
Multimodal Co-Presence Detection with
Varying Spatio-Temporal Granularity

Michael Haus†, Aaron Yi Ding∗, Jörg Ott†

†Department of Computer Science, Technical University of Munich, Germany
∗Department of Engineering Systems and Services, Delft University of Technology, Netherlands

Abstract—Pervasive computing environments are character-
ized by a plethora of sensing and communication-enabled devices
that diffuse themselves among different users. Built-in sensors
and telecommunication infrastructure allow co-presence detec-
tion. In turn, co-presence detection enables context-aware appli-
cations, like those for social networking among close-by users,
and for modeling human behavior. We aim to support developers
building better context-aware applications by a deepened under-
standing of which set of context information is appropriate for
co-presence detection. We have gathered a multimodal dataset
for proximity sensing, including several proximity verification
sets, like Bluetooth, Wi-Fi, and GSM encounters, to be able to
associate sensor’s data with a spatial granularity. We show that
sensor modalities are suitable to recognize the spatial adjacency
of users with different spatio-temporal granularity. We find that
individual user mobility has only a minor, negligible effect on
co-presence detection. In contrast, the heterogeneity of device’s
sensor hardware has a major negative impact on co-presence
detection. To reveal energy pitfalls with respect to usability, we
perform an energy analysis pertaining to the usage stemming
from different sensors for co-presence detection.

Index Terms—Co-presence detection, Multimodal sensor
dataset, User mobility, Device heterogeneity, Sensor energy use

I. INTRODUCTION

Portable devices accompany mobile users almost every-
where surrounded by a pervasive wireless infrastructure that is
typically composed of Cellular, Wi-Fi, and Bluetooth. Besides
providing connectivity, these infrastructures offer an unprece-
dented opportunity for co-presence detection which is further
supported by sensors typically included in mobile devices,
such as smartphones and tablets. A quantitative measure of
co-presence defines two individuals as “close” when their
similarity of context information is large [1]. Context describes
any information that can be used to characterise the situation
of a person, place, or object that is considered relevant to
the interaction between a user and an application [2]. The
ability to identify semantically close entities enables context-
aware applications, such as data offloading [3], distributed
ad hoc networking [4], romantic matchmaking, and social
networking [5]. Mobile users of social networks mainly rely
on their virtual online communities, which lack the “physical”
and contextual interactions among users. We can augment
social networks with local interactions by using proximity as
a metric to determine who is discoverable on a network of
spontaneously and opportunistically connected nodes.

The proximity of mobile devices is typically inferred in
two ways: 1) by calculating distances between entities using
coordinates from a positioning system, and 2) by computing
similarities of context information that is sensitive to the user’s
activity or location. In this work, we focus on the latter case,
i.e., similarity of sensor or wireless data for user’s proximity.
We address the question, whether multimodal sensor data are
suitable to achieve a co-presence detection with varying spatio-
temporal granularity? The main problem is a practical dataset,
including several proximity verification sets and sensor data
of mobile devices where we ensure the physical co-presence
of user devices. Therefore, we conducted a study with 126
subjects as part of the lecture on “social computing”, over
three months, that resulted in a multimodal dataset for co-
presence detection (details in Section III). Our study identifies
how effective sensor modalities, e.g., barometer, are to detect
physical proximity of users with different spatio-temporal
granularities. Moreover, we highlight the impact of device
heterogeneity due to different sensor hardware and user’s
mobility involving movement patterns and variability on co-
presence detection of spontaneous groups.

We summarize our contributions as follows:
• We gathered a multimodal dataset for co-presence detec-

tion, including multiple proximity verification sets, to be
able to associate sensor’s data with spatial granularity.
Our dataset is publicly available [6] as an anonymized
subset.

• We show that sensor modalities are suitable for co-
presence detection with a signal distance ratio of 5.6x
among nearby and remote users. We quantify the impact
of device heterogeneity where the co-presence accuracy
decreases by 47 %, while the user’s mobility has a neg-
ligible effect on the co-presence detection.

• We perform an energy analysis on mobile devices to
assess the energy demand of different sensors for co-
presence detection. The system idle dominates the total
energy consumption of the smartphone with 98 %, com-
pared to the phone sensors with only 2 %.

II. RELATED WORK

Our work can be positioned within the field of proximity
detection or co-presence detection (used interchangeably in
this paper). A number of approaches have been proposed
for co-presence detection using the similarity of Bluetooth



signals [7], Wi-Fi signals [8], ambient sound [9], images
[10], and accelerometer data [11]. Some works concentrate
on the estimation of face-to-face interaction among users up
to 1.5 m using Bluetooth signals [12], proximity sensors [13],
or comparing magnetometer readings to link devices in close
proximity of a few centimeters [14]. Other solutions for co-
presence detection require infrastructure support such as bea-
cons for Bluetooth low energy (BLE) [15] or ultrasound [16]
to emit messages to recognize user’s co-presence. In contrast
to our work, most of existing studies only analyze device-
to-device proximity and not the proximity of device groups,
without evaluating the impact of other factors, such as user
mobility and hardware heterogeneity on proximity reasoning.
The system in [17] is similar to our analysis considering
a multitude of sensor data for group detection. However,
their work lacks a direct comparison of different sensor data
regarding proximity accuracy, e.g., whether the similarity of
accelerometer data is higher compared to barometer pressure.
We do not aim to mitigate context-manipulation attacks [18]
which prevent co-presence detection or trick the proximity
reasoning to include remote users into a group of nearby users.

III. PROXIMITY DATA COLLECTION

In accordance with ethical requirements, we have undergone
a standardized process via the data protection officer of the
institute covering appropriate data protection and respecting
user’s privacy; we conveyed explicitly the purpose of data
collection, the type of data gathered from different people,
how and where the data is stored, and who would process and
use the data. Finally, our data collection is built on participants
who approved our privacy agreement to join the study.

A. Sensing Framework

We used the AWARE framework [19] (version 4.0.708) in
a client and server setting to gather sensor data from mobile
devices. The AWARE server runs on a Linux server located
at the department with Apache, MySQL database, PHP, and
a Mosquitto MQTT broker, which enables TLS transmissions
between student’s mobile devices and the AWARE server. On
the client side, the AWARE app is available for Android and
iOS devices. Table I shows the configured study data to be
collected from the student’s mobile devices. For the sensor
sampling rates, we consider the trade-off between energy
and memory consumption, and whether the sampled sensor
data being usable for co-presence detection. Our proximity
verification sets include GPS and network locations, and Blue-
tooth, Wi-Fi, and GSM encounters. To obtain a sufficiently
fine-grained Bluetooth verification of user’s proximity, we
distributed 50 BLE beacons over the campus to cover main
entrances, lecture halls, library, and cafeteria.

B. Dataset Preparation for Proximity Analysis

Our proximity data collection contains sensor data from
126 devices. We do not consider the following sensor data
for co-presence detection due to limited (few users) sampling
points: ambient light, ambient temperature, gravity, gyroscope,

TABLE I
OVERVIEW OF STUDY DATASET

Data
characteristic

Sampling
rate

Study data

User activity 5 s (Linear) accelerometer

User
position

5 min GPS, network

User
environment

5 min Barometer, magnetometer, temperature,
light, gravity, gyroscope, rotation, GSM
towers, Bluetooth and Wi-Fi devices

(a) Sensor availability (b) Device availability

(c) Number of active devices (d) Histogram of active days

Fig. 1. Overview of proximity data collection

linear accelerometer, and rotation. This results in a cleaned
proximity data collection including 110 mobile devices with
69 % Android devices and 31 % iOS devices. To reduce the
demanded resources of I/O and CPU when using the gathered
data, we convert the raw data stored in MySQL dumps
(122 GiB) to Apache Parquet (23 GiB).

C. Overview of Proximity Data Collection

As our co-presence detection is dependent on sensor data
sensed from multiple devices at the same time and place,
Fig. 1(a) proofs that most of the desired sensor data are evenly
distributed over time being able to infer user’s proximity.
Additionally, Figs. 1(b) and 1(c) confirm that we have enough
active users who contributed sensor data over a longer period.
With respect to the possible size of device groups, Fig. 1(d)
presents the number of active devices broken down by days
of collected data. We select the following wireless and sensor
data targeted for proximity reasoning: Wi-Fi access points
(APs) connected, Wi-Fi neighbors, Bluetooth neighbors, GSM
towers connected, GSM tower neighbors, GPS and network
location, accelerometer, barometer, and magnetometer.

IV. VERIFICATION SETS FOR PROXIMITY REASONING

A. Performance Comparison of Proximity Verification Sets

We use several proximity verification sets to check the
spatial adjacency of device groups inferred by sensor data,



(a) Close-by devices (b) Remote devices

Fig. 2. Pearson correlation among different proximity verification sets for
performance comparison of co-presence detection

such as magnetometer. To be able to compare the verified co-
presence results deduced from sensor data, we analyze that
each proximity verification set achieves a similar performance
in detecting device groups. Hence, we compute the correlation
of verified device groups based on Bluetooth neighbors, Wi-Fi
APs connected, Wi-Fi neighbors, GSM towers connected, and
GSM tower neighbors as shown in Fig. 2. By using a moving
time window of two hours over the proximity verification sets,
we limit the runtime and identify close-by devices for each
proximity verification set via encountered Bluetooth devices,
Wi-Fi APs, or GSM cell towers. Afterwards, we remove
duplicate device groups and determine remote devices. We
compute the mean Pearson correlation for both device groups:
close-by and remote devices, if we recognized device groups
from at least two different proximity verification sets for each
time window, e.g., Wi-Fi and GSM neighbors.

For devices in proximity, Fig. 2(a) shows the mean Pearson
correlation between different proximity verification sets. The
correlation is evenly distributed over all verification sets and
ranges between 0.89 and 0.97. Fig. 2(b) presents a similar
result with a slightly increased correlation among proximity
verification sets for remote devices ranging between 0.95
and 1. Additionally, the mean group size of nearby devices
amounts to four devices compared to distant device groups
with 11 devices.

B. Spatial Granularity of Proximity Verification Sets

To be able to associate sensor’s data with a spatial granu-
larity for co-presence detection, we compute the geographic
expansion of each proximity verification set by using the
user’s daily moving distance based on encountered location-
tagged wireless devices. Therefore, we manually link our self-
distributed BLE beacons with latitude and longitude coor-
dinates. For the positions of the Wi-Fi APs, we use a list
from our IT department with the MAC address of each Wi-Fi
access point and the nearest room number; our institution’s
room finder provides latitude and longitude for each room on
campus. For the positions of the GSM cell towers, we use a
publicly available dataset1. Based on this, we group the data
of each proximity verification set after user devices joining the
positions of encountered BLE beacons, Wi-Fi APs, or GSM
cell towers. To achieve a more accurate user’s daily moving
distance, we resample the scans of surrounding Bluetooth

1https://www.opencellid.org

(a) Bluetooth neighbors (b) Wi-Fi APs connected

(c) Wi-Fi neighbors (d) GPS and network locations

(e) GSM towers connected (f) GSM tower neighbors

Fig. 3. Spatial granularity of proximity verification sets based on users’
encounters of location-tagged wireless devices

devices, Wi-Fi APs, and GSM cell towers by using the median
scan period and we take the mean of user positions for each
scan. Finally, to get a user’s daily moving distance, we sum
over the geodesic distances for a series of user positions.
Fig. 3 presents the ascending spatial granularity of different
proximity verification sets, among 15 % and 85 % of all users.

V. EVALUATION OF MULTIMODAL GROUP PROXIMITY

Our aim is to analyze whether sensor modalities are effec-
tive for co-presence detection by using proximity verification
sets with a variety of spatial granularity, such as Bluetooth,
Wi-Fi, and GSM tower neighbors. Our sensor data (barometer,
magnetometer, and accelerometer) is dependent on the user’s
location or activity with the assumption that people share the
same context similarity. We define the verification of users’
proximity in the following way: at least two or more user
devices sense the same wireless device, e.g., Bluetooth device,
Wi-Fi access point, and GSM cell tower, within a limited
time period like 10 min. To identify remote devices which
are not close to each other, we take the difference among all
devices and nearby devices within the proximity period. To
ensure timely aligned sensor’s data across user devices for co-
presence detection, our sensing framework performs the clock
drift correction of user devices during the daily data upload
to the data collection server.

A. Time Periods of Device Encounters for Proximity Detection

As prerequisite for a meaningful co-presence detection, we
identify the best encounter times in terms of most devices
in proximity, a sufficient number of remote devices, and the
largest set with same sensed sensor data across user devices.
To compute the aforementioned proximity statistics to select



TABLE II
FOR EACH VERIFICATION SET WE IDENTIFY THE MOST EFFECTIVE SENSOR MODALITY
TO DETECT CO-PRESENCE FULFILLING DIFFERENT SPATIO-TEMPORAL GRANULARITY

Verification set Sensor data Spatial
granularity

Proximity
period

Proximity signal
distance δ̄p

Non-proximity
signal distance δ̄np

Signal distance
ratio δ̄np/δ̄p

Bluetooth neighbors Accelerometer 26–124 m 25 min 992.9 1888.5 1.9

Wi-Fi APs connected Magnetometer 98–819 m 20 min 652.9 1455.8 2.2

Wi-Fi neighbors Barometer 165 m–1.2 km 30 min 0.7 13.2 18.3

GSM towers connected Magnetometer 15–243 km 15 min 772.5 2181.8 2.8

GSM tower neighbors Magnetometer 73–266 km 30 min 2906.3 9353.8 3.2

the best encounter times for co-presence detection, we use a
moving non-overlapping time window of two hours for each
combination of proximity verification set, sensor data, user
groups with different mobility, and device groups with varying
sensor hardware. Given the dataset diversity and the nature of
proximity detection over short periods, we choose an empirical
two hour time window to strike a balance between granularity
and fidelity, comparing with the proximity time window of
5–30 minutes.

B. Results of Co-Presence Detection

We perform our co-presence detection for the best encounter
times of 55 different parameter sets, including proximity
verification sets, sensor data, user groups, and device groups.
We use multiple proximity periods ∈ [5, 10, 15, 20, 25, 30] min
to evaluate the time granularity of user’s co-presence. To
verify the user’s proximity, two user devices have to encounter
the same wireless device, e.g., access point or BLE beacon,
within the proximity time window. We aim at recent proximity
encounters and hence set the time range to 5–30 min.

We use the dynamic time warping distance named δ to
compute the similarity of sensor data across different user de-
vices. For comparison, we calculate the signal similarity within
each group of devices in proximity, defined by the proximity
verification set and between each device in proximity and all
distant devices. We take the mean of signal distances among
close-by devices δ̄p as well as between remote devices δ̄np.
Our assumption is that the signal similarity among close-by
devices is higher compared to that of remote devices. We use
the raw sensor signal to evaluate the basic performance of our
co-presence detection.

As a result, based on the maximum signal distance ratio
δ̄np/δ̄p between the proximity δ̄p and non-proximity signal
distance δ̄np, Table II presents the most effective sensor
modality and proximity period for each proximity verification
set with a varying spatial granularity. A signal distance ratio
of one means no difference in the signal similarity among
nearby and remote devices, hence co-presence detection is not
possible. The larger the signal distance ratio the better for
proximity reasoning. The proximity period shows how much
time elapses before we can infer the most effective co-presence
detection. In addition, we are able to associate sensor’s data

TABLE III
SPATIAL GRANULARITY AND PROXIMITY

PERIOD FOR EACH SENSOR MODALITY

Sensor
data

Spatial
granu-
larity

Proximity
period

Proximity
signal

distance δ̄p

Non-proxi-
mity signal

distance δ̄np

Signal
distance

ratio δ̄np/δ̄p

Accele-
rometer

26–
124 m

25 min 992.9 1888.5 1.9

Baro-
meter

165 m–
1.2 km

30 min 0.7 13.2 18.3

Magne-
tometer

165 m–
1.2 km

30 min 4320.1 28337.9 6.6

Fig. 4. Distribution of user entropy based on positions from encountered and
connected Wi-Fi access points

with a spatial granularity and proximity period as shown in
Table III, given by the maximum signal distance ratio.

To sum up, we see a clear distinction of signal similarity
among nearby and distant devices, allowing for co-presence
detection with a varying spatio-temporal granularity. Via the
identified spatial granularity and proximity period, depending
on the use case, developers of context-aware applications are
able to choose the appropriate wireless or sensor data for
co-presence detection. For instance, the magnetometer data
offers the most diverse spatial granularity of user’s co-presence
from a few hundred meters up to kilometers, compared to the
accelerometer data with a working range between 30–100 m.

C. Impact of User Mobility on Co-Presence Detection

To evaluate the impact of user mobility on co-presence
detection, we compute the mean entropy per user based on
positions of encountered wireless devices (e.g., BLE beacons
and Wi-Fi APs) or directly via sensed GPS and network
positions. We use the entropy to define the user mobility via
random device encounters at different locations covering both
movement patterns and variability; this is better than the user’s



TABLE IV
IMPACT OF USER MOBILITY ON CO-PRESENCE DETECTION

Sensor
data

User
entropy

Mean proximity
period

Mean signal
distance ratio δ̄np/δ̄p

Accele-
rometer

1.9 19.2 min 1.3

2.2 21.2 min 1.6

3.1 17.5 min 1.3

Baro-
meter

1.9 17.5 min 9.3

2.2 17.5 min 9.5

3.1 – –

Magne-
tometer

1.9 18.8 min 3

2.2 18.1 min 1.9

3.1 21.9 min 2.1

daily moving distance, which neglects the randomness of user
behavior. For instance, a user moves several hundred meters
each day but only between two positions resulting in a higher
moving distance but low entropy. The randomness of user’s
mobility is more crucial for co-presence detection.

We compute the user entropy for each proximity verification
set based on users’ encounters of location-tagged wireless
devices and apply x-means clustering to find user groups with
different mobility behavior. We select user groups inferred by
the connected Wi-Fi APs because we can cover 88.2 % of all
users, i.e., 97 of 110 users. Fig. 4 shows the distribution of
user entropy including two user groups: 34 users with a mean
entropy of 3.05 meaning high mobility and 63 users with a
mean entropy of 1.86 meaning low mobility. For comparison,
we treat all users as a third binned user group with a mean
entropy of 2.16 meaning medium mobility.

For each sensor, Table IV shows the impact of user mo-
bility on co-presence detection using three user groups with
different mobility behavior. For the barometer sensor, the user
group with the highest mobility entropy was too sparse and
no proximity encounters could be found. The user entropy,
reflecting the users’ mobility, has only a minor impact on the
mean proximity period and mean signal distance ratio of each
user group. For example, there is no trend wherein users with a
higher mobility have more or less encounters with other users
compared to less randomly moving users.

D. Impact of Device Heterogeneity on Co-Presence Detection

We present a two-fold analysis of device heterogeneity,
including sensor hardware statistics and quantifying the effect
of different sensing ranges and sensitivities of device sensors
on our co-presence detection using sensor’s signal similarity.

Regarding the diversity of mobile device’s sensor hardware,
Fig. 5(a) illustrates that 70 % of all device sensors are produced
by only three vendors and Fig. 5(b) shows per sensor that
only 30 % of all device sensors are unique and only 10 %
of all device sensors are from different vendors. In more
detail, Fig. 5(c) presents sensor components and vendors for
each sensor, on average, we have 17 unique sensors from six

TABLE V
IMPACT OF DEVICE DIVERSITY ON CO-PRESENCE DETECTION

Sensor
data

Sensor
hardware

Mean proximity
period

Mean signal
distance ratio δ̄np/δ̄p

Accele-
rometer

mixed 16.9 min 1.2

same 22.2 min 1.5

Baro-
meter

mixed 17.5 min 2.9

same 17.5 min 15.9

Magne-
tometer

mixed 21.9 min 1.7

same 17.9 min 2.8

vendors. Many mobile devices from different manufacturers
are using the same sensor hardware. This leads to a reduced
impact of device heterogeneity on our co-presence detection.

Besides that, we quantify the impact of device heterogeneity
on our co-presence detection. To this end, we enrich nearby
devices defined by our proximity verification set with sensor
names or device models, in case of missing hardware infor-
mation. Different device models like iPhone 6, iPhone 6s,
and iPhone 6s Plus are handled as one device model because
they use the same sensor hardware2. We split the nearby
devices according to their sensor hardware or device model to
achieve a potentially higher signal similarity among devices
in proximity using only the same sensor hardware. We treat
remote devices as one device group regardless of their sensor
hardware. Table V presents the impact of device diversity on
co-presence detection. Per device group, the mean proximity
period remains the same across different sensor hardware. In
contrast, the mean signal distance ratio increases over device
groups separating close-by and distant devices, as expected,
if we are only using devices with the same sensor hardware
for each proximity group. The co-presence detection with
accelerometer data slightly improves by 1.25x, similarly to
magnetometer data with 1.6x. The barometer data achieves the
greatest improvement with a 5.5x greater signal distance ratio,
compared to mixed sensor hardware for co-presence detection.

VI. ENERGY ANALYSIS FOR CO-PRESENCE DETECTION

With respect to usability, we analyze the impact of the
energy consumption of different device sensors for proximity
sensing on the limited battery capacity of mobile devices.

A. Testbed for Sensor Energy Measurements

Our proximity dataset contains five Samsung Galaxy S5
devices (model: SM-G900F). As a sampling device for our
sensor energy measurements we use the Samsung Galaxy
S5 with Android 6.0.1, in which we replaced the detachable
battery with a Monsoon high-voltage power monitor. The
Monsoon device directly powers the smartphone with 3.85 V
and we take the energy measurements, e.g., time, voltage, and
current, via the Python library of the Monsoon power monitor.

2https://www.ifixit.com/Teardown



(a) Ratio of sensor vendors over all devices (b) Ratio of unique sensor components and vendors per sensor over all devices

(c) Sensor components and vendors per sensor over all devices

Fig. 5. Sensor hardware statistics for device heterogeneity

To compute the energy consumption of each device sensor,
our Android test application performs different sensor actions,
e.g., magnetometer reading and Wi-Fi scan, during the energy
measurements lasting one minute in each of our ten evaluation
rounds. To purely compute a sensor’s energy, we measure the
energy used by the smartphone’s idle (with disabled wireless
connections, including GPS, Wi-Fi, Bluetooth, and GSM) and
for a specific sensor’s energy we only activate the corre-
sponding wireless interface. For instance, we only activate the
Bluetooth interface for Bluetooth discovery or BLE scan. We
take as many sensor readings (nsensor) as possible and count
them to normalize the consumed energy, resulting in a time-
independent energy scale in mJ for each sensor action. The
default sampling rate is 10 s or as fast as the sensor is able to
provide the information, e.g., GPS location every 30 s.

B. Impact of Sensor Energy Consumption for User’s Proximity
For our energy measurements we record the time, voltage,

and current to compute the energy consumption E(mJ) =
U(V ) ·I(mA) · t(s) =

∑n
i=1 Uti ·Iti ·(ti+1− ti). We show the

energy consumption for each sensor action Esa in Fig. 6(a),
defined by Esa = Esensor−Esystem idle/nsensor. We apply k-means with
three clusters on the median energy consumption for each
sensor action, to classify the different sensor actions into three
energy consumption levels: small with 34.2 mJ, medium with
1558.5 mJ, and high with 4341.9 mJ as shown in Fig. 6(a). For
location requests the network provider determines the device
location based on cell towers and Wi-Fi APs, whereas the GPS
provider determines the device location using satellites.

We aim to highlight the effect of the sensor’s standalone
energy consumption on the limited battery capacity of mobile
devices. Therefore, we compute the smartphone’s runtime ts
using different device sensors for proximity detection as in

Ebattery = Esystem idle + Esensor

= U · I · ts + Esa · ts/sr

→ ts =
Ebattery · sr

U · I · sr + Esa

(a) Standalone sensor’s energy consumption with energy levels∗

(b) Smartphone runtime using different sensors

(c) Energy ratio between smartphone’s system idle and sensor action∗

Fig. 6. Energy analysis for co-presence detection (∗logarithmic scale)



where Esa is the energy consumption for each sensor action
from Fig. 6(a) and sr is the sampling rate of each device
sensor for our proximity data collection in Table I. We use
the battery capacity of the Samsung Galaxy S5 with Ebattery =
10.78Wh, defined by E(Wh) = Q(mAh)·U(V )/1000, electric
charge defined as Q = 2800mAh. For voltage U and current
I we take the mean voltage and current from our energy
measurements. The battery life of the smartphone in idle
state without sensor actions and disabled wireless interfaces is
17.63 hours. Fig. 6(b) shows that the different sensor actions
have only a minor effect on the smartphone’s runtime ts.
For instance, the standalone sensor’s energy consumption to
receive GPS locations is 3193x higher compared to barometer
readings, whereas the smartphone’s runtime only decreases by
25 minutes. Hence, we analyze the ratio of energy consump-
tion between the system idle and sensor actions. Fig. 6(c)
highlights that the system idle dominates the total energy
consumption of the smartphone with ≈ 98 %. We cannot
recognize an effect on the energy relation between system idle
and sensor actions if the smartphone is moving or not.

VII. CONCLUSION

Our study on co-presence detection focuses on using wire-
less and sensor data from mobile devices. For proximity sens-
ing, we collected a multimodal dataset from 126 participants
over three months. We associate the collected data with an
effective spatial and time granularity and we identify which
sensor data from mobile devices is appropriate for proximity
detection. Furthermore, we show that user mobility has only a
minor impact on the proximity reasoning and that the device
heterogeneity with diverse sensor hardware heavily affects the
co-presence detection. Finally, we have conducted an energy
analysis of different device sensors for proximity detection.
The idle system consumes the most battery capacity of the
mobile device while the effect of sensor reading is negligible.

For future work, we plan to further analyze the timely
performance of co-presence detection throughout the day, e.g.,
morning, noon, and evening, and how the user activity, e.g.,
standing, sitting, and moving, affects the proximity reasoning.
Moreover, we plan to enrich our co-presence detection by
estimating the social relation among users. For the ground
truth of social relationships, we have conducted a survey
among the participants of our data collection including the type
of relationship, presented as ranked categories, e.g., friend,
classmate, and stranger. Our aim is to better understand the
social dynamics of a group of people related to proximity,
e.g., how the strength of social ties correlates with the spatial
adjacency.
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