
Sepsis Prediction using Continuous and Categorical
Features on Sporadic Data

Varsha Sharma, Chirayata Bhattacharyya, Tanuka Bhattacharjee,
Sundeep Khandelwal, Murali Poduval, Anirban Dutta Choudhury

TCS Research & Innovation, India
Email: (sharma.varsha1, chirayata.b, bhattacharjee.tanuka,

sundeep.khandelwal, murali.poduval, anirban.duttachoudhury)@tcs.com

Abstract—Sepsis is one of the most prevalent causes of mor-
tality in Intensive Care Units (ICUs) and also one of the most
expensive health-care problems. Delayed treatment is associated
with increase in death and financial burden. This work proposes
an early prediction of sepsis validated on Physionet Challenge
2019 dataset. The challenge is to extract continuous, categorical
and domain-specific discriminating features from highly sporadic
lab data and vital signals. We find that the imputation of
extremely isolated data lower the prediction performance. In
order to mitigate this, we use a sliding window on sporadic data
to generate continuous features which capture the trend. We also
devise a binning approach to generate categorical features from
the aperiodic data in order to discriminate the deviation from
normalcy. Lastly, we observe that a logical fusion of Random
Forest and Logit Boost provides optimal performance. Normal-
ized Utility Score (NUS) is used to benchmark the performance
of the proposed baselines. Five-fold cross-validation of the best
preforming pipeline across the data reveals high median NUS of
0.401.

Index Terms—Sepsis, Predictions, Categorical, Sporadic

I. INTRODUCTION

Sepsis is one of the leading life-threatening bacterial and
viral infections that often turns fatal if not detected and treated
in time. Sepsis refers to the syndrome wherein a previously
known or unknown infection leads to immune system over-
ride and rapid progression to multi-organ failure. The Sepsis
3 working committee has emphasized on organ dysfunction as
an essential part of the definition of sepsis [1]. The definition
proposed therefore is “life threatening infection caused by
a dysregulated host response to infection”. People can get
affected by sepsis at any time, but those staying in Intensive
Care Unit (ICU) are more susceptible to contract it. The
surviving sepsis campaign quotes mortality rates from Europe
and North America to be as high as 41% and 28.3% [2].
In U.S. hospitals, sepsis is the most expensive condition
treated with an aggregate cost of USD $15.4 billion in 2009
[3], whereas non-specific diagnoses of sepsis account for
another USD $23.7 billion each year [4]. The prevalence of
sepsis is increasing, with a 17% increase in the number of
documented cases between 2000 and 2010 [4], while sepsis-
related deaths have surged to 31% between 1999 and 2014 [5].
Approximately 30,000 sepsis-related deaths occur annually
in USA, with particularly high rates in critically ill patients
admitted to ICUs [4].

Sepsis develops gradually and escalates to catastrophic
multi-organ failure with a very high risk of mortality. However,
no single laboratory test or clinical sign in itself can be consid-
ered diagnostic of sepsis. The diagnosis requires great clinical
acumen and alertness, in combination with an astute analysis
of laboratory results and physiological parameters like heart
rate, mean arterial pressure and respiratory rate. A high index
of suspicion coupled with known scores enables a clinician to
institute treatment with antibiotics in time to save life. High
risk populations especially include those with multiple co-
morbidities like diabetes and heart disease, increasing age and
intensive care admissions. Research reveals that mortality from
severe sepsis and septic shock improves by 7.6% per hour with
early and appropriate administration of antibiotics [6].

The use of standard culture techniques for the detection
and isolation of pathogenic organisms from a sterile body
fluid specimen is still considered the “gold standard” for
diagnosis of infection and sepsis [7]. Routine blood cultures
by this standard to detect sepsis can take 6 hours to 5 days
to grow an organism to detectable levels, additional time is
required to identify the organism and test for appropriate
antibiotic susceptibility (24-48 hours). Various scoring systems
like Sequential Organ Failure Assessment (SOFA) Score [8],
Systematic Inflammatory Response Syndrome (SIRS) criteria
[9] and Simplified Acute Physiology Score (SAPS II) [10].
These methods result in the well-structured tabulation of vital
signs and lab data to generate indicative scores and risk
assessments. However, they do not analyze trends in patient
data or correlation between measurements.

A reliable means of annotated early prediction of sepsis
using available lab data and vitals is an unsolved problem.
The contributions in this paper are following:

1) Analyzing the effect of imputation and preprocessing on
sporadic time series and categorical data

2) Devising novel domain specific features in consultation
with medical experts.

3) Finally, we introduce an end-to-end pipeline to process
a combination of vital signs and lab dataset to predict
early diagnosis of sepsis.

In section II, we briefly describe the data-set and remark on
some observations. In section III, we present our pipe-line with
clear definition of multiple baselines. Section IV and Section



V convey the result and conclusion respectively.

II. ANALYSIS OF SEPSIS DATASET

A. Dataset

The dataset used in this study are provided by Physionet
2019 challenge [11]. Organisers provided hourly data which
consist of 8 vital signals, 26 laboratory parameters and 6
demographic details of 40,336 subjects from two ICU units
- Medical-ICU (MICU) and Surgical-ICU (SICU). Fig. 1
visualizes the normalized raw data for an ICU patient trans-
forming from non-sepsis to sepsis stage around 89th hour of
her MICU stay. Left vertical axis represents the vital signs
and right vertical axis represents the laboratory investigations.
Discontinuity in vitals and lab values indicate missing data.
Respective variation of the lab values are represented by the
bars where the shades demonstrate the value (the higher the
darker). In order to preserve the practicality of the problem at
hand, Physionet Challenge organisers imposes a restriction on
analysis of the future data. For the rest of this paper, the same
restriction i.e. “non-availability of future data at any given
hour” is maintained. The organisers introduced Normalised
Utility Score (NUS) [11], which is used as the performance
criteria in this paper.

B. Correlation of Sepsis and SOFA

Sequential organ failure assessment (SOFA) is a clinical
prediction score used to track patient’s status during the stay
in ICU. SOFA score calculation requires information about
the Hepato-renal function and Coagulatory status. Recently, a
simplified version of SOFA named as quick SOFA (qSOFA)
[8] was introduced by the Sepsis-3 group [7]. qSOFA requires
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Fig. 2. Histogram of qSOFA and Sepsis correlation for different ICU units

only three parameters, namely Respiratory Rate (RR), Sys-
tolic Blood Pressure (SBP) and Glasgow Coma Scale (GCS).
tSOFA is defined as a two point change in the patients SOFA
score. This along with clinical suspicion of infection helps in
identifying potential for end-organ damage. Our objective is to
analyze the correlation of SOFA score with the sepsis labels.
The challenge data provides all parameters except GCS and
Dopamine required for Nervous system and Cardiovascular
system information respectively. Hence, we approximate both
SOFA and qSOFA score with the available parameters for all
the patients at each hour and correlate it with the ground truth
sepsis labels, As shown in Fig. 2, the correlation is extremely
poor (peaked around zero). This may be attributed to the
inconsistency in the reported data e.g. in the data shown in
Fig. 1, Serum Bilirubin is an important indicator of hepatic
function and is found missing in the dataset.

C. Temperature and SBP at Normal HR

Abnormal HR is associated with sepsis [12]. But when HR
is within normal range (60-100), we perceive some relation
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Fig. 1. Raw data plot of a 65 years old female subject staying in MICU.



6
0

8
0

1
0

0
H

R

Signal Normal Range Median Sepsis

3
6
.0

3
7

.0
T

em
p

0 5 10 15 20 25 30

9
0

1
3

0

Time (Hours)

S
B

P

(a) Direct relation

6
0

8
0

1
0
0

H
R

3
5
.5

3
6
.5

T
em

p

2 4 6 8 101
0
0

1
6
0

Time (Hours)

S
B

P

(b) Inverse relation

Fig. 3. Relation between Temparature and SBP

between temperature and SBP. Both parameters are correlated
bidirectionally (direct and inverse) with each other. When
temperature is lower than its normal range, there exists an
inverse correlation between temperature and SBP (Fig. 3(a)).
When temperature is higher than its normal range, temperature
and SBP exhibit a direct correlation (Fig. 3(b)). This trend is
visible in 70% of the subjects.

D. Missing Data & Imbalance

The clinical dataset is inconsistently inconsistent. There is
no specific trend in missing data across the ICU stay of a
subject as well as across subjects. The laboratory tests are
the most sporadic in nature. The vital signs, though measured
more frequently, is far from a steady periodicity (Fig. 4).

H
R

O
2

S
a

t
T

em
p

S
B

P
M

A
P

D
B

P
R

es
p

E
tC

O
2

B
a

se
E

x
ce

ss
H

C
O

3
F

iO
2

p
H

P
a

C
O

2
S

a
O

2
A

S
T

B
U

N
A

lk
a

li
n

ep
h

o
s

C
a

lc
iu

m
C

h
lo

ri
d

e
C

re
a

ti
n

in
e

B
il

ir
u

b
in

_
d

ir
ec

t
G

lu
co

se
L

a
ct

a
te

M
a

g
n

es
iu

m
P

h
o

sp
h

a
te

P
o

ta
ss

iu
m

B
il

ir
u

b
in

_
to

ta
l

T
ro

p
o

n
in

I
H

ct
H

g
b

P
T

T
W

B
C

F
ib

ri
n

o
g

en
P

la
te

le
ts

A
g

e
G

en
d

er
U

n
it

1
U

n
it

2
H

o
sp

A
d

m
T

im
e

IC
U

L
O

S

R
ec

o
rd

ed
 D

a
ta

 

 (
%

*
1
0
0
) 

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Bar plot of recorded data percentage of vitals (white), lab data (grey)
and demographic data (black).

Challenge dataset is highly imbalanced with 7.26% of the
subjects heading to sepsis (2,932 out of 40,336). The sepsis
occurrence in terms of hourly instances is much lower 1.8%.

III. PROPOSED METHODOLOGY

As mentioned in section II, the concerned dataset is unique
in nature when compared to generic time series classification
problems. In this section, we present a novel pipeline to handle
this data. The flow chart of the proposed method is shown in
Fig. 5 and the comprehensive details of various components
are described in the following subsections.
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Fig. 5. Flow Chart

A. Preprocessing

We try to impute the missing data with the methods avail-
able in [13], like Last Observation Carried Forward (LOCF)
and Next Observation Carried Backward (NOCB), mean im-
putation and interpolation. Fig. 6 shows the imputed data plots
for a sample subject.

LOCF and NOCB are common statistical approaches to
the analysis of longitudinal data where some follow-up ob-
servations may be missing. Longitudinal data tracks the same
sample at different points in time. Computing the overall mean
is an imputation method that takes no precedence of the time
series characteristics or relationship between the variables. We
perform the interpolation on all the 8 vital signs by fitting
spline/linear if at least two values are present. In case there



exists only one value in the entire signal, we repeat the same
value for the rest of the ICU stay and if there exists no value
for the entire signal, we take random values within the normal
range. Ranges for these random values are carefully selected
so that variation between them is less. Imputation results are
provided in section IV.
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Fig. 6. Visual comparison of data imputation methods.

B. Feature Description

In the proposed technique, we extract 336 features from 34
signals (vitals and lab data) and 6 key demographics. Predom-
inantly, variables or any observational data either represent
measurements on some continuous scale, or they represent
information about some categorical or discrete characteristics.
We extract the information in both ways. The considered
features can be categorized as follows:

1) Baseline 1 (Continuous Features): Sepsis progresses
when the immune response to bacterial infection injures own
tissues and organs. Given the fairly fast progression of this
medical condition, it is important to observe recent patient
history over a time window (say i hours). For first i hours,
we consider the entire history available at that point of time
i.e. the window size increases from 1st hour to (i− 1) hours.
From ith hour, we take a sliding window of past (i−1) hours
and the ith hour for feature calculation.

We observe that the occurrence and/or frequency of lab tests
are related with the progress of sepsis. For example, in Fig. 1,
during the initial hours, frequency of temperature measurement
is low and after 56th hour, it increases gradually till the person
is labeled sepsis in the 89th hour. Fig. 1 also reveals that
Mean Atrial Pressure (MAP) becomes more frequent after
48th hour. A possible reason can be that depending on the
current progression of sepsis in a subject, the physicians may
decide to carry out certain procedures and/or administration
of medicine(s). To measure the effect of those, they need
to frequently monitor certain lab data. Hence, frequencies of
lab tests become indirectly connected to sepsis progression.
Medical experts indicated some more statistical aggregators
to capture the instability of 34 parameters (i.e. both lab data
and vitals).

The list of features calculated from each those 34 parameters
are (1) count of valid data records present, (2) out of range
count, (3) difference between the value at ith hour and (i−1)th

hour, (4) difference between the ith hour and the mean of the

past i − 1 hours and (5) difference between the final hour
and the variance of the past i− 1 hours; leading to a total of
170 features. We vary i from 6 to 96 in order to determine
the sweet spot of the window size and as shown in Fig. 7, a
sliding window length of 9 hours performs best.
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Fig. 7. The box-plot of 5-fold utility score with the variation of window size.

2) Baseline 2 (Categorical Features): We consider all 34
signals as qualitative data and bin each of them into 6
categories. Then we extract 4 features for each of the 34
signals, resulting into 136 categorical features. The features
are (1) the category, (2) the upper limit (UL), (2) the lower
limit (LL) and (4) one hot dummy encoding, elaborated in
Algorithm 1.

Algorithm 1 Categorical Feature Extraction from Clinical
Signals and following Limits: LL, UL, LL2 = 0.8 × LL,
UL2 = 1.2× UL

1: procedure CATEGORICAL(LL,UL,LL2, UL2)
2: switch Si do
3: case (LLi < Si < ULi)
4: return (1, LLi, ULi, 1);
5: case (LL2i < Si < LLi)
6: return (2, LL2i, LLi, 1);
7: case (ULi < Si < UL2i)
8: return (3, ULi, UL2i, 1);
9: case (min(Si) < Si < LL2i)

10: return (4,min(Si), LL2i, 1);
11: case (UL2i < Si < max(Si))
12: return (5, UL2i,max(Si), 1);
13: case (Si = NAN ) return (6, 0, 0, 0);
14: end procedure

Let us take a specific example. Table I reveals 6 categories
and associate UL and LL for HR signal. In Table II, we
randomly chose few cases from HR and the features calculated
as per Algorithm 1. For example, in case 1, HR is 70 beats
per minute (bpm). Therefore, the category for 70 is ‘1’, UL
is 100 and LL is 60.

3) Baseline 3 (Demographic Features): We include the
following features for each subject at each hour - (1) current
hospital admission duration, (2) ICU unit, (3) gender, (4)
age and (5) current ICU stay duration, as compiled in [11].



TABLE I
CATEGORIES FOR HR SIGNAL

Input Range Category UL LL
60-100 1 100 60
48-60 2 60 48

100-120 3 120 100
20-48 4 48 20

120-210 5 210 120
NAN 6 0 0

TABLE II
FEATURES EXTRACTED FOR SAMPLE HR CASES

Cases HR Extracted Features
Category UL LL One-Hot

1 70 1 100 60 1
2 45 4 48 20 1
3 NAN 6 0 0 0
4 110 3 120 100 1

Moreover, ICU hours are divided into the non-overlapping
bins of 10 hours along with their (6) LL and (7) UL. ICU
stay duration is binned in steps of 10 hours e.g. < 10 hours,
10−20 hours, 21−30 hours etc. For example, if current ICU
stay is 28, it is placed in the bin of 21− 30 hours with 20 as
LL and 30 as UL. Similarly, age is divided into 4 categories,
0− 25, 25− 50, 50− 75 and 75− 100 years along with their
(8) LL and (9) UL.

4) Baseline 4 (Domain Features): Some commonly used
scoring systems for sepsis are added as features - National
Early Warning Score (NEWS) (6 features), Modified Early
Warning Score (MEWS) (5 features) and Acute Physiology
and Chronic Health Evaluation II (APACHE II) (10 features)
[14]. Major limitations of applying these scoring systems in
our dataset are missing data such as level of consciousness and
emergency oxygen therapy information - awareness, verbal &
painful response etc. We can only select the signals which are
available in the dataset and made separate categories, which
yields 21 features.

IV. RESULT

Data imputation is performed subject-wise in training phase
and window-wise in testing phase. However, in Table III, we
observe that all imputation methods introduce bias in analysis
and performs poorly. Hence we drop imputation from the
pipeline shown in Fig. 5.

TABLE III
(NORMALIZED UTILITY SCORES) ×10−3 AFTER PREPROCESSING WITH

MEDIAN VALUE IN BOLD

Imputation Five-Folds Variance
Method 1 2 3 4 5
LOCF & 169 181 175 187 144 276
NOCB
Mean 142 184 176 193 110 1185
Spline 186 211 213 208 251 550
Linear 192 209 220 220 163 578

One possible reason could be the unknown activities in ICUs
e.g. a lot of medicines and external fluid get administered,
other body conditions (fasting for some tests etc.) are imposed.

Without those details, in a sporadic dataset, imputation is
incomplete, resolution into lowering Signal to Noise Ratio
(SNR) in the imputed signal.

Getting rid of the feeble and redundant features is an
essential step to reduce variance in testing performance. Prior
to feature selection, train data is normalized with the respective
standard deviation and mean values and test features are
normalized with the stored values of standard deviation and
mean from training set. We rank all the extracted features using
the Minimum Redundancy Maximum Relevance (MRMR)
technique [15], and visualize the cross validation performance
with increasing number of ranked features in Fig. 8. We choose
the high bias, low variance combination i.e. the box having
least stretch, high minimum and high median value. Fig. 8
shows the top 320 features give us the optimal performance.
The most prominent features as shown in Table IV, got
picked from different categories mentioned throughout this
section, thereby validating the differentiating nature of the
novel features.
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Fig. 8. The box plot of 5-fold utility score with number of selected features.

TABLE IV
LIST OF 10 PROMINENT FEATURES SELECTED FROM MRMR

Features (1-5) Features (6-10)
ICU stay (ith-(i− 1)th) hr of O2Sat

Non-NAN count of FiO2 Out of Range for WBC
NEWS cutoff for HR Out of Range for PTT

(ith-(i− 1)th) hr of SaO2 Hosp. Adm. Time
Category of Resp Category of Glucose

To mitigate class imbalance, we randomly under-sample the
hourly instances of the majority class. Then We train two
models; one is the Random Forest (RF) and other is Adaptive
Logistic Regression of Ensemble learning algorithm (LB).
Hyper parameters of both the models are tuned by Bayesian
optimization [16] considering the error of median of NUS as
the minimizing optimization function. Predictions from both
the models are fused together by conjunction operation to
obtain the final predictions.

To demonstrate the potential efficacy of the different base-
line algorithms detailed in section III, 5-fold cross-validation is
performed on all the windows (multiple windows are extracted
from each subject as detailed in subsection III-B. In order to
avoid over-fitting, the partitions for cross-validation are done
in such a manner that windows from the same subject never



appear in both train and test data. The function for calculating
NUS generously rewards the classifier for initial predictions
of sepsis and penalizes it for late or missed predictions.
According to the evaluation function, classifier is rewarded
when sepsis forecast lies between 12 hours before and 3 hours
after tsepsis. Sepsis labels are already shifted ahead by 6 hours
in the provided data. We shift them ahead again by 6 hours
(only in training data) for optimal prediction. The performance
evaluations in various baselines are detailed in Table V with
highlighted median values.

TABLE V
PERFORMANCE COMPARISON FOR ALL BASELINES IN SUBSECTION III-B

Baselines NUS (×10−3) for 5 Folds Variance
1 2 3 4 5

1 (RF) 225 250 242 248 230 122
2 (RF) 230 286 272 281 241 626
3 (RF) 356 384 363 371 331 390
4 (RF) 359 387 370 378 343 292
4 (LB) 374 397 395 387 371 141

4 (RF + LB) 383 418 401 407 384 227

As evident, a gradual improvement in median can be
observed as we continue to add features while moving to
higher baselines. However, the same is not true for the variance
parameter. It is rather high in baseline 2 and 3. As revealed
by the performance Baseline 4 variation in Table V, LB
provides two-fold improvement - reducing variation as well
as improving bias over RF. Reason could be high dimension
of features. The fused approach of baseline 4 provides further
improvement in bias in each fold. But the percentage of
improvement is not uniform throughout all the folds, resulting
into increase in variance.

V. CONCLUSIONS

In this paper, we devise an algorithm for early detection
of sepsis and present a pipeline to analyze the lab and vital
data in ICU. The algorithm is a fusion of two classifiers
trained on diverse domain-specific novel features extracted
from the clinical data. The method yields a 0.401 median
NUS on random 5 fold cross-validation of the training data-
set. A fusion of RF and LB classifiers yield high bias and low
variance. Imputation performs poorly on the clinical data.
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