Asynchrony

I. INTRODUCTION

With the advancement of the Internet, we are moving
towards the always-connected working style. Collabo-
rative text editing is one of the fundamental tools to
enable remote collaboration; hence, it has been studied
extensively in the literature, e.g., [1], [2]. There are
several editors in market such as Google docs [3],
Etherpad [4], Overleaf [5], etc. To the best of our
knowledge, the current implementation and design of
such editors are centered around application design, i.e.,
most researches are focused on providing richer features,
and treating underlying system architecture as a black
box. As a result, there are several drawbacks due to the
fundamental limitations of the underlying Internet and
distributed systems. In this paper, we advocate that in
order to provide a fast, scalable, and robust collaborative
editor, we have to start from the ground up. Towards this
end, we present the design of LiteDoc, and argue why it
achieves the three important properties. The key is that

LiteDoc provides only simplified semantics (or features)
so that these semantics can be satisfied using simple
and theoretically proven distributed primitives such as
atomic registers and writer-lock.

In Section II, we discuss limitations of the current
implementation of collaborative editors on the market.
We also provide a primitive simulation to demonstrate
that the available approaches are fundamentally limited
in performance due to the bottleneck in the underlying
distributed consensus algorithms. In Section III, we
present the design of LiteDoc, and briefly argue how
we can formally prove its correctness. In Section IV, we
present our preliminary design of the user interface. We
present closely related work in Section V, and discuss
exciting future work in Section VI.

II. MOTIVATION
A. Existing Approaches

Collaborative editors available in the market like
Google docs [3], Etherpad [4], Overleaf [5], etc, are
event-driven in nature with extremely granular update
events such as key press or mouse tap. A fundamental
issue is to order the events so that clients observe
“consistent” changes to the shared document. These ap-
plications either use a single server to order these events
or use a consensus algorithm among various servers to
attain agreement on ordering of events. Once an ordering
on the events has been determined, the application
then updates the various local copies using consistency
maintenance techniques like operation-transform (OT)
and differential synchronization (diff-sync), etc. These
techniques allow the new updates from the server to be
applied on top of the user’s changes that have already
been committed on the editor/document in the local copy
(i.e., the document saved on client’s computer).

If all updates were commutative, applying these
changes would be less of a hassle. This is one of
the basic assumptions made by CRDTs (Conflict-Free
Replicated Data Types) introduced by Shapiro et.al [6]
and this makes the problem of collaborative editing with
commutative events relatively easier to handle. But lan-
guages, by nature, are not commutative and thus these
softwares try to come up with clever mechanisms to
perform OT and diff-sync to maintain data consistency.

Limitations: In spite of all the effort to build robust
and scalable collaborative editors, we see that these
editors are still faced with the issues below:

o Local changes get lost if connection is lost or a
conflict arises during OT or diff-sync.

o Gibberish text might appear because concurrent
users try to write at the same location and the
consistency maintenance algorithm interleaves their
requests in an unwanted manner.

o These editors suffer performance bottleneck due
to single server or the underlying consensus al-
gorithm. In the worst case, editors might not be
available in the event of server failures or long
delay (due to the famous FLP impossibility [7]).

o Worse, the task of implementing the consistency
maintenance algorithms is notoriously difficult.
Take for example operation transform (OT); Joseph
Gentle, a former Google Wave engineer and an
author of the ShareJS library wrote, “Unfortu-
nately, implementing OT sucks. There’s a million
algorithms with different tradeoffs, mostly trapped
in academic papers ... Wave took 2 years to write
and if we rewrote it today, it would take almost as
long to write a second time.”

B. Key Observation and High-level Design

We start with our key observation:

Collaborative editors should support concurrency;
however, it should nor allow multiple clients to
write to the same location at the same time, because
this actually contradicts with how humans collaborate
with each other. In existing editors, if two or more
users try to write to the same location in a document
we can have any one of the following outcomes: (i) one
user overwrites the others’ text (ii) some (or all) users
overwrite others’ texts partially (iii) users get their
texts interleaved resulting in gibberish text (currently
in Google Docs). None of the scenarios is ideal.

Building on top of our key observation, we can
simplify the design and implementation of a collabo-
rative editor with a few reasonable trade-offs. In most
cases, collaborative-editor users are smart enough to
adapt their update mechanisms to avoid conflict. If we
constrain the user behavior pattern in a certain way,
we can achieve all three goals: speed, scalability, and
robustness.

We take a radically different approach to tackling
the problem of collaborative editing. We provide only
limited semantics in our editor LiteDoc, and make sure
these semantics can be supported without using expen-
sive protocols like consensus. In particularly, we divide
the “shared” document into parts and give femporary
ownership to users modifying each section. As a result
we root out conflicts arising from two users trying to
modify the same location at the same time and thus
resulting in a much lighter editor design.

The idea of critical sections and locks is not novel
but quite old actually. But this approach for collabora-
tive editing has been debunked to be quite restrictive
and counter intuitive to the “collaborative” aspect of
collaborative text editing. This is where the novelty of
our approach lies. We divide the document into various
sections. If a client p wants to write to a section, she
has to obtain a lock to a particular section and this
is obtained once p is acknowledged by a majority of
servers. If another node ¢ wants to write to the same
section, she has to wait for p to give up the lock or for p
to be inactive long enough such that her lock is removed.
This results in a lightweight collaborative editor LiteDoc
whose shared documents consist of a series of single-
writer multi-reader (SWMR) registers instead of one
massive distributed list [8]. These registers and thus the
documents created on LiteDoc provide deterministic
guarantees of correctness, namely atomicity [9], [10].

C. Performance Study

Here, we present simulation results to back up our
claim that there are fundamental engineering issues in
the current approaches on the market. We built a simple
simulator to compare three approaches: single server,
consensus-based, and SWMR register-based. Since we
are focused on the performance of the underlying sys-
tems, we did not build a full-fledged editor. Instead,
we use a workload generator to generate a bunch of
read and write events to the system, and compare the
performance.

Simulation Setup: We perform our simulations on
a single machine, equipped with 24 virtual CPUs and
48 GB memory on Google Cloud Platform (GCP) [11].
We achieve network virtualization through Mininet [12],
a popular and realistic software to simulate datacenter
networks. We chose to use Mininet instead of deploying
on physical machines because we want to understand the
impact of network latency. Mininet allows us to add per-
link (bidirectional from a host to the switch) artificial
latency. In Mininet, we set up a single switch topology,
and each program runs on a virtual host that connects
to the switch. The Mininet environment is quite stable,
and the RTT (round trip time) between any two hosts is
around 0.06 ms. Our Mininet setup script can be found
on our Github repository [13].

For underlying database (that stores the content of the
shared document), we chose Cassandra [14] and Etcd
[15]. We use two versions of Cassandra, and they are
the vanilla Cassandra (version 3.11) and Cassandra with
the optimized ABD algorithm [16]. For Vanilla Cassan-
dra, we set up a single server cluster to simulate the
workload of single-server approach (Cass-One-Server),
and for Cassandra equipped with ABD (Cass-ABD-
OPT) algorithm, we set up a three-server cluster. Etcd
internally uses Raft protocol [17] to achieve consensus,
and we set up a three-server cluster as well. We chose
Raft over Paxos [18], because the industry is gradually

Throughput vs. Num of Clients

(~0ms RTT)
60000 5.0

Average Read Latency vs. Num of Clients
(~0ms RTT)

Average Write Latency vs. Num of Clients
(~0ms RTT)

~8— Cass-One-Server
Cass-ABD-OPT 4.5 4
50000 | —@— Etcd

—8— Cass-One-Server
Cass-ABD-OPT

40000

30000

Throughput (ops/sec)

20000 A

o

—8— Etcd
_ 4.0
g
= 35
I
9
= 4

1.01
10000 L e
0.5

L
5

—®— Cass-One-Server
Cass-ABD-OPT
8- Eted

woos s
n o

NN W
o i o

Average Write Latency (ms)
I
n

.
=Y

o
o

o
o

10 20 30 40 50 10 20
Num of Clients

Fig. 1. Throughput

shifting to Raft due to its easy-to-understand design and
community support.

Workload Generator: The usual practice of bench-
marking Cassandra involves using YCSB [19], but
YCSB may produce concurrent writes and thus does not
satisfy our semantics. We developed our benchmarking
tool, programmed in Golang [20], which eliminates
concurrent writes to the same location entirely. Our
simulation program is available on our Github repository
[21]. In each storage system, we use 50 key-value pairs
(or SWMR registers) to model the shared document,
where each key-value pair represents a section of the
shared document.

Our workload simulator has two kinds of work-
loads, one varies the number of clients which performs
database reads, and the other varies the latency per link
from a client host to the switch. In two workloads, each
thread acts as a simulated user or client and works on a
single key-value pair. For the first workload, there are 10
client threads that perform reads and writes alternatively.
That is, it performs a write operation once a read
operation completes, and then performs a read operation
once the previous write completes. In addition to the ten
read-write clients, we have 0, 10, 20, 30, and 40 read-
only clients respectively, for the five sets of parameters
we tested. Each read-only client and read-write client
thread performs no less than 10,000 operations, and
there is no artificial latency between a client and the
switch (specified in Mininet). For the second workload,
we vary latencies per client-to-switch links from 0 ms
to 0.1 ms and 1 ms (by tuning on the Mininet script).
Each simulation has 50 clients and lasts longer than
three minutes to avoid system artifact (e.g., ramp-up
and ramp-down effects). Ten out of the fifty threads
perform read-write operations, and the remaining forty
perform only reads. The total write ratio in the system is
0.1. We have observed that the Mininet environment is
quite stable; hence, our simulation are consistent across
different runs of experiments (i.e., different parameter
configuration).

We choose these parameters to reflect realistic scenar-
ios. Particularly, if editor users are using the same close-

Num of Clients

Fig. 2. Average Read Latency

30 40 50
Num of Clients

40 50

.
5y
N
S

Fig. 3. Average Write Latency

by datacenter, then the client-to-switch link should have
only minimal delay. Moreover, 5G is claimed to provide
sub-ms latency between users and cell-towers. Hence,
the 1ms configuration should capture the scenario of
using 5G to access the shared document.

D. Performance

Figures 1, 2, and 3 present the results when there is
no artificial latency. Not surprisingly, Cass-One-Server
performs better than Cass-ABD-OPT and Etcd. In terms
of throughput, Cass-One-Server is 2.3 —2.6 times higher
than Cass-ABD-OPT and 4.5 — 4.7 times higher than
Etcd. Moreover, Cass-One-Server also has the lowest
read and write latencies among all three setups. How-
ever, single-server approach has single point of failure.
Cass-ABD-OPT has roughly 1.8 — 2 times performance
compared to Etcd-Raft. Moreover, one can see that Etcd-
Raft is not that scalable. Performance decreases when
there are 50 clients.

Tables I, II, and IIT present the results when there are
artificial latencies introduced in Mininet. As expected,
we see throughputs decrease when latencies increase
as expected. Again, single-server approach has the best
performance and Etcd-Raft has the worst performance,
which align quite well with the theoretical expectations.
An interesting observation is that even under relatively
light workload (at most 50 clients), time to achieve
consensus is expensive compared to communication
time. For example, it takes roughly 1ms for clients to
communicate with a server, but Etcd-Raft takes roughly
3.68 ms to reach an agreement on the order of events.

Our simulation setup actually favors Etcd. First, both
vanilla Cassandra and Etcd are highly-optimized, as they
have been used extensively in industry. Cassandra-ABD-
OPT is not the case. Optimizing it is one of our future
works. Second, we did not add latency between servers
which allow Etcd to have the best performance. This
is because round complexity of consensus algorithms
are higher than SWMR register algorithms. Intuitively,
we know SWMR register algorithms is fast, but we
don’t know how fast is it. Our performance analysis
quantitatively shows SWMR register algorithms has at

least twice throughputs and half read and write latencies
than consensus algorithms in all scnarios, and smaller
artificial latencies (e.g. when 5G networks is widely
available) indicates larger the performance difference.

III. LiTEDOC FRAMEWORK

We begin with the architecture design of LiteDoc,
followed by the correctness formulation and its benefits.

A. Architecture

Underlying Distributed System: We consider a set
S of m servers that fully replicate the shared document.
At all times, at most a minority, (i.e., < [%] — 1) of
servers may fail by crashing. Every client and server
in the system knows the value of m. Every document
is split into n sections and each section is stored on
an emulated single-writer multi-reader (SWMR) atomic
register, R; : ¢ = {1---n}. Atomicity ensures that
in an execution, every operation (read or write) seems
to happen instantaneously within the invocation and
response of the operation [9], [10]. An atomic register
is a read/write data object (i.e., a key-value pair) that
provides atomicity (or linearizability).

Every register R; can be of arbitrary size ranging
from one word to multiple pages. The choice of n € N*
is specified during the creation of the document. Every
client and server in the system knows the value of n.
For now, we assume n is static and cannot be changed.
In Section VI, we briefly discuss how to relax this con-
straint. In order to read the entire document, all m reg-
isters are read in a pre-defined order: Rq, Ra,- -, Ry.
The granularity of the document can be determined
by the client’s needs. It is important to note that the
granularity of the document will affect the performance
of the system. A more thorough performance study is
left as an interesting future work

Clients: A dynamic set of clients (or editor users)
can be served by the servers. These clients may enter
and leave the system at will. From a theoretical point
of view, any number of clients can read from these reg-
isters, because they do not affect or modify the system
state. In practice, this is limited by the performance of
the underlying database. If it goes beyond some limit,
then we can use simple load balancing/management
services to address the issue.

At all times, at most one client (writer) is allowed to
perform a write operation (or update) to any register. A
write operation can involve any update to the document:
insert, delete, paste, undo, font change, etc. This writer
client for a particular section (register) can change from
time to time as long as no more than one client writes
to a particular section. Thus every register is considered
a critical section and only one writer is allowed to enter
it. Any client can fail by crashing at any time. If a client
crashes, her changes may or may not be committed to
the shared document.

Writer Lock: Recall that we avoid concurrent
writes by allowing one writer for a single register in
LiteDoc. If a client p wants to write to a section
(register), it will first have to ask permission for a writer-
lock to do so. Once p gets an acknowledgment for the
writer-lock from at least | %] 4 1 servers, it can start
modifying the section. If a different client ¢ is already
writing to a section, p fails to obtain the writer-lock and
has to either wait for ¢ to release the lock or write to
a different section of the document. Every lock comes
with a pre-set timer for ¢ time units which expires in
case the current writer p goes idle. We need the timer not
only for idle clients but also for clients that crash when
they are inside the critical section, in order to prevent
lockout. Client p will be notified before the timer expiry
and asked if she wants to continue. A default value of ¢
will be specified during document creation. It can also
be requested by the writer during obtaining the lock.

B. Consistency Conditions and Correctness

In order to formalize the specification of a collabora-
tively edited document, Attiya et al. [8] introduced the
specification of a replicated list object, which allows its
users to insert and delete elements at different replicas.
The authors provide a strong and a weak version of
the same replicated list. The strong version ensures that
orderings (attained by consensus) relative to deleted
elements hold even after the deletion and the weak
version offers no such guarantees. The replicated list is a
simple data structure to reason with and offers eventual
consistency to all its users.

We propose a different way to argue about correct-
ness. Shared documents created using LiteDoc are di-
vided into several SWMR atomic registers. As atomicity
is a composable property, it is easy to see that the
resulting documents support atomic reads and writes.
This is also more natural for editor users, since atomicity
creates an illusion that concurrent users are operating
the system on a single machine. In other words, we can
build on top of existing theoretically proven SWMR
algorithms, e.g., ABD algorithm [16], and writer-lock
(a sub component of Paxos). The full proof will be
presented in the future technical report.

C. Benefits

By simplifying the supported semantics, LiteDoc pro-
vides following benefits over existing editors:

o Speed: As we saw in Section II, SWMR registers
have higher performance. Plus, we avoid the usage
of computationally intensive algorithms like OT or
diff-sync. From a theoretical sense, LiteDoc should
have better performance.

e Scalability: As consensus is known to scale poorly,
SWMR registers do not have such issue. We believe
LiteDoc will be able to achieve close to linear scal-
ability (i.e., similar to Cassandra, the core system
that we are developing on).

[[Oms [O0Ims | Tms | [[Oms JOIms [Tms |
Cass-One-Server | 52690.58 | 47880.01 | 29119.62 Cass-One-Server | 0.87 0.98 1.69
Cass-ABD-OPT 22509.36 | 21686.86 | 18239.17 Cass-ABD-OPT 1.9 1.98 2.44

Etcd 11707.41 11651.73 10438.1 Etcd 4.18 4.21 4.68
TABLE T TABLE 1I

THROUGHPUTS (OPS/SEC) VS RTT AVERAGE READ LATENCY (MS) VS RTT

I [Oms [O.Ims [1T ms |

Cass-One-Server | 0.89 1.01 1.7

Cass-ABD-OPT 2.62 2.71 3.05

Etcd 3.89 3.98 4.64
TABLE 1T

AVERAGE WRITE LATENCY (MS) VS RTT

e Robustness: As argued previously, we can formally
specify and prove correctness as long as majority
of the servers are fault-free.

o Ease-of-Development:. There are two main difficul-
ties in developing collaborative editors, consensus
and consistency maintenance (e.g., OT or diff-
sync). LiteDoc does not need those two primitives,
because conflicts are removed at the source

o Stronger guarantees: It is important to note that
LiteDoc guarantees a stronger consistency condi-
tion than eventual guarantees provided by most
existing collaborative editors (more details to be
discussed in Section V). This is because, all opera-
tions are seen by a majority of servers in LiteDoc;
hence, all updated will be always available as long
as a majority of servers are fault-free.

IV. UI/UX DESIGN

We present our initial user interface (UI) design.
A screenshot is presented in Figure 4. LiteDoc will
provide comparable editing functionality to existing
collaborative editors and will have the familiar horizon-
tally spanning menu bar and editing tool bar. With the
introduction of critical sections, each client will have a
unique color and name associated with it. Each section
will be outlined in the color of the client working on that
section. A user should know with ease which section
they are working in as denoted by the corresponding
color. The color-coded bar, user photo, and dashed box
are served as visual cues to remind users whether they
have the editing (update) right at a particular location.

V. RELATED WORK

Most existing collaborative text editors aim to guar-
antee eventual consistency, i.e., if users stop modifying
the document, then the replicas will eventually con-
verge to the same state. These systems use either a
single server to order these events or run a consensus
algorithm among various servers to attain agreement
on ordering of events. As a result these applications
might not be available in the event of server failures.
Theoretically speaking, the shared document can be
considered to be replicated list. Attiya et al. [8] provided
the specifications of the replicated list data structure
(Strong and Weak), which models the core functionality

Conference Paper

BIUYVU =

Conference Paper Title* o Rogor Wa

Fig. 4. LiteDoc UI Layout

of replicated systems for collaborative text editing. The
authors showed that for a large class of list protocols,
implementing the list specification requires a metadata
overhead that is at least linear in the number of elements
deleted from the list. The class of protocols to which
this lower bound applies includes all list protocols
mentioned above. Ignat et al. [22] provided a good eval-
uation and comparison of the centralized wikis system
and several peer-to-peer collaborative text editors, based
on several qualitative and quantitative metrics

Once an ordering on the update events is determined,
the application updates the various local copies using
complicated techniques like general operational trans-
formation [1], [2], context-based operational transfor-
mation [23], admissibility-based operational transforma-
tion [24], differential synchronization [25] etc. These
techniques apply the new updates from the server on
top of the already existing user changes on the local
copy of the document. CRDTs (Conflict-Free Replicated
Data Types) introduced by Shapiro et.al [6] assume
updates to be commutative thus making the problem of
collaborative editing relatively easier to handle. Oster
et al. [26] provided an algorithm to make most updates
to a document commutative on a peer to peer network.
The delete event does not delete a character. Instead,
it strikes out the character to be deleted thus storing
everything from the beginning with a strikeout for
the elements deleted. Consistency is maintained if the
following three properties [2] hold: intention preserva-
tion, causal consistency and convergence. Pacull et al.

designed a system model called Duplex [27] which uses
document decomposition. These authors also assume the
existence of a kernel, shared by all members of the
collaboration. The model is based on splitting the doc-
ument into independent parts, maintained individually
by the owners and replicated by a kernel. They provide
recovery mechanisms in case of failures or divergence
from co-collaborators. Greif et al. [28] developed a
collaborative editing system that builds on top of a
language Argus, that provides support for a transactional
storage system which inherently require consensus to
complete. Minor and Magnusson [29] presented a model
for semi-synchronous collaborative editing which fills
the gap between asynchronous and synchronous editing
styles. Their model is based on hierarchically partitioned
documents, fine-grained version control, and active diffs
for supplying collaboration awareness. To the best of our
knowledge, no one has taken our approach — simplifying
semantics and using theoretically proven distributed
primitives to build a fast, scalable, and robust editor.

VI. CONCLUSION AND FUTURE WORK

We present the design of LiteDoc, and argue why it
can achieve higher speed, scalability and theoretically
proven robustness. We are implementing LiteDoc, and
will opensource our work once it is fully tested. We
summarize several interesting future works below.

Benchmarking Tool: We would like to build a tool
to stress test collaborative editors. Particularly, we want
to numerically analyze how well each editor behave
under different latency, concurrency, and/or failures.

Dynamic Sections: The number of atomic SWMR
registers and their sizes are customizable (can range
from one word to multiple pages) and can be modified
on the fly. In order to modify the section sizes and to
add or remove sections, we have to run a consensus
protocol on all the servers. Typically these will be a
rare events when compared to the number of read/write
operations on the document. An alternative is users
can coordinate among themselves, and have a person
manually configure the setup.

Peer-to-peer Systems: Most existing collaborative
editors are built on top of server-client model (i.e.,
in the cloud environment), because they rely on ex-
pensive consensus algorithms, and consistency mainte-
nance algorithm has poor performance with very high
concurrency or dynamism, typical scenarios in peer-
to-peer systems. Our approach is different. There are
known theoretical algorithms for implementing SWMR
registers in dynamic system. Therefore, we believe our
design can be adapted to peer-to-peer systems.

REFERENCES

[1] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware
systems,” in Proceedings of the 1989 ACM SIGMOD Interna-
tional Conference on Management of Data, Portland, Oregon,
USA, May 31 - June 2, 1989, pp. 399-407, 1989.

[2]

[3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]
[11]
(12]
[13]
[14]

[15]
[16]

(17]
(18]
[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving
convergence, causality preservation, and intention preservation
in real-time cooperative editing systems,” ACM Trans. Comput.-
Hum. Interact., vol. 5, no. 1, pp. 63—108, 1998.
https://docs.google.com, “Google docs,”

https://etherpad.org/, “Etherpad,”

https://overleaf.com, “Overleaf,”

M. Shapiro, N. M. Preguica, C. Baquero, and M. Zawirski,
“Conflict-free replicated data types,” in Stabilization, Safety, and
Security of Distributed Systems - 13th International Symposium,
SSS 2011, Grenoble, France, October 10-12, 2011. Proceedings,
pp. 386400, 2011.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32,
no. 2, pp. 374-382, 1985.

H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang,
and M. Zawirski, “Specification and complexity of collaborative
text editing,” in Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, PODC 2016, Chicago, IL,
USA, July 25-28, 2016, pp. 259-268, 2016.

L. Lamport, “On interprocess communication. part I: basic
formalism,” Distributed Computing, vol. 1, no. 2, pp. 77-85,
1986.

L. Lamport, “On interprocess communication. part II: algo-
rithms,” Distributed Computing, vol. 1, no. 2, pp. 86-101, 1986.
https://cloud.google.com/, “Google cloud platform,”
http://mininet.org/, “Mininet,”
https://github.com/haochenpan/LiteDoc
mininet,”

http://cassandra.apache.org/, “Cassandra,”
https://etcd.io/, “etcd,”

H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly
in message-passing systems,” J. ACM, vol. 42, pp. 124-142, Jan.
199s.

https://raft.github.io/, “The raft consensus algorithm,”

L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, pp. 133-169, May 1998.

Mininet, “Litedoc-

https://github.com/brianfrankcooper/YCSB/, “Yahoo! cloud
serving benchmark,”

https://golang.org/, “The go programming language,”
https://github.com/haochenpan/LiteDoc Workloads, “Litedoc-

workloads,”

C. Ignat, G. Oster, P. Molli, M. Cart, J. Ferrié, A. Kermarrec,
P. Sutra, M. Shapiro, L. Benmouffok, J. Busca, and R. Guerraoui,
“A comparison of optimistic approaches to collaborative editing
of wiki pages,” in Proceedings of the 3rd International Confer-
ence on Collaborative Computing: Networking, Applications and
Worksharing, White Plains, New York, USA, November 12-15,
2007, pp. 474-483, 2007.

D. Sun and C. Sun, “Context-based operational transformation in
distributed collaborative editing systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 20, no. 10, pp. 1454-1470, 2009.

D. Li and R. Li, “An admissibility-based operational transfor-
mation framework for collaborative editing systems,” Computer
Supported Cooperative Work, vol. 19, no. 1, pp. 1-43, 2010.
N. Fraser, “Differential synchronization,” in Proceedings of
the 2009 ACM Symposium on Document Engineering, Munich,
Germany, September 16-18, 2009, pp. 13-20, 2009.

G. Oster, P. Urso, P. Molli, and A. Imine, “Data consistency for
p2p collaborative editing,” pp. 259-268, 2006.

F. Pacull, A. Sandoz, and A. Schiper, “Duplex: A distributed
collaborative editing environment in large scale,” pp. 165-173,
1994.

I. Greif, R. Seliger, and W. E. Weihl, “Atomic data abstractions
in a distributed collaborative editing system,” in Conference
Record of the Thirteenth Annual ACM Symposium on Principles
of Programming Languages, St. Petersburg Beach, Florida, USA,
January 1986, pp. 160-172, 1986.

S. Minor and B. Magnusson, “A model for semi-(a)synchronous
collaborative editing,” in Third European Conference on Com-
puter Supported Cooperative Work, ECSCW’93, Milano, Italy,
September 13-17, 1993, Proceedings, p. 227, 1993.

